980
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

Fine and Ultrafine Particles in the Vicinity of Industrial Activities: A Review

, , , , , , , , , & show all
Pages 2305-2356 | Published online: 16 Jul 2015

REFERENCES

  • Adachi, K., and Buseck, P.R. (2008). Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys. 8(21), 6469–6481.
  • Adachi, K., and Buseck, P.R. (2011). Atmospheric tar balls from biomass burning in Mexico. J. Geophys. Res. 116(D5
  • Adamson, I.Y. R., Prieditis, H., and Vincent, R. (1999). Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction. Toxicol. Appl. Pharmacol. 157, 43–50.
  • Alastuey, A., Querol, X., Plana, F., Viana, M., Ruiz, C.R., Sanchez de la Campa, A., de la Rosa, J., Mantilla, E., and Garcia dos Santos, S. (2006). Identification and chemical characterization of industrial particulate matter sources in Southwest Spain. J. Air Waste Manage. Assoc. 56, 993–1006.
  • Alleman, L.Y., Lamaison, L., Perdrix, E., Robache, A., and Galloo, J.-C. (2010). PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 96(4), 612–625.
  • Ando, M., Katagiri, K., Tamura, K., Yamamoto, S., Matsumoto, M., Li, Y.F., Cao, S.R., Ji, R.D., and Liang, C.K. (1996). Indoor and outdoor air pollution in Tokyo and Beijing supercities. Atmos. Environ. 30(5), 695–702.
  • Atkinson, R.W., Fuller, G.W., Anderson, H.R., Harrison, R.M., and Armstrong, B. (2010). Urban ambient particle metrics and health: A time-series analysis. Epidemiology 21(4), 501–511
  • Bahreini, R., Ervens, B., Middlebrook, A.M., Warneke, C., de Gouw, J.A., DeCarlo, P.F., Jimenez, J.L., Brock, C.A., Neuman, J.A., Ryerson, T.B., Stark, H., Atlas, E., Brioude, J., Fried, A., Holloway, J.S., Peischl, J., Richter, D., Walega, J., Weibring, P., Wollny, A.G., and Fehsenfeld, F.C. (2009). Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. J. Geophys. Res.: Atmos. 114(D7
  • Baldauf, R., Lane, D., and Marote, G. (2001). Ambient air quality monitoring network design for assessing human health impacts from exposures to airborne contaminants. Environ. Monit. Assess. 66(1), 63–76.
  • Banic, C., Leaitch, W.R., Strawbridge, K., Tanabe, R., Wong, H., Gariepy, C., Simonetti, A., Nejedly, Z., Campbell, J.L., Lu, J., Skeaff, J., Paktunc, D., MacPherson, J.I., Daggupaty, S., Geonac’h, H., Chatt, A., and Lamoureux, M. (2006). The physical and chemical evolution of aerosols in smelter and power plant plumes: an airborne study. Geochem. Explor. Environ. Anal. 6, 111–120.
  • Baraniecka, J., Pyrzynska, K., Szewczynska, M., Posniak, M., and Dobrzynska, E. (2010). Emission of polycyclic aromatic hydrocarbons from selected processes in steelworks. J. Hazard. Mater. 183(1–3), 111–115.
  • Behrendt, A., Pal, S., Wulfmeyer, V., Valdebenito B.Ã. l. M., and Lammel, G. (2011). A novel approach for the characterization of transport and optical properties of aerosol particles near sources - Part I: Measurement of particle backscatter coefficient maps with a scanning UV lidar. Atmos. Environ. 45(16), 2795–2802.
  • Bein, K.J., Zhao, Y., Johnston, M.V., and Wexler, A.S. (2007). Identification of sources of atmospheric PM at the Pittsburgh Supersite - Part III: Source characterization. Atmos. Environ. 41(19), 3974–3992.
  • Bein, K.J., Zhao, Y., Pekney, N.J., Davidson, C.I., Johnston, M.V., and Wexler, A.S. (2006). Identification of sources of atmospheric PM at the Pittsburgh Supersite - Part II: Quantitative comparisons of single particle, particle number, and particle mass measurements. Atmos.c Environ. 40, Supplement 2, 424–444.
  • Bein, K.J., Zhao, Y., Wexler, A.S., and Johnston, M.V. (2005). Speciation of size-resolved individual ultrafine particles in Pittsburgh, Pennsylvania. J. Geophys. Res. Atmos. 110(D7), D07S05.
  • Belis, C.A., Karagulian, F., Larsen, B.R., and Hopke, P.K. (2013). Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 69, 94–108.
  • Bencs, L., Ravindra, K., de Hoog, J., Spolnik, Z., Bleux, N., Berghmans, P., Deutsch, F., Roekens, E., and Van Grieken, R. (2010). Appraisal of measurement methods, chemical composition and sources of fine atmospheric particles over six different areas of Northern Belgium. Environ. Pollut. 158(11), 3421–3430.
  • Birmili, W., Allen, A.G., Bary, F., and Harrison, R.M. (2006). Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environ. Sci. Technol. 40, 1144–1153.
  • Biswas, P., and Wu, C.-Y. (2005). Nanoparticles and the Environment. J. Air Waste Manage. Assoc. 55, 708–746.
  • Bond, T.C., and Bergstrom, R.W. (2006). Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40(1), 27–67.
  • Boyouk, N., Léon, J.-F., Delbarre, H., Augustin, P., and Fourmentin, M. (2011). Impact of sea breeze on vertical structure of aerosol optical properties in Dunkerque, France. Atmos. Res. 101(4) 902–910.
  • Brock, C., Trainer, M., Ryerson, T., Neuman, J., Parrish, D., Holloway, J., Nicks, D., Frost, G., Hübler, G., Fehsenfeld, F., Wilson, J., Reeves, J., Lafleur, B., Hilbert, H., Atlas, E., Donnelly, S., Schauffler, S., Stroud, V., and Wiedinmyer, C. (2003). Particle growth in urban and industrial plumes in Texas. J. Geophys. Res. 108(D3), 4111.
  • Brock, C., Washenfelder, R., Trainer, M., Ryerson, T., Wilson, J., Reeves, J., Huey, G., Holloway, J., Parrish, D., Hübler, G., and Fehsenfeld, F. (2002). Particle growth in the plumes of coal-fired power plants. J. Geophys. Res. 107(D1210.1029/2001JD001062.
  • Buonanno, G., Anastasi, P., Di Iorio, F., and Viola, A. (2010a). Ultrafine particle apportionment and exposure assessment in respect of linear and point sources. Atmos. Pollut Res. 1(1) 36–43.
  • Buonanno, G., Ficco, G., and Stabile, L. (2009). Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste. Manage. 29(2), 749–755.
  • Buonanno, G., Stabile, L., Avino, P., and Belluso, E. (2011). Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manage. 31(11), 2253–2262.
  • Buonanno, G., Stabile, L., Avino, P., and Vanoli, R. (2010b). Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant. Waste Manage. 30(7), 1325–1333.
  • Buseck, P.R., and Adachi, K. (2008). Nanoparticles in the Atmosphere. Elements 4(6), 389–394.
  • Butler, O.T., Cook, J.M., Harrington, C.F., Hill, S.J., Rieuwerts, J., and Miles, D.L. (2008). Atomic spectrometry update. Environmental analysis. J. Anal. At. Spectrom. 23(2), 249–286.
  • Bzdek, B.R., Pennington, M.R., and Johnston, M.V. (2012). Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol. Sci. 52, 109–120.
  • Cabada, J.C., Rees, S., Takahama, S., Khlystov, A., Pandis, S.N., Davidson, C.I., and Robinson, A.L. (2004). Mass size distributions and size resolved chemical composition offine particulate matter at the Pittsburgh supersite. Atmos. Environ. 38, 3127–3141.
  • Canagaratna, M.R., Jayne, J.T., Jimenez, J.L., Allan, J.D., Alfarra, M.R., Zhang, Q., Onasch, T.B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L.R., Trimborn, A.M., Northway, M.J., DeCarlo, P.F., Kolb, C.E., Davidovits, P., and Worsnop, D.R. (2007). Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26(2), 185–222.
  • Cao, G., Zhang, X., Gong, S., An, X., and Wang, Y. (2011). Emission inventories of primary particles and pollutant gases for China. Chin. Sci. Bull. 56(8), 781–788.
  • Carter, J.D., Ghio, A.J., Samet, J.M., and Devlin, R.B. (1997). Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol. Appl. Pharmacol.146(2), 180–8.
  • Cernuschi, S., Giugliano, M., Ozgen, S., and Consonni, S. (2012). Number concentration and chemical composition of ultrafine and nanoparticles from WTE (waste to energy) plants. Sci. Total Environ. 420, 319–326.
  • Chang, K.-F., Fang, G.-C., Chen, J.-C., and Wu, Y.-S. (2006). Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004. Environ. Pollut. 142(3), 388–396.
  • Chang, M.-C. O., Chow, J.C., Watson, J.G., Glowacki, C., Sheya, S.A., and Prabhu, A. (2005). Characterization of Fine Particulate Emissions from Casting Processes. Aerosol Sci. Technol. 39, 947–959.
  • Chang, M.B., Huang, C.K., Wu, H.T., Lin, J.J., and Chang, S.H. (2000). Characteristics of heavy metals on particles with different sizes from municipal solid waste incineration. J. Hazard. Mater. 79(3), 229–239.
  • Chen, B., Stein, A.F., Maldonado, P.G., Sanchez de la Campa, A.M., Gonzalez-Castanedo, Y., Castell, N., and de la Rosa, J.D. (2013). Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmos. Environ. 71(0), 234–244.
  • Chen, Y., Shah, N., Huggins, F.E., and Huffman, G.P. (2004a). Investigation of the microcharacteristics of PM2.5 in residual oil fly ash by analytical transmission electron microscopy. Environ. Sci. Technol. 38(24), 6553–6560.
  • Chen, Y.Z., Shah, N., Huggins, F.E., Huffman, G.P., Linak, W.P., and Miller, C.A. (2004b). Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Process. Technol. 85(6–7), 743–761.
  • Cheng, Y.-H., Chao, Y.-C., Wu, C.-H., Tsai, C.-J., Uang, S.-N., and Shih, T.-S. (2008). Measurements of ultrafine particle concentrations and size distribution in an iron foundry. J. Hazard. Mater. 158(1), 124–130.
  • Cheng, Y., He, K.B., Duan, F.K., Zheng, M., Ma, Y.L., and Tan, J.H. (2009). Positive sampling artifact of carbonaceous aerosols and its influence on the thermal-optical split of OC/EC. Atmos. Chem. Phys. 9(18), 7243–7256.
  • Chengfeng, Z., Qiang, Z., and Junming, S. (2005). Characteristics of particulate matter from emissions of four typical coal-fired power plants in China. Fuel Process. Technol. 86, 757–768.
  • Choël, M., Deboudt, K., and Flament, P. (2010). Development of time-resolved description of aerosol properties at the particle scale during an episode of industrial pollution plume. Water Air Soil Pollut. 209(1), 93–107.
  • Choël, M., Deboudt, K., Flament, P., Lecornet, G., Perdrix, E., and Sobanska, S. (2006). Fast evolution of tropospheric Pb- and Zn-rich particles in the vicinity of a lead smelter. Atmos. Environ. 40(24), 4439–4449.
  • Chow, J.C., and Watson, J.G. (2002). Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy Fuels 16(2), 222–260.
  • Chow, J.C., Watson, J.G., Lowenthal, D.H., Antony Chen, L.W., and Motallebi, N. (2011). PM2.5 source profiles for black and organic carbon emission inventories. Atmos. Environ. 45(31), 5407–5414.
  • Chudzynski, S., Czyzewski, A., Ernst, K., Karasinski, G., Kolacz, K., Pietruczuk, A., Skubiszak, W., Stacewicz, T., Stelmaszczyk, K., and Szymanski, A. (2002). Multiwavelength lidar for measurements of atmospheric aerosol. Opt. Lasers Eng. 37(2–3), 91–99.
  • Ciaparra, D., Aries, E., Booth, M.-J., Anderson, D.R., Almeida, S.M., and Harrad, S. (2009). Characterisation of volatile organic compounds and polycyclic aromatic hydrocarbons in the ambient air of steelworks. Atmos. Environ. 43(12), 2070–2079.
  • Cincinelli, A., Mandorlo, S., Dickhut, R.M., and Lepri, L. (2003). Particulate organic compounds in the atmosphere surrounding an industrialised area of Prato (Italy). Atmos. Environ. 37(22), 3125–3133.
  • Claiborn, C.S., Larson, T., and Sheppard, L. (2002). Testing the metals hypothesis in Spokane, Washington. Environ. Health Perspect. 110(Suppl 4), 547–52.
  • Corbin, J.C., Rehbein, P.J. G., Evans, G.J., and Abbatt, J.P. D. (2012). Combustion particles as ice nuclei in an urban environment: Evidence from single-particle mass spectrometry. Atmos. Environ. 51, 286–292.
  • Costa, D.L., and Dreher, K.L. (1997). Bioavailable Transition Metals in Particulate Matter Mediate Cardiopulmonary Injury in Healthy and Compromised Animal Models. Environ. Health Perspect. 105(Suppl 5), 1053–1060.
  • Csavina, J., Field, J., Taylor, M.P., Gao, S., Landazuri, A., Betterton, E.A., and Saez, A.E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 433, 58–73.
  • Daggupaty, S.M., Banic, C.M., Cheung, P., and Ma, J.M. (2006). Numerical simulation of air concentration and deposition of particulate metals around a copper smelter in northern Quebec, Canada. Geochem. Explor. Environ. Anal. 6, 139–146.
  • Dall'Osto, M., Booth, M. J., Smith, W., Fisher, R., and Harrison, R. M. (2008). A Study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks. Aerosol Sci. Technol. 42(12), 981–991.
  • Dall’Osto, M., Drewnick, F., Fisher, R., and Harrison, R.M. (2012). Real-time measurements of nonmetallic fine particulate matter adjacent to a major integrated steelworks. Aerosol Sci. Technol. 46(6), 639–653.
  • Dall'Osto, M., and Harrison, R.M. (2006). Chemical characterisation of single airborne particles in Athens (Greece) by ATOFMS. Atmos. Environ. 40(39), 7614–7631.
  • Davidson, C.I., and Osborn, J.F. (1986). The sizes of airborne trace metal containing particles Toxic metals in the atmosphere. J.O. Nriagu and C.I. Davidson. New York, NY, John Wiley & Sons
  • Davidson, C.I., Phalen, R.F., and Solomon, P.A. (2005). Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 39(8), 737–749.
  • DeCarlo, P.F., Kimmel, J.R., Trimborn, A., Northway, M.J., Jayne, J.T., Aiken, A.C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K.S., Worsnop, D.R., and Jimenez, J.L. (2006). Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78(24), 8281–9.
  • del Rosario Sienra, M., Rosazza, N.G., and Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmos. Res. 75(4), 267–281.
  • Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J.J., Ito, A., Marelli, L., Penner, J., Putaud, J.P., Textor, C., Schulz, M., Van der Werf, G.R., and Wilson, J. (2006). Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 6, 4321–4344.
  • Devi, L., Ptasinski, K.J., and Janssen, F. (2003). A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2), 125–140.
  • Dockery, D.W. (2001). Epidemiologic Evidence of Cardiovascular Effects of Particulate Air Pollution. Environ. Health Perspect. 109, 483–486.
  • Dockery, D.W., and Pope, C.A. (1994). Acute Respiratory Effects of Particulate Air Pollution. Annu. Rev. Pub. Health. 15(1): 107–132.
  • Donaldson, K., Brown, D.M., Mitchell, C., Dineva, M., Beswick, P.H., Gilmour, P., and MacNee, W. (1997). Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ. Health Perspect. 105(Suppl 5), 1285–9.
  • Donaldson, K., Tran, C.L., and MacNee, W. (2002). Deposition and effects of fine and ultrafine particles in the respiratory tract. Eur. Respir. Monograph. 21, 77–92.
  • Drewnick, F. (2012). Speciation analysis in on-line aerosol mass spectrometry. Anal. Bioanal. Chem. 404(8), 2127–2131.
  • Duan, J., and Tan, J. (2013). Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 74(0), 93–101.
  • Duarte, R.M.B.O., and Duarte, A.C. (2011). A critical review of advanced analytical techniques for water-soluble organic matter from atmospheric aerosols. TrAC, Trends Anal. Chem. 30(10), 1659–1671.
  • El Haddad, I., Marchand, N., Wortham, H., Piot, C., Besombes, J.L., Cozic, J., Chauvel, C., Armengaud, A., Robin, D., and Jaffrezo, J.L. (2011). Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille. Atmos. Chem. Phys. 11(5), 2039–2058.
  • Elihn, K., and Berg, P. (2009). Ultrafine particle characteristics in seven industrial plants. Ann. Occup. Hyg. 53(5), 475–484.
  • Evans, D.E., Heitbrink, W.A., Slavin, T.J., and Peters, T.M. (2008). Ultrafine and respirable particles in an automative grey iron foundry. Ann. Occup. Hyg. 52(1), 9–21.
  • Ferge, T., Maguhn, J., Felber, H., and Zimmermann, R. (2004). Particle collection efficiency and particle re-entrainment of an electrostatic precipitator in a sewage sludge incineration plant. Environ. Sci. Technol. 38(5), 1545–1553.
  • Ferin, J., Oberdorster, G., and Penney, D.P. (1992). Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 6(5), 535–542.
  • Fernandez-Camacho, R., Rodriguez, S., de la Rosa, J.D., Sanchez de la Campa, A.M., Alastuey, A., Querol, X., Gonzalez-Castanedo, Y., Garcia-Orellana, I., and Nava, S. (2012). Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 61, 507–517.
  • Fernandez-Espinosa, A.J., Ternero Rodriguez, M., Barragan de la Rosa, F.J., and Jimenez Sanchez, J.C. (2001). Size distribution of metals in urban aerosols in Seville (Spain). Atmos. Environ. 35, 2595–2601.
  • Fomenko, E.V., Anshits, N.N., Solovyov, L.A., Mikhaylova, O.A., and Anshits, A.G. (2013). Composition and Morphology of Fly Ash Cenospheres Produced from the Combustion of Kuznetsk Coal. Energy Fuels 27(9), 5440–5448.
  • Fraser, M.P., Yue, Z.W., Tropp, R.J., Kohl, S.D., and Chow, J.C. (2002). Molecular composition of organic fine particulate matter in Houston, TX. Atmos. Environ. 36(38), 5751–5758.
  • Fujimori, E., Shiozawa, R., Iwata, S., Chiba, K., and Haraguchi, H. (2002). Multielement and morphological characterization of industrial waste incineration fly ash as studied by ICP-AES/ICP-MS and SEM-EDS. Bull. Chem. Soc. Jpn. 75(6), 1205–1213.
  • Furutani, H., Jung, J., Miura, K., Takami, A., Kato, S., Kajii, Y., and Uematsu, M. (2011). Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow. J. Geophys. Res. 116(D18), D18204.
  • Gao, Y., Nelson, E.D., Field, M.P., Ding, Q., Li, H., Sherrell, R.M., Gigliotti, C.L., Ry, D.A. V., Glenn, T.R., and Eisenreich, S.J. (2002). Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York–New Jersey harbor estuary. Atmos. Environ. 36, 1077–1086.
  • Ghio, A.J., and Devlin, R.B. (2001). Inflammatory Lung Injury after Bronchial Instillation of Air Pollution Particles. Am. J. Respir. and Critical Care Med. 164(4), 704–708.
  • Ghio, A.J., Stonehuerner, J., Dailey, L.A., and Carter, J.D. (1999). Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhalation Toxicol. 11(1), 37–49.
  • Giere, R., Blackford, M., and Smith, K. (2006). TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environ. Sci. Technol. 40, 6235–6240.
  • Goodarzi, F. (2006). Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant. Fuel 85(3), 273–280.
  • Guazzotti, S.A., Suess, D.T., Coffee, K.R., Quinn, P.K., Bates, T.S., Wisthaler, A., Hansel, A., Ball, W.P., Dickerson, R.R., Neusüß, C., Crutzen, P.J., and Prather, K.A. (2003). Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. J. Geophys. Res. 108(D15), 4485.
  • Gugamsetty, B., Wei, H., Liu, C.-N., Awasthi, A., Hsu, S.-C., Tsai, C.-J., Roam, G.-D., Wu, Y.-C., and Chen, C.-F. (2012). Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual. Res. 12, 476–491.
  • Guo, H., Lee, S.C., Ho, K.F., Wang, X.M., and Zou, S.C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 37(38), 5307–5317.
  • Healy, R.M., Hellebust, S., Kourtchev, I., Allanic, A., O’Connor, I.P., Bell, J.M., Healy, D.A., Sodeau, J.R., and Wenger, J.C. (2010). Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements. Atmos. Chem. Phys. 10(19), 9593–9613.
  • Helble, J.J., and Sarofim, A.F. (1989). Influence of char fragmentation on ash particle size distributions. Combust. Flame 76(2), 183–196.
  • Herich, H., Kammermann, L., Friedman, B., Gross, D.S., Weingartner, E., Lohmann, U., Spichtinger, P., Gysel, M., Baltensperger, U., and Cziczo, D.J. (2009). Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties. J. Geophys. Res. Atmos. 114(D13
  • Hewitt, C.N. (2001). The atmospheric chemistry of sulphur and nitrogen in power station plumes. Atmos. Environ. 35(7), 1155–1170.
  • Hieu, N.T., and Lee, B.-K. (2010). Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos. Res. 98(2–4), 526–537.
  • Hitzenberger, R., Berner, A., Galambos, Z., Maenhaut, W., Cafmeyer, J., Schwarz, J., Müller, K., Spindler, G., Wieprecht, W., Acker, K., Hillamo, R., and Mäkelä, T. (2004). Intercomparison of methods to measure the mass concentration of the atmospheric aerosol during INTERCOMP2000 - influence of instrumentation and size cuts. Atmos. Environ. 38(38), 6467–6476.
  • Ho, K.F., Lee, S.C., Chan, C.K., Yu, J.C., Chow, J.C., and Yao, X.H. (2003). Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos. Environ. 37(1), 31–39.
  • Hughes, L.S., Cass, G.R., Gone, J., Ames, M., and Olmez, I. (1998). Physical and Chemical Characterization of Atmospheric Ultrafine Particles in the Los Angeles Area. Environ. Sci. Technol. 32(9) 1153–1161.
  • Hung-Lung, C., Jiun-Horng, T., Shih-Yu, C., Kuo-Hsiung, L., and Sen-Yi, M. (2007). VOC concentration profiles in an ozone non-attainment area: A case study in an urban and industrial complex metroplex in southern Taiwan. Atmos. Environ. 41(9) 1848–1860.
  • Jang, H.-N., Seo, Y.-C., Lee, J.-H., Hwang, K.-W., Yoo, J.-I., Sok, C.-H., and Kim, S.-H. (2007). Formation of fine particles enriched by V and Ni from heavy oil combustion: Anthropogenic sources and drop-tube furnace experiments. Atmos. Environ. 41(5) 1053–1063.
  • Joseph, A.E., Unnikrishnan, S., and Kumar, R. (2012). Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai City. Aerosol Air Qual. Res. 12(1) 61–72.
  • Kanaya, Y., Komazaki, Y., Pochanart, P., Liu, Y., Akimoto, H., Gao, J., Wang, T., and Wang, Z. (2008). Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006. Atmos. Chem. Phys. 8(24) 7637–7649.
  • Karnae, S., and John, K. (2011). Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmos. Environ. 45(23), 3769–3776.
  • Katsoyiannis, A., Sweetman, A.J., and Jones, K.C. (2011). PAH molecular diagnostic ratios applied to atmospheric sources: a critical evaluation using two decades of source inventory and air concentration data from the UK. Environ. Sci. Technol. 45(20), 8897–8906.
  • Kauppinen, E.I., and Pakkanen, T.A. (1990). Coal combustion aerosols: a field study. Environ. Sci. Technol. 24(12), 1811–1818.
  • Kelly, F.J., and Fussell, J.C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60(0), 504–526.
  • Kiselev, A., Wennrich, C., Stratmann, F., Wex, H., Henning, S., Mentel, T.F., Kiendler-Scharr, A., Schneider, J., Walter, S., and Lieberwirth, I. (2010). Morphological characterization of soot aerosol particles during LACIS Experiment in November (LExNo). J. Geophys. Res. Atmos. 115, D11204.
  • Klems, J.P., Zordan, C.A., Pennington, M.R., and Johnston, M.V. (2012). Chemical composition of ambient nanoparticles on a particle-by-particle basis. Anal. Chem. 84(5), 2253–2259.
  • Kolker, A., Engle, M.A., Peucker-Ehrenbrink, B., Geboy, N.J., Krabbenhoft, D.P., Bothner, M.H., and Tate, M.T. (2013). Atmospheric mercury and fine particulate matter in coastal New England: Implications for mercury and trace element sources in the northeastern United States. Atmos. Environ. 79(0), 760–768.
  • Kulkarni, P., Chellam, S., and Fraser, M.P. (2006). Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmos. Environ. 40(3), 508–520.
  • Kulmala, M., and Kerminen, V. (2008). On the formation and growth of atmospheric nanoparticles. Atmos. Res. 90, 132–150.
  • Kuo, S.-C., Hsieh, L.-Y., Tsai, C.-H., and Tsai, Y.I. (2007). Characterization of PM2.5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter. Atmos. Environ. 41(32), 6884–6900.
  • Kuuluvainen, H., Arffman, A., Saukko, E., Virtanen, A., and Keskinen, J. (2013). A new method for characterizing the bounce and charge transfer properties of nanoparticles. J. Aerosol Sci. 55(0), 104–115.
  • Laden, F., Neas, L.M., Dockery, D.W., and Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in Six U.S. Cities. Environ. Health Perspect. 108(10), 941–947.
  • Lahaye, J., and Prado, G. (1981). Morphology and internal structure of soot and carbon blacks. Particulate carbon: Formation during combustion. S. D. C. a. S.G.W. New-York, Plenum Press: 57–89.
  • Lee, S.-H., Murphy, D.M., Thompson, D.S., and Middlebrook, A.M. (2002). Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: Focus on organic/sulfate, lead, soot, and mineral particles. J. Geophys. Res. Atmos. 107(D1), doi: 10.1029/2000JD000011, Pages AAC 1-1.AAC 1-13, 2002.
  • Li, W., Peng, Y., and Bai, Z. (2010). Distributions and sources of n-alkanes in PM2.5 at urban, industrial and coastal sites in Tianjin, China. J. Environ. Sci. 22(10), 1551–1557.
  • Lim, J.-M., Jin-Hong, L., Jong-Hwa, M., Yong-Sam, C., and Ki-Hyun, K. (2010). Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos. Res. 96(1), 53–64.
  • Lin, C.-C., and Peng, C.-K. (2010). Characterization of indoor PM10, PM2.5, and ultrafine particles in elementary school classrooms: A review. Environ. Eng. Sci. 27(11), 915–922.
  • Lin, L., Zhi-Hua, F., Xianlei, Z., Li-Hui, H., and Bonanno, L.J. (2011). Characterization of atmospheric polycyclic aromatic hydrocarbons in a mixed-use urban community in Paterson, NJ: Concentrations and sources. J. Air Waste Manage. Assoc. 61(6), 631–639.
  • Linak, W.P., and Wendt, J.O.L. (1993). Toxic metal emissions from incineration - mechanisms and control. Prog. Energy Combust. Sci. 19(2), 145–185.
  • Linak, W.P., Yoo, J.-I., Wasson, S.J., Zhu, W., Wendt, J.O. L., Huggins, F.E., Chen, Y., Shah, N., Huffman, G.P., and Gilmour, M.I. (2007). Ultrafine ash aerosols from coal combustion: Characterization and health effects. Proc. Combust. Inst. 31(2), 1929–1937.
  • Lingard, J.J. N., Tomlin, A.S., Clarke, A.G., Healey, K., Hay, A.W. M., Wild, C.P., and Routledge, M.N. (2005). A study of trace metal concentration of urban airborne particulate matter and its role in free radical activity as measured by plasmid strand break assay. Atmos Environ. 39(13), 2377–2384.
  • Liu, C.-N., Awasthi, A., Hung, Y.-H., and Tsai, C.-J. (2013). Collection efficiency and interstage loss of nanoparticles in micro-orifice-based cascade impactors. Atmos. Environ. 69(0), 325–333.
  • Liu, Y., Sklorz, M., Schnelle-Kreis, J., Orasche, J., Ferge, T., Kettrup, A., and Zimmermann, R. (2006). Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: Evaluation of sampling artefact. Chemosphere 62(11), 1889–1898.
  • Lu, P., Li, C., Zeng, G., Xie, X., Cai, Z., Zhou, Y., Zhao, Y., Zhan, Q., and Zeng, Z. (2012). Research on soot of black smoke from ceramic furnace flue gas: Characterization of soot. J. Hazard. Mater. 199–200, 272–281.
  • Machemer, S.D. (2004). Characterization of airborne and bulk particulate from iron and steel manufacturing facilities. Environ. Sci. Technol. 38, 381–389.
  • Maguhn, J., Karg, E., Kettrup, A., and Zimmermann, R. (2003). On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: Effects of dynamic process control measures and emission reduction devices. Environ. Sci. Technol. Lett. 37(20) 4761–4770.
  • Majestic, B.J., Schauer, J.J., and Shafer, M.M. (2007). Development of a Manganese Speciation Method for Atmospheric Aerosols in Biologically and Environmentally Relevant Fluids. Aerosol Sci. Technol. 41(10), 925–933.
  • Manoli, E., Voutsa, D., and Samara, C. (2002). Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos. Environ. 36(6), 949–961.
  • Mao, I.F., Chen, C.-N., Lin, Y.-C., and Chen, M.-L. (2007). Airborne particle PM2.5/PM10 mass distribution and particle-bound PAH concentrations near a medical waste incinerator. Atmos. Environ. 41(11), 2467–2475.
  • Marris, H., Deboudt, K., Augustin, P., Flament, P., Blond, F., Fiani, E., Fourmentin, M., and Delbarre, H. (2012). Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes. Sci. Total Environ. 427–428, 126–38.
  • Martinez, M.A., Caballero, P., Carrillo, O., Mendoza, A., and Mejia, G.M. (2012). Chemical characterization and factor analysis of PM2.5 in two sites of Monterrey, Mexico. J. Air Waste Manage. Assoc. 62(7), 817–827.
  • Martley, E., Gulson, B.L., and Pfeifer, H.R. (2004). Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia. Sci. Total Environ. 325(1–3), 113–127.
  • Mbengue, S., Alleman, L.Y., and Flament, P. (2014). Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmos. Res. 135–136, 35–47.
  • McElroy, M.W., Carr, R.C., Ensor, D.S., and Markowski, G.R. (1982). Size distribution of fine particles from coal combustion. Science 215(4582): 13–19.
  • Menad, N., Tayibi, H., Carcedo, F.G., and Hernández, A. (2006). Minimization methods for emissions generated from sinter strands: a review. J. Cleaner Prod.14(8), 740–747.
  • Moffet, R.C., Desyaterik, Y., Hopkins, R.J., Tivanski, A.V., Gilles, M.K., Wang, Y., Shutthanandan, V., Molina, L.T., Abraham, R.G., Johnson, K.S., Mugica, V., Molina, M.J., Laskin, A., and Prather, K.A. (2008). Characterization of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City. Environ. Sci. Technol. 42(19), 7091–7097.
  • Mohiuddin, K., Strezov, V., Nelson, P.F., and Stelcer, E. (2014). Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmos. Environ. 83, 72–79.
  • Mooibroek, D., Schaap, M., Weijers, E.P., and Hoogerbrugge, R. (2011). Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos. Environ. 45(25), 4180–4191.
  • Morawska, L., and Zhang, J. (2002). Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 49(9), 1045–1058.
  • Moreno, T., Querol, X., Alastuey, A., de la Rosa, J.D., Sanchez de la Campa, A.M., Minguillon, M., Pandolfi, M., Gonzalez-Castanedo, Y., Monfort, E., and Gibbons, W. (2010). Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci. Total Environ. 408(20), 4569–4579.
  • Morishita, M., Keeler, G., Kamal, A., Wagner, J., Harkema, J., and Rohr, A. (2011a). Source identification of ambient PM2.5 for inhalation exposure studies in Steubenville, Ohio using highly time-resolved measurements. Atmos. Environ. 45, 7688–7697.
  • Morishita, M., Keeler, G.J., Kamal, A.S., Wagner, J.G., Harkema, J.R., and Rohr, A.C. (2011b). Identification of ambient PM2.5 sources and analysis of pollution episodes in Detroit, Michigan using highly time-resolved measurements. Atmos. Environ. 45(8), 1627–1637.
  • Moroni, B., and Viti, C. (2009). Grain size chemistry and structure of fine and ultrafine particles in stainless steel welding fumes. Aerosol Sci. 40(11), 938–949.
  • Mueller, D., Uibel, S., Takemura, M., Klingelhoefer, D., and Groneberg, D.A. (2011). Ships, ports and particulate air pollution - an analysis of recent studies. J. Occupat. Med. Toxicol. 6, 31.
  • Mumtaz, M.M., George, J.D., Gold, K.W., Cibulas, W., and Derosa, C.T. (1996). ATSDR evaluation of health effects of chemicals.4. Polycyclic aromatic hydrocarbons (PAHs): Understanding a complex problem. Toxicol. Indust. Health 12(6), 742–971.
  • Murphy, D.M., Hudson, P.K., Cziczo, D.J., Gallavardin, S., Froyd, K.D., Johnston, M.V., Middlebrook, A.M., Reinard, M.S., Thomson, D.S., Thornberry, T., and Wexler, A.S. (2007). Distribution of lead in single atmospheric particles. Atmos. Chem. Phys. 7(12), 3195–3210.
  • Murr, L.E., and Bang, J.J. (2003). Electron microscope comparisons of fine and ultra-fine carbonaceous and non-carbonaceous, airborne particulates. Atmos. Environ. 37(34), 4795–4806.
  • Naoe, H., and Okada, K. (2001). Mixing properties of submicrometer aerosol particles in the urban atmosphere - with regard to soot particles. Atmos. Environ. 35(33), 5765–5772.
  • Neville, M., Quann, R.J., Haynes, B.S., and Sarofim, A.F. (1981). Vaporization and condensation of mineral matter during pulverized coal combustion. Symp. (Int.) Combust. 18(1), 1267–1274.
  • Niemi, J.V., Saarikoski, S., Tervahattu, H., Makela, T., Hillamo, R., Vehkamaki, H., Sogacheva, L., and Kulmala, M. (2006). Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis. Atmos. Chem. Phys. 6, 5049–5066.
  • Niu, J., Rasmussen, P., Hassan, N., and Vincent, R. (2010). Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: Influence of particle size. Water Air Soil Pollut. 213(1–4), 211–225.
  • Novakov, T., Ramanathan, V., Hansen, J., Kirchstetter, T.W., Sato, M., Sinton, J.E., and Sathaye, J.A. (2003). Large historical changes of fossil-fuel black carbon aerosols. Geophys. Res. Lett. 30(6), 1324.
  • Nriagu, J.O., and Pacyna, J.M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333(6169), 134–139.
  • Ntziachristos, L., Ning, Z., Geller, M.D., Sheesley, R.J., Schauer, J.J., and Sioutas, C. (2007). Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmos. Environ. 41(27), 5684–5696.
  • Ny, M.T., and Lee, B.-K. (2011). Size Distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol Air Qual. Res. 11, 643–653.
  • Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839.
  • Ohlström, M.O., Lehtinen, K., Moisio, M., and Jokiniemi, J. (2000). Fine-particle emissions of energy production in Finland. Atmos. Environ. 34, 3701–3711.
  • Oliveira, C., Martins, N., Tavares, J., Pio, C., Cerqueira, M., Matos, M., Silva, H., Oliveira, C., and Camões, F. (2011). Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83(11), 1588–1596.
  • Oravisjärvi, K., Timonen, K.L., Wiikinkoski, T., Ruuskanen, A.R., Heinänen, K., and Ruuskanen, J. (2003). Source contributions to PM2.5 particles in the urban air of a town situated close to a steel works. Atmos. Environ. 37(8), 1013–1022.
  • Osornio-Vargas, Á.R., Bonner, J.C., Alfaro-Moreno, E., Martínez, L., García-Cuellar, C., Rosales, S.P.-d.-L., Miranda, J., and Rosas, I. (2003). Proinflammatory and Cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environ. Health Perspect. 111, 1289–1296.
  • Pakkanen, T.A., Kerminen, V.-M., Korhonen, C.H., Hillamo, R.E., Aarnio, P., Koskentalo, T., and Maenhaut, W. (2001). Urban and rural ultrafine (PM0.1) particles in the Helsinki area. Atmos. Environ. 35(27), 4593–4607.
  • Pandey, S.K., Kim, K.-H., and Brown, R.J. C. (2011). A review of techniques for the determination of polycyclic aromatic hydrocarbons in air. TrAC, Trends Anal. Chem. 30(11), 1716–1739.
  • Park, S.S., and Cho, S.Y. (2011). Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea. Atmos. Environ. 45(1), 60–72.
  • Park, S.S., Kim, J.-H., and Jeong, J.-U. (2012). Abundance and sources of hydrophilic and hydrophobic water-soluble organic carbon at an urban site in Korea in summer. J. Environ. Monit. 14(1), 224–232.
  • Park, S.S., Kim, Y.J., and Fung, K. (2001). Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, Korea. Atmos. Environ. 35(4), 657–665.
  • Pateraki, S., Assimakopoulos, V.D., Bougiatioti, A., Kouvarakis, G., Mihalopoulos, N., and Vasilakos, C. (2012). Carbonaceous and ionic compositional patterns of fine particles over an urban Mediterranean area. Sci. Total Environ. 424(0), 251–263.
  • Pekney, N.J., Davidson, C.I., Bein, K.J., Wexler, A.S., and Johnston, M.V. (2006). Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmos. Environ. 40, Supplement 2(0), 411–423.
  • Pina, A.A., Villasenor, G.T., Jacinto, P.S., and Fernandez, M.M. (2002). Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmos. Environ. 36(33), 5235–5243.
  • Pio, C., Cerqueira, M., Harrison, R.M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., Sanchez de la Campa, A., Artíñano, B., and Matos, M. (2011). OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 45(34), 6121–6132.
  • Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock, I.M., Pacyna, J., Sprovieri, F., and Sunderland, E.M. (2013). Toward the next generation of air quality monitoring: Mercury. Atmos. Environ. 80(0), 599–611.
  • Pope, C.A. , III, Hansen, M.L., Long, R.W., Nielsen, K.R., Eatough, N.L., Wilson, W.E., and Eatough, D.J. (2004). Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ. Health Perspect. 112(3), 339–345.
  • Posfai, M., Gelencser, A., Simonics, R., Arato, K., Li, J., Hobbs, P.V., and Buseck, P.R. (2004). Atmospheric tar balls: Particles from biomass and biofuel burning. J. Geophys. Res. Atmos. 109(D6
  • Prati, P., Zucchiatti, A., Lucarelli, F., and Mando, P.A. (2000). Source apportionment near a steel plant in Genoa (Italy) by continuous aerosol sampling and PIXE analysis. Atmos. Environ. 34(19), 3149–3157.
  • Pratt, K.A., and Prather, K.A. (2012a). Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part I: Off-line mass spectrometry techniques. Mass Spectrom. Rev. 31(1), 1–16.
  • Pratt, K.A., and Prather, K.A. (2012b). Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part II: On-line mass spectrometry techniques. Mass Spectrom. Rev. 31(1), 17–48.
  • Pruppacher, H.R., and Klett, J.D. (1997). Microphysics of clouds and precipitation. Boston, MA: Springer. Pp. 976.
  • Pulles, T., Kuenen, J., Denier van der Gon, H., Woodfield, M., and Kindbom, K. (2007). Estimation of emissions of fine particulate matter. (PM2.5) in Europe, TNO report: 59. http://ec.europa.eu/environment/air/pollutants/pdf/report_2007_ar0322.pdf.
  • Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Mantilla, E., and Ruiz, C.R. (2001). Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos. Environ. 35(5), 845–858.
  • Ramgolam, K., Chevaillier, S., Marano, F., Baeza-Squiban, A., and Martinon, L. (2008). Proinflammatory effect of fine and ultrafine particulate matter using size-resolved urban aerosols from Paris. Chemosphere 72(9), 1340–1346.
  • Ramgolam, K., Favez, O., Cachier, H., Gaudichet, A., Marano, F., Martinon, L., and Baeza-Squiban, A. (2009). Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Part. Fibre Toxicol. 6, 10.
  • Ravindra, K., Bencs, L., Wauters, E., de Hoog, J., Deutsch, F., Roekens, E., Bleux, N., Berghmans, P., and Van Grieken, R. (2006). Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos. Environ. 40(4) 771–785.
  • Ravindra, K., Sokhi, R., and Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 42(13), 2895–2921.
  • Reinard, M.S., Adou, K., Martini, J.M., and Johnston, M.V. (2007). Source characterization and identification by real-time single particle mass spectrometry. Atmos. Environ. 41(40), 9397–9409.
  • Riemer, N., Vogel, H., and Vogel, B. (2004). Soot aging time scales in polluted regions during day and night. Atmos. Chem. Phys. 4, 1885–1893.
  • Rose, D., Wehner, B., Ketzel, M., Engler, C., Voigtländer, J., Tuch, T., and Wiedensohler, A. (2006). Atmospheric number size distributions of soot particles and estimation of emission factors. Atmos. Chem. Phys. 6(4), 1021–1031.
  • Roukos, J., Riffault, V., Locoge, N., and Plaisance, H. (2009). VOC in an urban and industrial harbor on the French North Sea coast during two contrasted meteorological situations. Environ. Pollut. 157(11), 3001–3009.
  • Saffari, A., Daher, N., Shafer, M.M., Schauer, J.J., and Sioutas, C. (2013). Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environ. Pollut. 181, 14–23.
  • Saito, Y., Kurata, H., Kurushima, H., Kobayashi, F., Kawahara, T., Nomura, A., Maruyama, T., and Tanaka, M. (2004). Experimental discussion on eye-safe 1.54 μm Photon counting Lidar using avalanche photodiode. Opt. Rev. 11(6), 378–384.
  • Sammut, M.L., Noack, Y., Hazemann, J.L., Proux, O., Depoux, M., Ziebel, A., and Fiani, E. (2010). Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere 78, 445–450.
  • Sanchez de la Campa, A.M., de la Rosa, J., Gonzalez-Castanedo, Y., Fernandez-Camacho, R., Alastuey, A., Querol, X., Stein, A.F., Ramos, J.L., Rodriguez, S., Orellana, I.G., and Nava, S. (2011). Levels and chemical composition of PM in a city near a large Cu-smelter in Spain. J. Environ. Monit. 13(5), 1276–1287.
  • Sanchez de la Campa, A.M., de la Rosa, J.D., Gonzalez-Castanedo, Y., Fernandez-Camacho, R., Alastuey, A., Querol, X., and Pio, C. (2010). High concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmos. Res. 96(4), 633–644.
  • Sanchez de la Campa, A.M., de la Rosa, J.D., Sanchez-Rodas, D., Oliveira, V., Alastuey, A., Querol, X., and Gomez Ariza, J.L. (2008). Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmos. Environ. 42(26), 6487–6495.
  • Sanderson, P., Delgado-Saborit, J.M., and Harrison, R.M. (2014). A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 94, 353–365.
  • Schaap, M., Spindler, G., Schulz, M., Acker, K., Maenhaut, W., Berner, A., Wieprecht, W., Streit, N., Mïller, K., Brüggemann, E., Chi, X., Putaud, J.P., Hitzenberger, R., Puxbaum, H., Baltensperger, U., and ten Brink, H. (2004). Artefacts in the sampling of nitrate studied in the “INTERCOMP” campaigns of EUROTRAC-AEROSOL. Atmos. Environ. 38(38), 6487–6496.
  • Schaumann, F., Borm, P.J. A., Herbrich, A., Knoch, J., Pitz, M., Roel, P.F. Schins, Luettig, B., Hohlfeld, J.M., Heinrich, J., and Krug, N. (2004). Metal-rich Ambient Particles (Particulate Matter2.5) Cause Airway Inflammation in Healthy Subjects. Am. J. Respir. Critical Care Med. 170, 898–903.
  • Schwartz, J., and Neas, L.M. (2000). Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11(1), 6–10.
  • Schwarze, P.E., Ovrevik, J., Lag, M., Refsnes, M., Nafstad, P., Hetland, R.B., and Dybing, E. (2006). Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human Exp. Toxicol. 25(10), 559–79.
  • Sciare, J., Bardouki, H., Moulin, C., and Mihalopoulos, N. (2003). Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime. Atmos. Chem. Phys. 3, 291–302.
  • Sciare, J., Oikonomou, K., Favez, O., Liakakou, E., Markaki, Z., Cachier, H., and Mihalopoulos, N. (2008). Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning. Atmos. Chem. Phys. 8(18), 5551–5563.
  • Sharonova, O.M., Anshits, N.N., and Anshits, A.G. (2013). Composition and morphology of narrowly sized ferrospheres isolated from various types of fly ash. Inorg. Mater. 49(6), 586–594.
  • Sielicki, P., Janik, H., Guzman, A., Broniszewski, M., and Namiesnik, J. (2011). Oil refinery dusts: morphological and size analysis by TEM. Anal. Bioanal.Chem. 399(9), 3261–3270.
  • Simoneit, B.R.T. (1986). Characterization of Organic Constituents in Aerosols in Relation to Their Origin and Transport: A Review. Int. J. Environ. Analy. Chem. 23(3), 207–237.
  • Sioutas, C., Delfino, R.J., and Singh, M. (2005). Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research. Environ. Health Perspect. 113, 947–955.
  • Slowik, J.G., Cross, E.S., Han, J.-H., Davidovits, P., Onasch, T.B., Jayne, J.T., Williams, L.R., Canagaratna, M.R., Worsnop, D.R., Chakrabarty, R.K., Moosmüller, H., Arnott, W.P., Schwarz, J.P., Gao, R.-S., Fahey, D.W., Kok, G.L., and Petzold, A. (2007). An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles. Aerosol Sci. Technol. 41(3), 295–314.
  • Smekens, A., Godoi, R.H. M., Vervoort, M., Van Espen, P., Potgieter-Vermaak, S.S., and Van Grieken, R. (2007). Characterization of individual soot aggregates from different sources using image analysis. J. Atmos. Chem. 56(3), 211–223.
  • Snider, J.R., Wex, H., Rose, D., Kristensson, A., Stratmann, F., Hennig, T., Henning, S., Kiselev, A., Bilde, M., Burkhart, M., Dusek, U., Frank, G.P., Kiendler-Scharr, A., Mentel, T.F., Petters, M.D., and Poschl, U. (2010). Intercomparison of cloud condensation nuclei and hygroscopic fraction measurements: Coated soot particles investigated during the LACIS Experiment in November (LExNo). J. Geophys. Res. Atmos. 115, D11205.
  • Snyder, D.C., Schauer, J.J., Gross, D.S., and Turner, J.R. (2009). Estimating the contribution of point sources to atmospheric metals using single-particle mass spectrometry. Atmos. Environ. 43(26), 4033–4042.
  • Sofowote, U.M., Allan, L.M., and McCarry, B.E. (2010). Evaluation of PAH diagnostic ratios as source apportionment tools for air particulates collected in an urban-industrial environment. J. Environ. Monit. 12(2), 417–424.
  • Spencer, M.T., Holecek, J.C., Corrigan, C.E., Ramanathan, V., and Prather, K.A. (2008). Size-resolved chemical composition of aerosol particles during a monsoonal transition period over the Indian Ocean. J. Geophys. Res. 113(D16), D16305.
  • Sternbeck, J., Sjodin, A., and Andreasson, K. (2002). Metal emissions from road traffic and the influence of resuspension results from two tunnel studies. Atmos. Environ. 36(30), 4735–4744.
  • Stevens, R.G., Pierce, J.R., Brock, C., Reed, M.K., Crawford, J.H., Holloway, J., Ryerson, T., Huey, L.G., and Nowak, J.B. (2012). Nucleation and growth of sulphate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology. Atmos. Chem. Phys. 12, 189–206.
  • Strawbridge, K.B. (2006). Scanning lidar: a means of characterizing the Noranda-Horne smelter plume. Geochem. Explor. Environ. Anal. 6, 121–129.
  • Sun, C., Tanabe, K., Koyano, M., Yang, Z., Li, Y., and Zhang, J. (1994). Study on size distribution of 8 polycylic aromatic hydrocarbons in airborne suspended particulates indoor and outdoor. J. West Chin Univer. Med. Sci. 25(4), 442–6.
  • Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z., and Hao, Z. (2004). The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos. Environ. 38(35), 5991–6004.
  • Taiwo, A.M., Beddows, D.C. S., Shi, Z., and Harrison, R.M. (2014a). Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Sci. Total Environ. 475(0), 29–38.
  • Taiwo, A.M., Harrison, R.M., and Shi, Z. (2014b). A review of receptor modelling of industrially emitted particulate matter. Atmos. Environ. 97, 109–120.
  • Talbot, C., Augustin, P., Leroy, C., Willart, V., Delbarre, H., and Khomenko, G. (2007). Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Boundary Layer Meteorol. 125(1), 133–154.
  • Thomassen, Y., Koch, W., Dunkhorst, W., Ellingsen, D.G., Skaugset, N.-P., Jordbekken, L., Arne Drablos, P., and Weinbruch, S. (2006). Ultrafine particles at workplaces of a primary aluminium smelter. J. Environ. Monit. 8(1), 127–133.
  • Thorpe, A., and Harrison, R.M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 400(1–3), 270–282.
  • Tsai, J.-H., Lin, K.-H., Chen, C.-Y., Ding, J.-Y., Choa, C.-G., and Chiang, H.-L. (2007). Chemical constituents in particulate emissions from an integrated iron and steel facility. J. Hazard. Mater. 147(1–2), 111–119.
  • Tumolva, L., Park, J.Y., Kim, J.S., Miller, A.L., Chow, J.C., Watson, J.G., and Park, K. (2010). Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using the TEM/EDS. Aerosol Sci. Technol. 44(3), 202–215.
  • US EPA. (2012). 2008. National Emissions Inventory, version 2 - Technical Support Document: 157. http://www.epa.gov/ttnchie1/net/2008inventory.html.
  • Utsunomiya, S., Jensen, K.A., Keeler, G.J., and Ewing, R.C. (2004). Direct identification of trace metals in fine and ultrafine particles in the detroit urban atmosphere. Environ. Sci. Technol. 38, 2289–2297.
  • Vasilakos, C., Levi, N., Maggos, T., Hatzianestis, J., Michopoulos, J., and Helmis, C. (2007). Gas–particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. J. Hazard. Mater. 140(1–2), 45–51.
  • Vecchi, R., Chiari, M., D’Alessandro, A., Fermo, P., Lucarelli, F., Mazzei, F., Nava, S., Piazzalunga, A., Prati, P., Silvani, F., and Valli, G. (2008). A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos. Environ. 42(9), 2240–2253.
  • Vecchi, R., Marcazzan, G., Valli, G., Ceriani, M., and Antoniazzi, C. (2004). The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 38, 4437–4446.
  • Vega, E., Reyes, E., Ruiz, H., García, J., Sánchez, G., Martínez-Villa, G., González, U., Chow, J.C., and Watson, J.G. (2004). Analysis of PM2.5 and PM10 in the atmosphere of Mexico City during 2000–2002. J. Air Waste Manage. Assoc. 54(7), 786–798.
  • Viana, M., Chi, X., Maenhaut, W., Cafmeyer, J., Querol, X., Alastuey, A., Mikuska, P., and Vecera, Z. (2006). Influence of sampling artefacts on measured PM, OC, and EC Levels in carbonaceous aerosols in an urban area. Aerosol Sci. Technol. 40(2), 107–117.
  • Viana, M., Kuhlbusch, T.A. J., Querol, X., Alastuey, A., Harrison, R.M., Hopke, P.K., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A.S. H., Hueglin, C., Bloemen, H., Wahlin, P., Vecchi, R., Miranda, A.I., Kasper-Giebl, A., Maenhaut, W., and Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 39(10), 827–849.
  • Voutsa, D., and Samara, C. (2002). Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos. Environ. 36(22), 3583–3590.
  • Wake, D., Mark, D., and Northage, C. (2002). Ultrafine aerosols in the workplace. Ann. Occup. Hyg. 43(1), 232–238.
  • Watson, J.G., Chow, J.C., and Chen, L.-W. A. (2005). Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5(1), 65–102.
  • Wei, S., Huang, B., Liu, M., Bi, X., Ren, Z., Sheng, G., and Fu, J. (2012). Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China. Atmos. Res. 109–110, 76–83.
  • Weibring, P., Andersson, M., Edner, H., and Svanberg, S. (1998). Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements. Appl. Phys. B 66(3), 383–388.
  • Weitkamp, E.A., Lipsky, E.M., Pancras, P.J., Ondov, J.M., Polidori, A., Turpin, B.J., and Robinson, A.L. (2005). Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements. Atmos. Environ. 39(36), 6719–6733.
  • Wierzbicka, A., Lillieblad, L., Pagels, J., Strand, M., Gudmundsson, A., Gharibi, A., Swietlicki, E., Sanati, M., and Bohgard, M. (2005). Particle emissions from district heating units operating on three commonly used biofuels. Atmos. Environ. 39, 139–150.
  • Wiinikka, H. (2005). High temperature aerosol formation and emission minimisation during combustion of wood pellets. Pitea, Sweden: Luleå University of Technology. 57 p.
  • Wilson, J.C., and McMurry, P.H. (1981). Studies of aerosol formation in power plant plumes—II. Secondary aerosol formation in the Navajo generating station plume. Atmos. Environ. (1967) 15(10–11), 2329–2339.
  • Wilson Jr, W. E. (1981). Sulfate formation in point source plumes: A review of recent field studies. Atmos. Environ. (1967) 15(12), 2573–2581.
  • Wu, Y.-S., Fang, G.-C., Lee, W.-J., Lee, J.-F., Chang, C.-C., and Lee, C.-Z. (2007). A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995–2005. J. Hazard. Mater. 143(1–2), 511–515.
  • Xiang, Y., Delbarre, H., Sauvage, S.p., Léonardis, T., Fourmentin, M., Augustin, P., and Locoge, N. (2012). Development of a methodology examining the behaviours of VOCs source apportionment with micro-meteorology analysis in an urban and industrial area. Environ. Pollut. 162(0), 15–28.
  • Xiong, C., and Friedlander, S.K. (2001). Morphological properties of atmospheric aerosol aggregates. PNAS 98(21), 11851–11856.
  • Yang, H.-H., Lai, S.-O., Hsieh, L.-T., Hsueh, H.-J., and Chi, T.-W. (2002). Profiles of PAH emission from steel and iron industries. Chemosphere 48(10), 1061–1074.
  • Yoo, J.-I., Kim, K.-H., Jang, H.-N., Seo, Y.-C., Seok, K.-S., Hong, J.-H., and Jang, M. (2002). Emission characteristics of particulate matter and heavy metals from small incinerators and boilers. Atmos. Environ. 36(32), 5057–5066.
  • Yu, F.Q. (2010). Diurnal and seasonal variations of ultrafine particle formation in anthropogenic SO(2) plumes. Environ. Sci. Technol. 44(6), 2011–2015.
  • Yue, Z.W., and Fraser, M.P. (2004). Characterization of nonpolar organic fine particulate matter in Houston, Texas special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci. Technol. 38(sup1), 60–67.
  • Zaveri, R.A., Berkowitz, C.M., Brechtel, F.J., Gilles, M.K., Hubbe, J.M., Jayne, J.T., Kleinman, L.I., Laskin, A., Madronich, S., Onasch, T.B., Pekour, M.S., Springston, S.R., Thornton, J.A., Tivanski, A.V., and Worsnop, D.R. (2010). Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis. J. Geophys. Res. Atmos. 115, D12304.
  • Zelenyuk, A., Yang, J., Song, C., Zaveri, R.A., and Imre, D. (2008). A new real-time method for determining particles' sphericity and density: application to secondary organic aerosol formed by ozonolysis of alpha-pinene. Environ. Sci. Technol. 42(21), 8033–8038.
  • Zhang, F., Zhao, J., Chen, J., Xu, Y., and Xu, L. (2011). Pollution characteristics of organic and elemental carbon in PM2.5 in Xiamen, China. J. Environ. Sci. 23(8), 1342–1349.
  • Zhang, Y., Wang, X., Chen, H., Yang, X., Chen, J., and Allen, J.O. (2009). Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry. Chemosphere 74(4), 501–507.
  • Zhang, Y., Zhu, X., Slanina, S., Shao, M., Zeng, L., Hu, M., Bergin, M., and Salmon, L. (2004). Aerosol pollution in some Chinese cities. Pure Appl. Chem. 76, 1227–1239.
  • Zhang, Z., and Friedlander, S. (2000). A comparative study of chemical databases for fine particle Chinese aerosols. Environ. Sci. Technol. 34, 4687–4694.
  • Zimmer, A.T. (2002). The influence of metallurgy on the formation of welding aerosols. J. Environ. Monit. 4(5), 628–632.
  • Zimmer, A.T., and P. Biswas (2001). Characterization of the aerosols resulting from arc welding processes. J. Aerosol Sci. 32, 993–1008.
  • Zimmermann, R., Ferge, T., Gälli, M., and Karlsson, R. (2003). Application of single-particle laser desorption/ionization time-of-flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process. Rapid Commun. Mass Spectrom. 17(8), 851–859.
  • Zollner, J.H., Glasoe, W.A., Panta, B., Carlson, K.K., McMurry, P.H., and Hanson, D.R. (2012). Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases. Atmos. Chem. Phys. 12(10), 4399–4411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.