1,390
Views
89
CrossRef citations to date
0
Altmetric
Original Articles

From Wastes to High Value Added Products: Novel Aspects of SSF in the Production of Enzymes

, , , , , & show all
Pages 1999-2042 | Published online: 18 Jun 2015

REFERENCES

  • Abraham, J., Gea, T., and Sanchez, A. (2013). Potential of the solid-state fermentation of soy fibre residues by native microbial populations for bench-scale alkaline protease production. Biochem. Eng. J., 74, 15–19.
  • Abraham, J., Gea, T., and Sanchez, A. (2014). Substitution of chemical dehairing by proteases from solid- state fermentation of hair wastes. J. Cleaner Production, 74, 191–198.
  • Abrunhosa, A., Venancio, A., and Teixeira, J. (2011). Optimization of process parameters for the production of an OTA-hydrolyzing enzyme from Aspergillus niger under solid-state fermentation. J. Biosci. Bioeng., 112, 351–355.
  • Ahmed, W.A., and Salimon, J. (2009). Phorbol ester as toxic constituents of tropical Jatropha Curcas seed oil. Eur. J. Sci. Res., 31, 429–436.
  • Akpinar, M., and Urek, R. (2012). Production of lignolytic enzymes by solid-state fermentation using Pleurotus eryngii. Prep. Biochem. Biotechnol., 42, 582–597.
  • Akpinar, M., and Urek, R. (2014). Extracellular lignolytic enzyme production by Pleurotus eryngii on agroindustrial wastes. Prep. Biochem. Biotechnol., 44, 772–781.
  • Ali, H., and Zulkali, M. (2011). Design aspects of bioreactors for solid-state fermentation: a review. Chem. Biochem. Eng. Quar., 25, 255–266.
  • Ang, S.K., Shaza, E.M., Adibah, Y., Suraini, A.A., and Madihah, M.S. (2013). Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem., 48, 1293–1302.
  • Anwar, A., and Saleemuddin, M. (1998). Alkaline Proteases: a review. Bioresour. Technol., 64, 175–183.
  • Astolfi, V., Joris, J., Verlindo, R., Oliveira, J.V., Maugeri, F., Mazutti, M.A., de Oliveira, D., and Treichel, H. (2011). Operation of a fixed-bed bioreactor in batch and fed-batch modes for production of inulinase by solid-state fermentation. Biochem. Eng. J., 58, 39–49.
  • Bansal, N., Tewari, R., Soni, R.,, and Soni, S.K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manage., 32, 1341–1346.
  • Belmessikh, A., Boukhalfa, H., Mechakra-Maza, A., Gheribi-Aoulmi, Z., and Amrane, A. (2013). Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. J. Taiwan Inst. Chem. Eng., 44, 377–385.
  • Botella, C., Diaz, A.B., Wang, R., Koutinas, A., and Webb, C. (2009). Particulate bioprocessing: a novel process strategy for biorefineries. Process Biochem., 44, 546–555.
  • Boyce, A., and Walsh, G. (2012). Identification of fungal proteases potentially suitable for environmentally friendly cleaning-in-place in the dairy industry. Chemosphere, 88, 211–218.
  • Brijwani, K., Oberoi, H.S.,, and Vadlani, P.V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem., 45, 120–128.
  • Brijwani, K., Vadlani, P.V., Hohn, K.L.,, and Maier, D.E. (2011). Experimental and theoretical analysis of a novel deep-bed solid-state bioreactor for cellulolytic enzymes production. Biochem. Eng. J., 58–59, 110–123.
  • Chaari, F., Kamoun, A., Bhiri, F., Blibech, M., Ellouze-Ghorbel, R., Ellouz-Chaabouni, S. (2012). Statistical optimization for the production of lichenase by a newly isolated Bacillus licheniformis UEB CF in solid state fermentation using pea pomace as a novel solid support. Ind. Crops Products, 40, 192–198.
  • Chandel, A., da Silva, S., Carvalho, W., and Singh, O. (2012). Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol., 87, 11–20.
  • Chaturvedi, M., Singh, M., Man C.R., and Pandey, S. (2010). Lipase production from Bacillus subtilis MTCC 6808 by solid state fermentation using ground nut oil cake as substrate. Res. J. Microbiol., 5, 725–730.
  • Chen, H., He, Q., and Liu, L. (2011). Cellulase production from the corn stover fraction based on the organ and tissue. Biotechnol. Bioprocess Eng., 16, 867–874.
  • Chen, H., and Li, Z. (2007). Gas dual-dynamic solid state fermentation technique and apparatus. US Patent No. 20,030/138,943.
  • Chi, Z.M., Chi Z., Liu G.L., Zhang T., and Yue L.X. (2009). Inulinase-expressing microorganisms and applications of inulinases. Appl. Microbiol. Biotechnol., 11, 81–89.
  • Chutmanop, J., Chuichucherm, S., Chisti, Y., and Srinophakun, P. (2008). Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J. Chem. Technol. Biotechnol., 83, 1012–1018.
  • Colla, L.M., Rizzardi, J., Pinto, M.H., Reinehr, C.O., Bertolin, T.E., and Costa, J.A. (2010). Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour. Technol., 101, 8308–8314.
  • Csizar, E., Szakacs, G., and Koczk, B. (2007). Biopreparation of cotton fabric with enzymes produced by solid-state fermentation. Enzyme Microbial Technol., 40, 1765–1771.
  • Cunha, F.M., Esperança, M.N., Zangirolami, T.C., Badino, A.C., and Farinas, C.S. (2012). Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulose. Bioresour. Technol., 112, 270–274.
  • Damasceno, F.R. C., Cammarota, M.C., and Freire, D.M. G. (2012). The combined use of a biosurfactant and an enzyme preparation to treat an effluent with a high fat content. Coll. Surf. B: Biointerf., 95, 241–246.
  • Das, A., Paul, T., Jana, A., Halder, S.K., Ghosh, K., Maity, C., Das Mohapatra, P.K., Pati, B.R., and Mondal, K.C. (2013). Bioconversion of rice straw to sugar using multizyme complex of fungal origin and subsequent production of bioethanol by mixed fermentation of Saccharomyces cerevisiae MTCC173 and Zymomonas mobilis MTCC 2428. Ind. Crops Products, 46, 217–225.
  • Demir, H., and Tari, C. (2014). Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind. Crops Products, 54, 302–309.
  • Dhillon, G.S., Brar, S.K., Kaur, S., Metahni, S., and M'Hamdi, N. (2012a). Lactoserum as a moistening medium and crude inducer for fungal cellulase and hemicellulase induction through solid-state fermentation of apple pomace. Biomass Bioenergy, 41, 165–174.
  • Dhillon, G.S., Kaur, S., Brar, S.K., and Verma, M. (2012b). Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind. Crops Products, 38, 6–13.
  • Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., and Brar, S.K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crops Products, 34, 1160–1167.
  • Dilipkumar, M., Rajamohan, N., and Rajasimman, M. (2013). Inulinase production in a packed bed reactor by solid state fermentation. Carbohydrate Polym., 96, 196–199.
  • Du, C., Lin, S., Koutinas, A., Wang, R., Dorado, P., and Webb, C. (2008). A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresour. Technol., 99, 8310–8315.
  • Duan Y., and Chen, H. (2012). Effect of three-phase structure of solid-state fermentation substrates on its transfer properties. CIESC J., 63, 1204–1210.
  • Edwinoliver, N.G., Thirunavukarasu, K., Naidu, R.B., Gowthaman, M.K., Kambe, T.N., and Kamini, N.R. (2010). Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour. Technol., 101, 6791–6796.
  • Elayaraja, S., Velvizhi, T., Maharani, V., Mayavu, P., Vijayalakshmi, S., and Balasubramanian, T. (2011). Thermostable-amylase production by Bacillus firmus CAS 7 using potato peel as a substrate. African J. Biotechnol., 10, 11235–11238.
  • Ellaiah, P., Srinivasulu, B., and Adinarayana, K. (2002). A review on microbial alkaline proteases. J. Sci. Ind. Res., 61, 690–704.
  • El-Sheekh, M.M., Ismail, A.S., El-Abd, M.A., Hegazy, E.M., El-Diwany, A.I. (2009). Effective technological pectinases by Aspergillus carneus NRC1 utilizing the Egyptian orange juice industry scraps. Int. Biodeterior. Biodegrad., 63, 12–18.
  • Garcia-Gomez, M.J., Huerta-Ochoa, S, Loera-Corral, S., and Prado-Barragán, L.A. (2009). Advantages of a proteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolytic preparation. Food Chem., 112, 604–608.
  • Garlapati, V.K., and Banerjee, R. (2010). Optimization of lipase production using differential evolution. Biotechnol. Bioprocess Eng., 15, 254–260.
  • Gautam, S.P., Bundela, P.S., Pandey, A.K., Khan, J., Awasthi, M.K., and Sarsaiya, S. (2011). Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol. Res. Int., 1, 1–8.
  • Gutarra, M., Godoy, M.G., Maugeri, F., Rodrigues, M.I., Freire, D.M., and Castilho, L.R. (2009). Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour. Technol., 100, 5249–5254.
  • Godoy, M.G., Gutarra, M.L., Castro, A.M., Machado, O.L., and Freire, D.M. (2011). Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste. J. Ind. Microbiol. Biotechnol., 38, 945–953.
  • Hasan, F., Shah, A., and Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme Microbiol. Technol., 39, 235–251.
  • Hasan, F., Shah, A., and Hameed, A. (2009). Methods for detection and characterization of lipases: a comprehensive review. Biotechnol. Adv., 27, 782–798.
  • He, Q., and Chen, H. (2013). Pilot-Scale Gas Double-Dynamic Solid-State Fermentation for the Production of Industrial Enzymes. Food Bioprocess Technol., 6, 2916–2924.
  • Hernandez-Rodriguez, B,. Hernández-Rodríguez, B., Córdova, J., Bárzana, E., and Favela-Torres, E. (2009). Effects of organic solvents on activity and stability of lipases produced by thermotolerant fungi in solid-state fermentation. J. Mol. Catalysis B: Enzymatic, 61, 136–142.
  • Hu T., Zhou Y., Dai L., Wang Y., Liu D., Zhang J., et al. (2011). Enhanced cellulase production by solid state fermentation with polyurethane foam as inert supports. Procedia Eng, 18, 335–340.
  • Imandi, S.B., Karanam, S.K., and Garlapati, H.R. (2010). Optimization of process parameters for the production of lipase in solid state fermentation by Yarrowia Lipolytica from Niger seed oil cake (Guizotia abyssinica). J. Microbial Biochem. Technol., 2, 28–33.
  • Joshi, C, and Khare, S.K. (2011). Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresour. Technol., 102, 1722–1726.
  • Jiang, H., Liu, G., Xiao, X., Mei, C., Ding, Y., Yu, S. (2012). Monitoring of solid-state fermentation of wheat straw in a pilot scale using FT-NIR spectroscopy and support vector data description. Microchem. J., 102, 68–74.
  • Kang, S.W., Park, Y.S., Lee, J.S., Hong, S.I., and Kim, S.W. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol., 91, 153–156.
  • Kapilan, R., and Arasaratnam, V. (2011). Paddy husk as support for solid state fermentation to produce xylanase from Bacillus pumilus. Rice Sci., 18, 36–45.
  • Kumar, A.G., Venkatesan, R., Rao, B.P., Swarnalatha, S., and Sekaran, G. (2009). Utilization of tannery solid waste for protease production by Synergistes sp. in solid-state fermentation and partial protease characterization. Eng. Life Sci., 9, 66–73.
  • Kumar, S., Mathur, A., Singh, V., Nandy, S., Khare. S.K., and Negi, S. (2012). Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresour. Technol., 120, 300–304.
  • Lever, M., Goen, Ho., and Cord-Ruwisch, R. (2013). Simplifying cellulase production by using environmental selection pressures and recycling substrate. Environ. Technol., 34, 471–475.
  • Li, S., Li, G., Zhang, L., Zhou, Z., Han, B., Hou, W., Wang, J., and Li, T. (2013). A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl. Energy, 102, 260–265.
  • Lin, Y., Lee, W., Duan, K., and Lin, Y. (2013). Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluyveromyces marxianus. Appl. Energy, 105, 389–394.
  • Liu, Y., Li, C., Meng, X., and Yan, Y. (2013). Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Process. Technol., 106, 303–309.
  • Liu, D. et al. (2011). Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int. Biodeterior. Biodegrad., 65, 717–725.
  • Liu, J., and Yang, J (2007). Cellulase Production by Trichoderma koningii AS 3.4262 in Solid-State Fermentation Using Lignocellulosic Waste from the Vinegar Industry. Food Technol. Biotechnol., 45, 420–425.
  • Mahanta, N., Gupta, A., and Khare, S.K. (2008). Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour. Technol., 99, 1729–1735.
  • Mamma, D., Kourtoglou, E., and Christakopoulos, P. (2008). Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol., 99, 2373–2383.
  • Martinez-Ruiz, A., García, H.S., Saucedo-Castañeda, G., and Favela-Torres, E. (2008). Organic Phase Synthesis of Ethyl Oleate Using Lipases Produced by Solid-state Fermentation. Appl. Biochem. Biotechnol., 151, 393–401.
  • Mekala, N., Singhania, R., Sukumaran, R., and Pandey, A. (2008). Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Appl. Biochem. Biotechnol., 151, 121–131.
  • Melikoglu, M., Lin, C., and Webb, C. (2013). Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food Bioproducts Processing, in press, . doi: 10.1016/j.fbp.2013.04.008.
  • Merheb-Dini, C., Gomes, E., Boscolo, M., and da Silva, R. (2010). Production and characterization of a milk-clotting protease in the crude enzymatic extract from the newly isolated Thermomucor indicae-seudaticae N31 (Milk-clotting protease). Food Chem., 120, 87–93.
  • Mitchell, D.A, Krieger, N., and Berovic, M. (2006). Solid-state fermentation bioreactors: fundamentals of design and operation. Heidelberg: Springer.
  • Mukherjee, A.K, Adhikari, H., and Rai, S.K. (2008). Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. Biochem. Eng. J., 39, 353–361.
  • Nalawade, P.M., Kamble, J.R, Late, A.M., Solunke, K.R., and Mule, M.B. (2009). Studies on integrated use of tannery wastewater, municipal solid waste and fly ash amended compost on vegetable growth. Int. J. Agri. Sci., 1, 55–58.
  • Narra, M., Dixit, G., Divecha, J., Madamwar, D. and Shah AR. (2012). Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour. Technol., 121, 355–361.
  • Ncube, T., Howard, R.L., Abotsi, E.K., van Rensburg, J., and Ncube, I. (2012). Jatropha curcas seedcake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind. Crops Products, 37, 118–123.
  • Nimkar, M.D., Deogade, N.G., and Kawale, M. (2010). Production of α-amylase from Bacillus subtilis & Aspergillus niger using different agro waste by solid state fermentation. Asiatic J. Biotechnol. Res., 1, 23–28.
  • Norouzian, D., Akbarzadeh, A., Scharer J.M., and Young M.M. (2006). Fungal glucoamylases. Biotechnol. Adv., 24, 80–85.
  • Pandey, A. (2003). Solid-state fermentation. Biochem. Eng. J., 13, 81–84.
  • Paranthaman, R., Alagusundaram, K., and Indhumathi, J. (2009). Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation. World J. Agri. Sci., 5, 308–312.
  • Pirota, R., Tonelotto, M., Delabona, P., Fonseca, R., Paixão, D., Baleeiro, F., Neto, V., Farinas, C. (2013). Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Ind. Crops Products, 45, 465–471.
  • Queiroga, A.C., Pintado, M.E., and Malcata, X. (2012). Search for novel proteolytic enzymes aimed at textile and agro-industrial applications: an overview of current and novel approaches. Biocatalysis Biotrans., 1, 154–169.
  • Ramachandran, S., Singh, S.K., Larroche, C., Soccol, C.R., and Pandey, A. (2006). Oil cakes and their biotechnological applications – a review. Bioresour. Technol., 93, 169–174.
  • Rasera, K., Osório, N., Mitchell, D., Krieger, N., and Ferreira-Diasa, S. (2012). Interesterification of fat blends using a fermented solid with lipolytic activity. J. Mol. Catalysis B: Enzymatic, 76, 75–81.
  • Rasmussen, M.L., Shrestha, P., Khanal, S., Pometto, A.L., and van Leeuwen, H. (2010). Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour. Technol., 101, 3526–3533.
  • Rai, S.K., Konwarh, R., and Mukherjee, A.K. (2009). Purification, characterization and biotechnological application of an alkaline-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochem. Eng. J., 45, 218–225.
  • Rigo, E., Ninow J.L., Polloni, A.E., Remonatto, D., Arbter, F., Vardanega, R., Oliveira, D., Treichel, H., Luccio, M. (2009). Improved lipase biosynthesis by a newly isolated Penicillium sp. grown on agricultural wastes. Ind. Biotechnol., 5, 119–126.
  • Rodriguez, L.A., Toro, M.E., Vazquez, F., Correa-Daneri, M.L., Gouiric, S.C., and Vallejo, M.D. (2010). Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int. J. Hydrogen Energy, 35, 5914–5917.
  • Rodriguez-Fernandez, D.E., Rodriguez-Leon, J.A., de Carvalho, J.C., Sturm, W.C., and Soccol, C.R. (2011). The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. Bioresour. Technol., 102, 10657–10662.
  • Rodriguez-Fernandez, D.E., Parada, J.L., Medeiros, A., de Carvalho, J.C., Lacerda, L.G., Rodríguez-León, J.A., and Soccol, C.R. (2013). Concentration by ultrafiltration and stabilization of phytase produced by solid-state fermentation. Process Biochem., 48, 374–379.
  • Rodriguez-Jasso, R.M., Mussatto, S.I., Sepulveda, L., Agrasar, A., Pastrana, L., Aguilar, C.N., and Texeira, J.A. (2013). Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food Bioproducts Processing, 91, 587–594.
  • Rosa, D.R., Duarte, I.C., Saavedra, N.K., Varesche, M.B., Zaiat, M., Cammarota, M.C., and Freire, D.M. (2009). Performance and molecular evaluation of an anaerobic system with suspended biomass for treating wastewater with high fat content after enzymatic hydrolysis. Bioresour. Technol., 100, 6170–6176.
  • Ruiz, H.A., Rodriguez-Jasso, R.M., Rodriguez, R., Contreras-Esquivel, J.C., and Aguilar, C.N. (2012). Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem. Eng. J., 65, 90–95.
  • Salihu, A., Alam, Z., Abdulkarim, I., and Salleh, H. (2012). Lipase production: An insight in the utilization of renewable agricultural residues. Resour. Conserv. Recycling, 58, 36–44.
  • Salum, T.F.C., Villeneuve, P., Barea, B., Yamamoto, C.I., Côcco, L.C., Mitchell, D.A., and Krieger, N. (2010). Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem., 45, 1348–1354.
  • Sandhya, C., Sumantha, A., Szakacs, G., and Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem., 40, 2689–2694.
  • Santis-Navarro, A., Gea, T., Barrena, R., and Sanchez, A. (2011). Production of lipases by solid state fermentation using vegetable oil-refining wastes. Bioresour. Technol., 102, 10080–10084.
  • Sharma, R., Chisti, Y., and Banerjee, U.C. (2001). Production, purification, characterization, and applications of lipases. Biotechnol. Adv., 19, 627–662.
  • Sharma, D., Sharma, B. and Shukla, A. (2011). Biotechnological approach of microbial lipase: a review. Biotechnology, 10, 23–40.
  • Singhania, R.R., Patel, A.K., Soccol, C., and Pandey, A. (2009). Recent advances in solid-state fermentation. Biochem. Eng. J., 44, 13–18.
  • Soni, R., Nazir, A., and Chadha, B.S. (2010). Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind. Crops Products, 31, 277–283.
  • Subba, C., Sathish, T., Ravichandra, P., and Prakasham, R.S. (2009). Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem., 44, 262–268.
  • Subramaniyam R., and Vimala R. (2012). Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int. J. Sci. Nature, 3, 480–486.
  • Rodriguez-Fernandez, D.E., Rodríguez-León J.A., de Carvalho, J.C., Karp, S.G., Sturm, W., Parada, J.L., and Soccol, C.R. (2012). Influence of airflow intensity on phytase production by solid-state fermentation. Bioresour. Technol., 118, 603–606.
  • Sukumaran, R.K., Patel, A.K., Larroche, C., and Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microbial Technol., 46, 541–549.
  • Sukumaran, R.K., Singhania, R.R., Mathew, G.M., and Pandey, A. (2009). Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy, 34, 421–424.
  • Sumantha, A., Larroche, C., and Pandey, A. (2006). Microbiology and industrial biotechnology of food grade proteases-a perspective. Food Technol. Biotechnol., 44, 211–220.
  • Sun, H., Xiangyang, G, Zhikui, H., and Peng, M. (2010). Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. African J. Biotechnol., 9, 163–166.
  • Thanapimmethaa, A., Luadsongkrama, A., Titapiwatanakunc, B., and Srinophakun, P. (2012). Value added waste of Jatropha curcas residue: optimization of protease production in solid state fermentation by Taguchi DOE methodology. Ind. Crops Products, 37, 1–5.
  • Thomas, L., Larroche, C., Pandey, A. (2013). Current developments in solid-state fermentation. Biochem. Eng. J., 81, 146–161.
  • Turk, B. (2006). Targeting proteases: successes, failures and future prospects. Nature Reviews. Drug Discovery, 5, 785–798.
  • Vishwanatha, K.S., Appu Rao, A.G., and Sridevi, A.S. (2009). Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chem., 114, 402–407.
  • Vijayaraghavana, P., and Vincent, G.S.P. (2012). Cow dung as a novel, inexpensive substrate for the production of a halo-tolerant alkaline protease by Halomonas sp. PV1 for eco-friendly Applications. Biochem. Eng. J., 69, 57–60.
  • Venugopal, M., and Saramma, A. (2006). Characterization of alkaline protease from Vibrio fleevialis strain VM10 isolated from a mangrove sediment simple and its application as a laundry detergent additive. Process Biochem., 41, 1239–1243.
  • Xia, W., Liu, P., and Liu, J. (2008). Advance in chitosan hydrolysis by non-specific cellulases. Bioresour. Technol., 99, 6751–6762.
  • Yoon, L.W., Ang, T.N., Ngoh, G.C., Chua, A.S.M. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bionergy, 67, 319–338.
  • Zambare, V. (2010). Solid State Fermentation of Aspergillus oryzae for Glucoamylase Production on Agro residues. Int. J. Life Sci, 4, 16–25.
  • Zanphorlin, L.M., Cabral, H., Arantes, E., Assis, D., Juliano, L., Da-Silva, R., Gomesa, E., and Bonilla-Rodrigueza, G.O. (2011). Purification and characterization of a new alkaline serine protease from the thermophilic fungus Myceliophthora sp. Process Biochem., 46, 2137–2143.
  • Zhang, Y. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol., 35, 367–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.