646
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Current Views on Hydrodynamic Models of Nonideal Flow Anaerobic Reactors

, , , , , & show all
Pages 2175-2207 | Published online: 13 Jul 2015

REFERENCES

  • Alphenaar, P.A., Visser, A., and Lettinga, G. (1993). The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating waste water with a high sulphate content. Bioresour. Technol. 43, 249–258.
  • Annachhatre, A.P. (1996). Anaerobic treatment of industrial wastewaters. Resour. Conserv. Recycl. 16, 161–166.
  • Batstone, D.J., Hernandez, J.L. A., and Schmidt, J.E. (2005). Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 91, 387–391.
  • Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T. M., Siegrist, H., and Vavilin, V. (2002). Anaerobic digestion model no 1 (ADM1). London: IWA.
  • Benbelkacem, H., Garcia-Bernet, D., Bollon, J., Loisel, D., Bayard, R., Steyer, J.P., Gourdon, R., Buffière, P., and Escudié, R. (2013). Liquid mixing and solid segregation in high-solid anaerobic digesters. Bioresour. Technol. 147, 387–394.
  • Bhattacharyya, D., and Singh, K.S. (2009). Understanding the mixing pattern in an anaerobic expanded granular sludge bed reactor: effect of liquid recirculation. J. Environ. Eng. 136, 576–584.
  • Bridgeman, J. (2012). Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Adv. Eng. Software 44, 54–62.
  • Bolle, W.L., van Breugel, J., van Eybergen, G.C., Kossen, N.W. F., and van Gils, W. (1986a). An integral dynamic model for the UASB reactor. Biotechnol. Bioeng. 28, 1621–1636.
  • Bolle, W.L., van Breugel, J., van Eybergen, G.C., Kossen, N.W. F., and Zoetemeyer, R.J. (1986b). Modeling the liquid flow in up-flow anaerobic sludge blanket reactors. Biotechnol. Bioeng. 28, 1615–1620.
  • Bonnet, B., Dochain, D., and Steyer, J.P. (1997). Dynamical modelling of an anaerobic digestion fluidized bed reactor. Water Sci. Technol. 36, 285–292.
  • Buffière, P. (1996). Modeling and experiments on the influence of hydrodynamics on the performance of an anaerobic fluidized bed reactor. PhD Thesis, INSA Toulouse No. 410.
  • Buffière, P., Fonade, C., and Moletta, R. (1998a). Liquid mixing and phase hold-ups in gas producing fluidized bed bioreactors. Chem. Eng. Sci. 53, 617–627.
  • Buffière, P., Fonade, C., and Moletta, R. (1998b). Mixing and phase hold-ups variations due to gas production in anaerobic fluidized-bed digesters: Influence on reactor performance. Biotechnol. Bioeng. 60, 36–43.
  • Buffière, P., Fonade, C., Moletta, R., and Steyer, J.P. (1998c). Modeling and experiments on the influence of biofilm size and mass transfer in a fluidized bed reactor for anaerobic digestion. Water Res. 32, 657–668.
  • Chen, X.G., Zheng, P., Guo, Y.J., Mahmood, Q., Tang, C.J., and Ding, S. (2010). Flow patterns of super-high-rate anaerobic bioreactor. Bioresour. Technol. 101, 7731–7735.
  • Costello, D.J., Greenfield, P.F., and Lee, P.L. (1991a). Dynamic modelling of a single-stage high-rate anaerobic reactor-I. Model derivation. Water Res. 25, 847–858.
  • Costello, D.J., Greenfield, P.F., and Lee, P.L. (1991b). Dynamic modelling of a single-stage high-rate anaerobic reactor-II. Model verification. Water Res. 25, 859–871.
  • Craig, K.J., Nieuwoudt, M.N., and Niemand, L.J. (2013). CFD simulation of anaerobic digester with variable sewage sludge rheology. Water Res. 47, 4485–4497.
  • Danckwerts, P.V. (1953). Continuous flow systems, distributions of residence times. Chem. Eng. Sci. 2, 1–13.
  • Dìez, L., Zima, B.E., Kowalczyk, B.E., and Delgado, A. (2007). Investigation of multi-phase flow in sequencing batch reactor (SBR) by means of hybrid methods. Chem. Eng. Sci. 62, 803–1813.
  • Diez Blanco, V., Encina, P.A., and Fdz Polanco, F. (1995). Effects of biofilm growth, gas and liquid velocities on the expansion of an anaerobic fluidized bed reactor (AFBR). Water Res. 29, 1649–1654.
  • Escudié, R., Conte, T., Steyer, J.P., and Delgenès, J.P. (2005). Hydrodynamic and biokinetic models of an anaerobic fixed-bed reactor. Proc. Biochem. 40, 2311–2323.
  • Fuentes, M., Scenna, N.J., and Aguirre, P.A. (2011). A coupling model for EGSB bioreactors: Hydrodynamics and anaerobic digestion processes. Chem. Eng. Process.: Process Intensification 50, 316–324.
  • Gavrilescu, M. (2002). Engineering concerns and new developments in anaerobic waste-water treatment. Clean Technol. Environ. 3, 346–362.
  • Haandel, A.V., and Lettinga, G. (1994). Anaerobic sewage treatment: a practical guide for regions with a hot climate. New York: Wiley.
  • Heertjes, P.M., Kujivenhoven, L.I., and Van Der Meer, R. (1982). Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol. Bioeng. 24, 443–459.
  • Heertjes, P.M., and Van Der Meer, R. (1978). Dynamics of liquid flow in an up-flow reactor-used for anaerobic treatment of wastewater. Biotechnol. Bioeng. 20, 1577–1594.
  • Huang, J.S., and Jih, C.G. (1997). Deep-Biofilm kinetics of substrate utilization in anaerobic filters. Water Res. 31, 2309–2317.
  • Hoffmann, R.A., Garcia, M.L., Veskivar, M., Karim, K., Al-Dahhan, M.H., and Angenent, L.T. (2008). Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnol. Bioeng. 100, 38–48.
  • Kalyunzhnyi, S., and Federovich, V. (1997). Integrated mathematical model of UASB reactor for competition between sulphate reduction and methanogenesis. Water Sci. Technol. 36, 201–208.
  • Kalyunzhnyi, S., Federovich, V., Lens, P., Pol, P.H., and Lettinga, G. (1998a). Mathematical modelling as a tool to study population dynamics between sulphate reducing and methanogenic bacteria. Biodegradation 9, 187–199.
  • Kalyunzhnyi, S., Vyacheslav, V., Federovich, V., and Lens, P. (1998b). Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics. J. Ind. Microbiol. Biotechnol. 33, 221–237.
  • Kassam, Z.A., Yerushalmi, L., and Guiot, S.R. (2003). A market study on the anaerobic waste-water treatment systems. Water Air Soil Pollut. 143, 179–192.
  • Keshtkar, A., Meyssami, B., Abolhamd, G., Ghaforian, H., and Khalagi Asadi, M. (2003). Mathematical modeling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure. Bioresour. Technol. 87, 113–124.
  • Launder, B.E., and Spalding, B.P. (1974). The numerical computation of turbulent flows. Comput. Methods Appl. Mathemat. Eng. 3, 269–289.
  • Le Moullec, Y., Potier, O., Gentric, C., and Leclerc, J.P. (2008). Flow field and residence time distribution simulation of a cross-flow gas–liquid wastewater treatment reactor using CFD. Chem. Eng. Sci. 63, 2436–2449.
  • Lettinga, G., van Velsen, A.F. M., Hobma, S.W., de Zeeuw, W., and Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22, 699–734.
  • Levenspiel, O., and W.K. Smith. (1957). Notes on the diffusion-type model for the longitudinal mixing in flow. Chem. Eng. Sci. 6, 227–235.
  • Levin, M.A., and Gealt, M.A. (1993). Overview of biotreatment practices and promises. In M.A. Levin and M.A. Gealt (Eds.), Biotreatment of industrial and hazardous waste (pp. 71–72). Philadelphia, PA: McGraw-Hill.
  • Liotta, F., Chatellier, P., Esposito, G., Fabbricino, M., van Hullebusch, E.D., and Lens, P.N. (2014). Hydrodynamic mathematical modeling of aerobic plug flow and non-ideal flow reactors: a critical and hystorical review. Crit. Rev. Environ. Sci. Technol. 44, 2642–2673.
  • Liu, Y.H., He, Y.L., Yang, S.C., and An, C.J. (2007). Studies on the expansion characteristics of the granular bed present in EGSB bioreactors. Water SA 32, 555–560.
  • McCarty, P.L., and Smith, D.P. (1986). Anaerobic wastewater treatment. Environ. Sci. Technol. 20, 1200–1206.
  • Mendoza, R.B., and Sharratt, P.N. (1998). Modelling the effects of imperfect mixing on the performance of anaerobic reactors for sewage sludge treatment. J. Chem. Technol. Biotechnol. 71, 121–130.
  • Mendoza, R.B., and Sharratt, P.N. (1999). Analysis of retention time distribution (RTD) curves in an anaerobic digester with confined-gas mixing using a compartment model. Water Sci. Technol. 40, 49–56.
  • Monteith, H.D., and Stephenson, J.P. (1981). Mixing efficiencies in full-scale anaerobic digesters by tracer methods. J. Water Pollut. Control Fed. 53, 78–84.
  • Mu, S.J., Zeng, Y., Wu, P., Lou, S.J., and Tartakovsky, B. (2008). Anaerobic digestion model no. 1-based distributed parameter model of an anaerobic reactor: I. Model development. Bioresour. Technol. 99, 3665–3675.
  • Muroyama, K., and Fan, L.S. (1985). Fundamentals of gas-liquid-solid fluidization. AIChE J. 31, 1–34.
  • Mutombo, D.T. (2004). Internal circulation reactor: pushing the limits of anaerobic industrial effluents treatment technologies. Proceedings of the 2004 Water Institute of Southern Africa (WISA) Biennial Conference 608–616.
  • Nicolella, C., van Loosdrecht, M.C. M., and Heijnen, J.J. (2000). Wastewater treatment with particulate biofilm reactors. J. Biotechnol. 80, 1–33.
  • Narnoli, S.K., and Indu, M. (1997). Sludge blanket of UASB reactor: Mathematical simulation. Water Res. 31, 715–726.
  • Ojha, C., and Singh, R. (2002). Flow distribution parameters in relation to flow resistence in an UpFlow anaerobic reactor system. J. Environ. Eng. 128, 196–200.
  • Otton, V., Hihn, J.V., Béteau, J.F., Delpech, F., and Chéury, A. (2000). Axial dispersion of liquid in fluidised bed with external recycling: two dynamic modelling approaches with a view to control. Biochem. Eng. J. 4, 129–136.
  • Peña, M.R. (2002). Advanced primary treatment of domestic waste-water in tropical countries: development of high-rate anaerobic ponds. PhD Thesis, University of Leeds, Leeds, England.
  • Peña, M.R., Mara, D.D., and Avella, G.P. (2009). Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Res. 40, 445–452.
  • Pinho, F.T., and Whitelaw, J.H. (1990). Flow of non-Newtonian fluids in a pipe. J. Non-Newtonian Fluid Mech. 34, 129–144.
  • Rajeshwari, K.V., Balakrishnan, M., Kansal, A., Lata, K., and Kishore, V.V. N. (2000). State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sust. Energy Rev. 4, 135–156.
  • Reichert, P. (1998). User manual of AQUASIM 2.0 for the identification and simulation of aquatic systems. Dubendorf, Switzerland: Swiss Federal Institute for Environmental Science and Technology,.
  • Ren, T.T., Mu, Y., Ni, B.J., and Yu, H.Q. (2009). Hydrodynamics of upflow anaerobic sludge blanket reactors. AIChE J. 55, 516–528.
  • Rinzema, A. (1988). Anaerobic treatment of wastewater with high concentrations of lipids or sulfate. PhD Thesis, Wageningen Agricultural University, Wageningen, the Netherlands.
  • Saravanan, V., and Sreekrishnan, T.R. (2006). Modelling anaerobic biofilm reactors: a review. J. Environ. Manage. 81, 1–18.
  • Seok, J., and Komisar, S. (2003). Integrated modeling of anaerobic fluidized bed bioreactor for deicing waste treatment. I. Model derivation. J. Environ. Eng. 129, 100–109.
  • Singh, K., Viraraghavan, T., and Bhattacharyya, D. (2006). Sludge blanket height and flow pattern in UASB Reactor: Temperature effects. J. Environ. Eng. 132, 895–900.
  • Singhal, A., Gomes, J., Praveen, V.V., and Ramachandran, K.B. (1998). Axial dispersion model for upflow anaerobic sludge blanket reactors. Biotechnol. Prog. 14, 645–648.
  • Smith, J.M. (1981). Chemical engineering kinetics (3rd ed.). New York: McGraw-Hill.
  • Smith, L.C., Elliot, D.J., and James, A. (1993). Characterisation of mixing patterns in an anaerobic digester by means of tracer curve analysis. Ecol. Model. 69, 267–285.
  • Smith, L.C., Elliot, D.J., and James, A. (1996). Mixing in upflow anaerobic filters and its influence on performance and scale-up. Water Res. 30, 3061–3073.
  • Tartakovsky, B., Mu, S.J., Zeng, Y., Lou, S.J., Guiot, S.R., and Wu, P. (2008). Anaerobic digestion model No.1–based distributed parameter model of an anaerobic reactor: II. Model validation. Bioresour. Technol. 99, 3676–3684.
  • Tay, J.H., and Show, K.Y. (1998). Media-induced hydraulic behavior and performance of upflow biofilters. J. Environ. Eng. Div. ASCE 124, 720–729.
  • Tay, J.H., Show, K.Y., and Jeyaseelan, S. (1996). Effects of media characteristics on the performance of upflow anaerobic packed-bed reactors. J. Environ. Eng. Div. ASCE 122, 469–476.
  • Turan, M., and Ozturk, I. (1996). Longitudinal dispersion and biomass hold-up of anaerobic fluidized bed reactor. Water Sci. Technol. 43, 461–468.
  • Van Der Meer, R.R., and Heertjes, P.M. (1983). Mathematical description of anaerobic treatment of wastewater in upflow reactors. Biotechnol. Bioeng. 25, 2531–2556.
  • Vavilin, V.A., Rytov, S.V., Lokshina, L.J., Pavlostathis, S.G., and Barlaz, M.A. (2003). Distributed model of solid waste anaerobic digestion: Effects of leachate recirculation and pH adjustment. Biotechnol. Bioeng. 81, 66–73.
  • Vavilin, V.A., Shchelkanov, M.Y., and Rytov, S.V. (2002). Effect of mass transfer on concentration wave propagation during anaerobic digestion of solid waste. Water Res. 36, 2405–2409.
  • Vesvikar, M.S., and Al-Dahhan, M. (2005). Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnol. Bioeng. 89, 719–732.
  • Wang, X., Ding, J., Guo, W.Q., and Ren, N.Q. (2010). A hydrodynamics–reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation. Bioresour. Technol. 101, 9749–9757.
  • Wang, X., Ding, J., Ren, N.Q., Liu, B.F., and Guo, W.Q. (2009). CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. Int. J. Hydrogen Energy 34, 9686–9695.
  • Worden, R.M., and Donaldson, T.L. (1987). Dynamics of a biological fixed film for phenol degradation in a fluidized bed reactor. Biotechnol. Bioeng. 30, 398–405.
  • Wu, B., and Chen, S. (2008). CFD simulation of non-Newtonian fluid flow in anaerobic digesters. Biotechnol. Bioeng. 99, 700–711.
  • Wu, J., Zhang, J.B., Jiang, Y., Cao, Z.P., Poncin, S., and Li, H.Z. (2012). Impacts of hydrodynamic conditions on sludge digestion in internal circulation anaerobic digester. Process. Biochem. 47, 1627–1632.
  • Wu, M.M., and Hickey, F.F. (1997). Dynamic Model for UASB Reactor including Reactor Hydraulics, Reaction and Diffusion. J. Environ. Eng. 123, 244–252.
  • Yan, J.Q., Lo, K.V., and Liao, P.H. (1989). Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor. Biol. Wastes 27, 289–305.
  • Yan, J.Q., Lo, K.V., and Pinder, K.L. (1993). Instability caused by high strength of cheese whey in a UASB reactor. Biotechnol. Bioeng. 41, 700–706.
  • Young, H.W., and Young, J.C. (1988). Hydraulic characteristics of upflow anaerobic filters. J. Environ. Eng. 114, 621–638.
  • Young, J.C., and McCarty, P.L. (1996). The anaerobic filter for waste treatment. Tech. Report No. 87. Stanford, CA: Department of Civil Engineering, Stanford University.
  • Yu, L., Ma, J., and Chen, S. (2011). Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresour. Technol. 102, 1012–1018.
  • Zaher, U., and Chen, S. (2006, October). Interfacing the IWA anaerobic digestion model no1 (ADM1) with manure and solid waste characteristics. Paper presented at the 79th Annual WEF Conference and Exposition (WEFTEC), Dallas, TX.
  • Zeng, Y., Mu, S.J., Lou, S.J., Tartakovsky, B., Guiot, S.R., and Wu, P. (2005). Hydraulic modeling and axial dispersion analysis of UASB reactor. Biochem. Eng. J. 25, 113–123.
  • Zheng, M.X., Wang, K.J., Zuo, J.E., Yan, Z., Fang, H., and Yu, J.W. (2012). Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates. Bioresour. Technol. 107, 33–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.