2,035
Views
84
CrossRef citations to date
0
Altmetric
Original Articles

Review of Sustainable Methane Mitigation and Biopolymer Production

, , &
Pages 1579-1610 | Published online: 15 May 2015

REFERENCES

  • Adegbola, O. (2008). High cell density methanol cultivation of Methylosinus trichosporium OB3b. Master's thesis submitted to Department of Chemical Engineering, Queen's University, Ontario.
  • Ait-Benichou S., Jugnia L.B., Greer C.W., and Cabral, A. (2009). Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manage. 29, 2509–2517.
  • Amaral, J.A., and Knowles, R. (1995). Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126, 215–220.
  • Antony, C.P., Doronina, N.V., Boden, R., Trotsenko, Y.A., Shouche, Y.S., and Murrell, J.C. (2012a). Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater. Int. J. Syst. Evolutionary Microbiol. 62, 1613–1618.
  • Antony, C.P., Murrell, J.C., and Shouche, Y.S. (2012b). Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol. Ecol. 81, 43–51.
  • Asenjo, J.A., and Suk, J.S. (1986). Microbial conversion of methane into poly-b-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type II methanotroph. J. Ferment. Technol. 64, 271–278.
  • Baani, M., and Liesack, W. (2008). Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc. Nat. Acad. Sci. United States of America 105(29), 10203–10208.
  • Bastviken, D., Tranvik, L.J, Downing, J.A., Crill, P.M., and Enrich- Prast, A. (2011). Freshwater methane emissions offset the continental carbon sink. Science 331, 50.
  • Begonja, A., and Hrsak, D. (2001). Effects of growth conditions on the expression of soluble methane monooxygenase. Food Technol. Biotechnol. 39, 29–35.
  • Best, D.J., and Higgins, I.J. (1981). Methane-oxidizing activity and membrane morphology in a methanol-grown obligate methanotroph, Methylosinus trichosporium OB3b. General Microbiol. 125(1), 73–84.
  • Bhati, R., Samantary, S., Sharma, L., and Mallick, N. (2010). Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol. J. 5, 1181–1185.
  • Bhubalan, K., Loo, C.Y., Lee, W.H., Yamamoto, T., Doi, Y., and Sudesh, K. (2008). Controlled biosynthesis and characterization of poly (3-hydroxybutyrate-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym. Degrad. Stab. 93, 17–23.
  • Boiesen, A., Arvin, E., and Broholm, K. (1993). Effect of mineral nutrients on the kinetics of methane utilization by methanotrophs. Biodegradation 4, 163–170.
  • Bolan, N.S., Thangarajan, R., Seshadri, B., Jena, U., Das, K.C., Wang, H., and Naidu, R. (2013). Landfills as a biorefinery to produce biomass and capture biogas. Bioresour. Technol. 135, 578–587.
  • Bourque, D., Pomerleau, Y., and Groleau, D. (1995). High cell density production of poly-beta-hydroxybutyrate (PHB) from methanol by Methylobacterium extroquens: production of high-molecular-mass PHB. Appl. Microbiol. Biotechnol. 44, 367–376.
  • Bowman, J.P., and Sayler, G.S. (1994). Optimization and maintenance of soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Biodegradation 5(1), 1–11.
  • Bowman, J.P., Sly, L.I., Nichols, P.D., and Hayward, A.C. (1993). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Evolutionary Microbiol. 43, 735–753.
  • Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K., and Zhuang, Q. (2013). Methane emissions from welands: biogeochemical, microbial, and modelling perspectives from local to global scales. Global Change Biol. 19, 1325–1346.
  • Brusseau, G.A., Tsien, H.C., Hanson, R.C., and Wackett, S.P. (1990). Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1, 19–29.
  • Chanprateep S. (2010). Current trends in biodegradable polyhydroxyalakanoates. J. Biosci. Bioeng. 110, 621–632.
  • Chellappa, S.A., Fuangfoo, S., and Viswanath, S.D. (1997). Homogeneous oxidation of methane to methanol: effect of CO2, N2, and H2 at high oxygen conversions. Ind. Eng. Chem. Res. 36, 1401–1409.
  • Chen, C.W., Don T.M., and Yen, H.F. (2006). Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrateco-3-hydroxyvalerate by Haloferax mediterranei. Process Biochem. 41, 2289–2296.
  • Chen, G.Q. (2010). Plastics completely synthesized by bacteria: polyhydroxyalkanoates. Microbiol. Monographs 14, 17–37.
  • Chen, Y., Dumont, M.G., Cebron, A., and Murrell, J.C. (2007). Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ. Microbiol. 9, 2855–2869.
  • Chen, Y.H., and Prinn, R.G. (2006). Estimation of atmospheric methane emission between 1996–2001 using a 3-D global chemical transport model. J. Geophys. Res. 111, D10307.
  • Chiang, C.L., Lee, C.M., and Chen, P.C. (2011). Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon-di-oxide mitigation processes. Bioresour. Technol. 102, 5400–5405.
  • Chistoserdova, L., Vorholt, J.A., and Lidstrom, M.E. (2005). A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6(2), 208.1–208
  • Choi, D.W., Kunz, R.C., Boyd, E.S., Semrau, J.D., Antholine, W.E., Han, J.-I., Zahn, J.A., Boyd, J.M., de la Mora, A.M., and DiSpirito, A.A. (2003). The membrane associated methane monooxygenase (pMMO) and pMMO-NADH: Quinone oxidoreductase complex from Methylococcus capsulatus bath. J. Bacteriol. 185(19). 5755–5764.
  • Choi, J., and Lee, S.Y. (1997). Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng. 17, 335–342.
  • Dalton, H. (2005). The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane-oxidizing bacteria. Philos. Trans. Royal Soc. B 360, 1207–1222.
  • Dedysh, S.N., Belova, S.E., Bodelier, P.L., Smirnova, K.V., Khmelenina, V.N., Chidthaisong, A., Trotsenko, Y.A., Liesack, W., and Dunfield, P.F. (2007). Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int. J. Syst. Evolutionary Microbiol. 57, 472–479.
  • Dedysh, S.N., Liesack, W., Khmelenina, V.N, Suzina, N.E., Trotsenko, Y.A., Semrau, J.D., Bares, A.M., Panikov, N.S., and Tiedje, J.M. (2000). Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int. J. Syst. Evolutionary Microbiol. 50, 955–969
  • Deutzmann, S.J., Worner, S., and Schink, B. (2011). Activity and diversity of methanotrophic bacteria at methane seeps in Eastern Lake Constance sediments. Appl. Environ. Microbiol. 77, 2573–2581.
  • Di Donato, P., Anzelmo, G., Tommonaro, G., Fiorentino, G., Nicolaus, B., and Poli, A. (2009). Vegetable wastes as suitable biomass feedstock for biorefineries. New Biotechnol. 25, S257.
  • Dong, J., Xin, J.Y., Zhang, Y.X., Chen, L.L., Liang, H.Y., and Xia, C.G. (2011). Growth of a methane utilizing mixed culture HD6T on methanol and poly-β-hydroxybutyrate biosynthesis. Adv. Mater. Res. 160–162, 171–175.
  • Dong, J. (2013). The role of copper in the growth of Methylosinus trichosporium IMV 3011 and poly-β-hydroxybutyrate biosynthesis. Appl. Mech. Mater. 268–270, 221–224.
  • Doronina, N.V., Ezhov, V.A., and Trotsenko, Iu.A. (2008). Growth of Methylosinus trichosporium OB3b on methane and poly-β-hydroxybutyrate biosynthesis. Appl. Biochem. Microbiol. 44, 182–185.
  • Doronina, N.V., Trotsenko, Y.A., and Tourova, T.P. (2000). Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int. J Syst. Evolutionary Microbiol. 50, 1849–1859.
  • Du, C., Sabirova, J., Soetaert, W., and Lin, S.K.C. (2012). Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Opin. Chem. Biol. 6, 14–25.
  • Dunfield F.P., Liesack, W., Henckel, T., Knowles, R., and Conrad, R. (1999). High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl. Environ. Microbiol. 65, 1009–1014.
  • Dunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S., Ly, B., Saw, J.H., Zhou, Z., Ren, Y., Wang, J., Mountain, B.W., Crowe, M.A., Weatherby, T.M., Bodelier, P.L. E., Liesack, W., Feng, L., Wang, L., and Alam, M. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450, 879–882.
  • Dunfield, P.F., Belova, S.E., Vorobev, A.V., Cornish, S.L., and Dedysh, S.N. (2010). Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int. J. Syst. Evolutionary Microbiol. 60, 2659–2664.
  • Dunfield, P.F., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., and Dedysh, S.N. (2003). Methylocella silvestris sp nov., a novel methanotroph isolated from an acidic forest cambisol. Int. J. Syst. Evolutionary Microbiol. 53, 1231–1239.
  • Eller, G., and Frenzel, P. (2001). Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl. Environ. Microbiol. 67, 2395–2403.
  • Eller, G., Kruger, M., and Frenzel, P. (2005). Comparing field and microcosm experiments: a case study on methano- and methylo-trophic bacteria in paddy soil. FEMS Microbiol. Ecol. 51, 279–291.
  • Eshinimaev, B.T., Khmelenina, V.N., and Trotsenko, Y.A. (2008). First isolation of a type II methanotroph from a soda lake. Microbiology 77, 628–631.
  • Geymonat, E., Ferrando, L., and Tarlera, S.E. (2011). Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. Int. J. Syst. Evolutionary Microbiol. 61, 2568–2572.
  • Graham, D.W., Chaudhary, J.A., Hanson, R.S., and Arnold, R.G. (1993). Factors affecting competition between type I and type II methanotrophs in two-organism continuous flow reactors. Microbial. Ecol. 25, 1–17.
  • Grosse, S., Laramee, L., Wendlandt, K.D., McDonald, I.R., Miguez, C.B., and Kleber, H.P. (1999). Purification and characterization of the soluble methane monooxygenase of the Type II methanotrophic bacterium Methylocystis sp. Strain WI 14. Appl. Environ. Microbiol. 65(9), 3929–3935.
  • Haas, R., Jin, B., and Zepf, F.T. (2008). Production of poly (3-hydroxybutyrate) from waste potato starch. Biosci. Biotechnol. Biochem. 72, 253–256.
  • Haase, S.M., Huchzermeyer, B., and Rath, T. (2012). PHB accumulation in Nostoc muscorum under different carbon stress situations. J. Appl. Phycol. 24, 157–162.
  • Halet, D., Boon, N., and Verstraete, W. (2006). Community dynamics of methanotrophic bacteria during composting of organic matter. J. Biosci. Bioeng. 101(4), 297–302.
  • Han, B., Chen, Y., Abell, G., Jiang, H., Bodrossy, L., Zhao, J., Murrell, J.C., and Xing, X.H. (2009). Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol. Ecol. 70, 40–51.
  • Hanson, R.S., and Hanson, T.E. (1996). Methanotrophic bacteria. Microbiol. Rev. 60(2), 439–471.
  • Hao, S., Yingxin, Z., Weibao, K., and Chungu, X. (2012). Activities of key enzymes in the biosynthesis of poly-3—hydroxybutyrate by Methylosinus trichosporium IMV 3011. Chin. J. Catalysis 33, 1754–1761.
  • Helm, J., Wendlandt, K.D., Jechorek, M., and Stottmeister, U. (2008). Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J. Appl.Microbiol. 150, 1054–1061.
  • Helm, J., Wendlandt, K.D., Rogge, G., and Kappelmeyer, U. (2006). Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J. Appl. Microbiol. 101, 387–395.
  • Henckel, T., Jackel, U., Schnell, S., and Conrad, R. (2000a). Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Environ. Microbiol. 66, 1801–1808.
  • Henckel, T., Roslev, P., and Conrad, R. (2000b). Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2(6), 666–679. [My paper]
  • Hempel, F., Bozarth, A.S., Lindenkamp, N., Klingl, A., Zauner, S., Linne, U., Steinbuchel, A., and Maier, U.G. (2011). Microalgae as bioreactors for bioplastic production. Microbial Cell Factories 10(81), 1–6.
  • Herrmann, R.F., and Shann, J.F. (1997). Microbial community changes during the composting of municipal solid waste. Microbial Ecol. 33, 78–85.
  • Heyer, J., Berger, U., Hardt, M., and Dunfield, P.F. (2005). Methylohalobius crimensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int. J. Syst. Evolutionary Microbiol. 55, 1817–1826.
  • Heyer, J., Galchenko, V.F., and Dunfield, P.F. (2002). Molecular phylogeny of type II methane oxidizing bacteria isolated from various environments. Microbiology 148, 2831–2846.
  • Higgins, I.J., Best, D.J., Hammond, R.C., and Scott, D. (1981). Methane oxidizing microorganisms. FEMS Microbiol. Rev. 45, 556–590.
  • Hilger, H., and Humer, M. (2003). Biotic landfill cover treatments for mitigating methane emissions. Environ. Monit. Assess. 84, 71–84.
  • Hirayama, H., Fuse, H., Abe, M., Miyazaki, M., Nakamura, T., Nunoura, T., Furushima, Y., Yamamoto, H., and Takai, K. (2013). Methylomarinum vadi gen. nov., sp. nov., a marine methanotroph isolated from two distinct marine environments in Japan. Int. J. Syst. Evolutionary Microbiol. 63, 1073–1082.
  • Hirayama, H., Suzuki, Y., Abe, M., Miyazaki, M., Makita, H., Inagaki, F., Uematsu, K., and Takai, K. (2011). Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int. J. Syst. Evolutionary Microbiol. 61, 2646–2653.
  • Horz, H.P., Rich, V., Avrahami, S., and Bohannan, B.J.M. (2005). Methane-oxidizing bacteria in California upland grassland soil: diversity and response to simulated global change. Appl. Environ. Microbiol. 71, 2642–2652.
  • Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S., Adesogan, A.T., Yang, W., Lee, C., Gerber, P.J., Henderson, B., and Tricarico, J.M. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Animal Sci. 91, 5045–5069.
  • Huang, T.Y., Duan, K.J., Huang, S.Y., and Chen, C.W. (2006). Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J. Ind. Microbiol. Biotechnol. 33, 701–706.
  • Iguchi, H., Yurimoto, H., and Sakai, Y. (2011). Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int. J. Syst. Evolutionary Microbiol. 61, 810–815
  • IPCC (2007). In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), IPCC Summary for policymakers in climate change. Cambridge: Cambridge University Press.
  • Jaatinen, K., Knief, C., Dunfield, P.F., Yrjala, K., and Fritze, H. (2004). Methanotrophic bacteria in boreal forest soil after fire. FEMS Microbiol. Ecol. 50, 195–202.
  • Jackel, U., Thummes, K., and Kämpfer, P. (2005). Thermophilic methane production and oxidation in compost. FEMS Microbiol. Ecol. 52, 175–184.
  • Jacob-Lopes, E., Revah, S., Henandez, S., Shirai, K., and Franco, T.T. (2009). Development of operational strategies to remove carbon-di-oxide in photobioreactors. Chem. Eng. J. 153, 120–126.
  • Jahng, D., and Wood, T.K. (1996). Metal ions and chloramphenicol inhibition of soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 45, 744.
  • Jang, I., Lee, S., Zoh, K.D., and Kang, H. (2011). Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biol. Biochem. 43, 620–627.
  • Jensen, S., Prieme, A., and Bakken, L. (1998). Methanol improves methane uptake in starved methanotrophic microorganisms. Appl. Environ. Microbiol. 64, 1143–1146.
  • Jiang, H., Chen, Y., Jiang, P.X., Zhang, C., Chinese, T.J., Murrell, J.C., and Xing. X.H. (2010). Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. J. Biochem. Eng. 49, 277–288.
  • Kabir, K.B., and Halim, S.Z. (2011). Antropogenic methane: emission sources and mitigation options. ChE Thoughts 2, 16–22.
  • Kalyuzhnaya, M.G., Khmelenina, V.N., Suzina, N.E., Lysenko, A.M., and Trotsenko, Y.A. (1999). New methanotrophic isolates from soda lakes of the Southeastern Transbaikal region. Microbiology 68, 677–685.
  • Karthikeyan, O.P., and Visvanathan, C. (2012). Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-012-9304-9
  • Khmelenina, V.N., Shchukin, V.N., Reshetnikov, A.S., Mustakhimov, I.I., Suzina, N.E., Eshinimaev, B.Ts., and Trotsenko, A.Yu. (2010). Structural and functional features of methanotrophs from hypersaline and alkaline lakes. Microbiology 79, 472–482.
  • Khosravi-darani, K., Mokhtari, Z.B., Amai, T., and Tanaka, K. (2013). Microbial production of poly(hydroxybutyrate) from C1 carbon source. Appl. Microbiol. Biotechnol. 97, 1407–1424.
  • Kim, B.S., and Chang, H.N. (1998). Production of poly (3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol. Lett. 109–112.
  • Kim, H.G., Han, G.H., Eom, C.Y., and Kim, S.W. (2008). Isolation and taxonomic characterization of a novel type I methanotrophic bacterium. J. Microbiol. 46, 45–50.
  • Kim, P., Kim, J., and Oh, D. (2003). Improvement in cell yield of Methylobacterium sp. by reducing the inhibition of medium components for poly-beta-hydroxybutyrate production. World J. Microbiol. Biotechnol. 19, 357–361.
  • Kim, S.W., Kim, P., and Kim, J.H. (1996). High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol. Lett. 18, 25–30.
  • Kip, N., Ouyang, W., van winden, J., Raghoebarsing, A., van Niftrik, L., Pol, A., Pan, Y., Bodrossy, L., van Donselaar, E.G., Reichart, G.J., Jetten, M.S., Damste, J,S., and Op den Camp, H.J. (2011). Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl. Environ. Microbiol. 77, 5643–5654.
  • Kocharin, K., and Nielsen, J. (2013). Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae. AMB Express 3(18), 1–6.
  • Koh, S.C., Bowman, J.P., and Sayler, G.S. (1993). Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotrophic Methylomonas methanica. Appl. Environ. Microbiol. 59, 960–967.
  • Koller, M., Hesse, P., Salerno, A., Reiterer, A., and Braunegg, G. (2011). A viable antibiotic strategy against microbial contamination in biotechnological production of polyhydroxyalkanoates from surplus whey. Biomass Bioenergy 35, 748–753.
  • Kraakman, N.J.R., Rocha-Rios, J., and van Loosdrecht, M.C.M. (2011). Review of mass transfer aspects for biological gas treatment. Appl. Microbiol. Biotehcnol. 91(4), 873–886.
  • Kumar, A., Yuan, X., Sahu, A.K., Ergas, S.J., Van Langenhove, H., and Dewulf, J. (2010). A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach. J. Chem. Technol. Biotechnol. 85, 387–394.
  • Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., and Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. BioresourTechnol 102, 4945–4953.
  • Lau, E., Ahmad, A., Steudler, P.A., and Cavanaugh, C.M. (2007). Molecular characterization of methanotrophic communities in forest soils. FEMS MicrobiolEcol 60, 490–500.
  • Lee, E.H., Park, H., and Cho, K.S. (2010). Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J. Hazardous Mater. 184, 313–320.
  • Lin, J.L., Radajewski, S., Eshinimaev, B.T., Trotsenko, Y.A., McDonald, I.R., and Murrell, J.C. (2004). Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ. Microbiol. 6, 1049–1060.
  • Listewnik, H.F., Wendlandt, K.D., Jechorek, M., and Mirschel, G. (2007). Process design for the microbial synthesis of poly-β-hydroxybutyrate (PHB) from natural gas. Eng. Life Sci. 7, 278–282.
  • Lopez C.J., Quijano, G., Souza O.S.T., Estrada, M.J., Lebrero, R., and Munoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl. Microbiol. Biotechnol. 97, 2277–2303.
  • Losekann, T., Knittel, K., Nadalig, T., Fuchs, B., Niemann, H., Boetius, A., and Amann, R. (2007). Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 73, 3348–3362.
  • Macalady, J.L., McMillan, A.M.S., Dickens, A.F., Tyler, S.C., and Scow K.M. (2002). Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ. Microbiol. 4, 148–157.
  • Mehta, P.K., Mishra, S., and Ghose, T.K. (1987). Methanol accumulation by resting cells of Methylosinus trichosporium (I). J. General Appl. Microbiol. 33, 221–229.
  • Mehta, P.K., Mishra, S., and Ghose, T.K. (1991). Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: batch and continuous studies. Biotehcnol. Bioeng. 37, 551–556.
  • Morton, J.D., Hayes, K.F., and Semrau, J.D. (2000). Bioavailability of chelated and soil-adsorbed copper to Methylosinus trichosporium OB3b. Environ. Sci. Technol. 34, 4917–4922.
  • Myshkina, V.L., Nikolaeva, D.A., Makhina, T.K., Bonartsev, A.P., and Bonartseva, G.A. (2008). Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7b. Appl. Biochem. Microbiol. 44(5), 482–486.
  • Nielsen, D.A., Schramm, A., Nielsen, L.P., and Revsbech, N.P. (2013). Seasonal methane oxidation potential in manure crusts. Appl. Environ. Microbiol. 79(1), 407–410.
  • Nikiema, J., Brzezinski, R., and Heitz, M. (2007). Elimination of methane generated from landfills by biofiltration: a review. Rev. Environ. Sci. Biotechnol. 6(4), 261–284.
  • Park, S., Hanna, L.M., Taylor, R.T., and Droege, M.W. (1991). Batch cultivation of Methylosinus trichosporium OB3b. I: Production of soluble methane monooxygenase. Biotechnol. Bioeng. 38(4), 423–433.
  • Pei, L., Schmidt, M., and Wei, W. (2011). Chapter 3. Conversion of biomass into bioplastics and their potential environmental impacts. In Biotechnology of Biopolymers, Edt. Elanshar. M., InTech, 57–74. (DOI: 10.5772/683)
  • Pfluger, A.R., Wu, W.M., Pieja, A.J., Wan, J., Rostkowski, K.H., and Criddle, C.S. (2011). Selection of type I and type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour. Technol. 102, 9919–9926.
  • Pieja, A.J, Rostkowski, K.H., and Criddle, C.S. (2011a). Distribution and selection of poly-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microbial Ecol. 62, 564–573.
  • Pieja, A.J., Sundstrom, E.R., and Criddle, C.S. (2011b). Poly-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl. Environ. Microbiol. 7, 6012–6019.
  • Pieja, A.J., Sundstrom, E.R., and Criddle, C.S. (2012). Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour. Technol. 107, 385–392.
  • Rahalkar, M., Bussmann, I., and Schink, B. (2007). Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int. J. Syst. Evolutionary Microbiol. 57, 1073–1080.
  • Rahalkar, M., Deutzmann, J., Schink, B., and Bussmann, I. (2009). Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of Lake Constance (Germany). Appl. Environ. Microbiol. 75, 119–126.
  • Rahalkar, M., and Schink, B. (2007). Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. Appl. Environ. Microbiol. 73, 4389–4394.
  • Rahnama, F., Vasheghani-Farahani, E., Yazdian, F., and Shojaosadati, S.A. (2012). PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochem. Eng. J. 65, 51–56.
  • Ramadas, N.V., Singh, S.K., Soccol, C.R., and Pandey, A. (2009). Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Brazilian Arch. Biol. Technol. 52, 17–23.
  • Rostkowski, H.K., Criddle, S.C., and Lepech, M.D. (2012). Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). Environ. Sci. Technol. 46, 9822–9829.
  • Rostkowski, K.H., Pfluger, A.R., and Criddle, C.S. (2013). Stoichiometry and kinetics of the PHB-producing type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour. Technol. 132, 71–77.
  • Saidi-Mehrabad, A., He, Z., Tamas, I., Sharp, C.E., Brady, A.L., Rochman, F.F., Bodrossy, L., Abell, G.C., Penner, T., Dong, X., Sensen, C.W., and Dunfield, P.F. (2013). Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. Int. Soc. Microbial Ecol. 7, 908–921.
  • Santimano, M.C., Prabhu, N.N., and Garg, S. (2009). PHA production using low-cost agro-industrial wastes by Bacillus sp. strain COL1/A6. J. Microbiol. 4, 89–96.
  • Scheutz, C., Kjeldsen, P., Bogner, J.E., Visscher, A.D., Gebert, J., Hilger, H.A., Huber-Humer, M., and Spokas, K. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27, 409–455.
  • Scheutz, C., Kjeldsen, P., and Gentil, E. (2009). Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction. Waste Manag. Res. 27, 716–723.
  • Schubert, C.J., Coolen, M.J.L., Neretin, L.N., Schippers, A., Abbas, B., Durisch-Kaiser, E., Wehrli, B., Hopmans, E.C., Damste, J.S. S., Wakeham, S., and Kuypers, M.M.M. (2006). Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ. Microbiol. 8, 1844–1856.
  • Semrau J.D. (2011). Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Frontiers Microbiol. 2, 209.
  • Semrau, J.D. (2011). Current knowledge of microbial community structures in landfills and its cover soils. Appl. Microbiol. Biotechnol. 89, 961–969.
  • Shackley, S., Hammond, J., Gaunt, J., and Ibarrola, R. (2011). The feasibility and costs of bio-char deployment in the UK. Carbon Manag. 2, 335–356.
  • Shah, N.N., Hanna, M.L., and Taylor, R.T. (1996). Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-beta-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol. Bioeng. 49(2), 161–171.
  • Smith, T.J., and Murell, J.C. (2009). Methanotrophy/methane oxidation. In Encylopedia of MicrobiologyEd. Schaechter,M. Elsevier 45, 293–298.
  • Song, H., Xin, J., Zhang, Y., Kong, W., and Xia, C. (2011). Poly-3-hydroxybutyrate production from methanol by Methylosinus trichosporium IMV3011 in the non-sterilized fed-batch fermentation. African J. Microbiol. Res. 5, 5022–5029.
  • Stralis-Pavese, N., Sessitsch, A., Weilharter, A., Reichenauer, T., Riesing, J., Csontos, J., Murrell, J.C., and Bodrossy, L. (2004). Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ. Microbiol. 6, 347–363.
  • Tavormina, P.L., Ussler, W., Joye, S.B., Harrison, B.K., and Orphan, V.J. (2010). Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME J. 4, 700–710.
  • Torres-Alvarado, R., Ramirez-Vives, F., Fernandez, F.J., and Barriga-Sosa, E.I. (2005). Methanogenesis and methane oxidation in wetlands: implications in the global carbon cycle. Hydrobiologica 15, 327–349.
  • Trotsenko, Y.A., and Murrell, J.C. (2008). Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63, 183–229.
  • Tsubota, J., Eshinimaev, B.Ts., Khmelenina, V.N., and Trotsenko, Y.A. (2005). Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int. J. Syst. Evolutionary Microbiol. 55, 1877–1884.
  • Uz, I., Rasche, M.E., Townsend, T., Ogram, A.V., and Lindner, A.S. (2003). Characterization of methanogenic and methanotrophic assemblages in landfill samples. Proc. Royal Soc. Lond. B Biol. Sci. 270, S202–S205.
  • Van der Ha, D., Nachtergaele, L., Kerckhof, F.M., Rameiyanti, D., Bossier, P., Verstraete, W., and Boon, N. (2012). Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ. Sci. Technol. 46, 13425–1343.
  • Vecherskaya, M., Dijkema, C., and Stams, A.J. (2001). Intracellular PHB conversion in a type II methanotroph studied by 13C NMR. J. Ind. Microbiol. Biotechnol. 26, 15–21.
  • Vorholt, J.A. (2002). Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch. Microbiol. 178, 239–249.
  • Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., and Dedysh, S.N. (2011). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int. J. Syst. Evolutionary Microbiol. 61, 2456–2463.
  • Wang, X., Sahr, F., Xue, T., and Sun, B. (2007). Methylobacterium salsuginis sp. nov., isolated from seawater. Int. J. Syst. Evolutionary Microbiol. 57, 1699–1703.
  • Wendlandt, K.D., Geyer, W., Mirschel, G., Al-Haj and Hemidi, F. (2005). Possibilities for controlling a PHB accumulation process using various analytical methods. J. Biotechnol. 117, 119–129.
  • Wendlandt, K.D., Jechorek, M., Helm, J., and Stottmeister, U. (2001). Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol. 86, 127–133.
  • Wendlandt, K.D., Stottmeister, U., Helm, J., Soltmann, B., Jechorek, M., and Beck, M. (2010). The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng. Life Sci. 10, 87–102.
  • Whittenbury, R., and Dalton, H. (1983). The obligate methane-oxidizing bacteria and their biotechnological potential. In Basic Biology of New Developments in Biotechnology, 439–460. New York.
  • Whittenbury, R., Phillips, K.C., and Wilkinson, J.F. (1970). Enrichment, isolation and some properties of methane-utilizing bacteria. J. General Microbiol. 61, 205–218.
  • Wolinska, A., Pytlak, A., Stepniewska, Z., Kuzniar, A., and Piasecki, C. (2013). Identification of methanotrophic bacteria community in the Jastrzebie-Moszczenica coal mine by fluorescence in situ hybridization and PCR techniques. Polish J. Environ. Studies 22, 275–282.
  • Wong, A.L., Chua, H., and Yu, P.H. (2000). Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes. Appl. Biochem. Biotechnol. 84–86, 843–857.
  • Xin, J., Zhang, Y., Dong, J., Song, H., and Xia, C. (2011). An experimental study on molecular weight of poly-3-hydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011. African J. Biotechnol. 10, 7078–7087.
  • Zhang, Y., Xin, C., Chen, L., Song, H., and Xia, C. (2008). Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J. Natural Gas Chem. 17, 103–109.
  • Zhang, Y., Xin, J., Chen, L., and Xia, C. (2009). The methane monooxygenase intrinsic activity of kinds of methanotrophs. Appl. Biochem. Biotechnol. 157, 431–441.
  • Zhang, Y., Xin, J., Dong, J., and Xia, C. (2011). The role of NADH in the PHB synthesis mechanism in methanotrophs. Adv. Mater. Res. 160–162, 91–95.
  • Zhang, Y., Su, S., Zhang, F., Shi R., and Gao, W. (2012). Characterizing spatiotemporal dynamics of methane emissions from rice paddies in Northeast China from 1990 to 2010. PLoS ONE 7(1), e29156.
  • Zheng, Y., Yang, W., Sun, X., Wang, SP., Rui, Y.C., Luo, C.Y., and Guo, L.D. (2012). Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau. Appl. Microbiol. Biotechnol. 93, 2193–2203.
  • Zuniga, C., Morales, M., Le Borgne, S., and Revah, S. (2011). Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J. Hazardous Mater. 190, 876–882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.