1,391
Views
82
CrossRef citations to date
0
Altmetric
Original Articles

Copper Metallurgical Slags – Current Knowledge and Fate: A Review

, , , , &
Pages 2424-2488 | Published online: 17 Aug 2015

REFERENCES

  • Ahmed, L.M., Nayl, A.A., and Daoud, J.A. (2012). Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2012.11.003
  • Al-Jabri, K.S., Al-Saidy, A.H., and Taha, R. (2011). Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Construct. Building Mater. 25(2), 933–938.
  • Al-Jabri, K.S., Hisada, M., Al-Oraimi, S.K., and Al-Saidy, A.H. (2009). Copper slag as sand replacement for high performance concrete. Cement Concrete Composites 31(7), 483–488.
  • Al-Jabri, K.S., Taha, R.A., Al-Hashmi, A., and Al-Harthy, A.S. (2006). Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete. Construct. Building Mater. 20(5), 322–331.
  • Alp, I., Deveci, H., and Süngün, H. (2008). Utilization of flotation wastes of copper slag as raw material in cement production. J. Hazard. Mater. 159(2–3), 390–395.
  • Altundoğan, and Tümen, F. (1997). Metal recovery from copper converter slag by roasting with ferric sulphate. Hydrometallurgy 44(1–2), 261–267.
  • Altundoğan, H.S., Boyrazli, M., and Tümen, F. (2004). A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate. Minerals Eng. 17(3), 465–467.
  • Álvarez-Valero, A.M., Pérez-López, R., and Nieto, J.M., (2009). Prediction of the environmental impact of modern slags: A petrological and chemical comparative study with Roman age slags. Am. Mineralogist 94, 1417–1427
  • Anand, S., Das, R.P., and Jena, P.K. (1981). Reduction-roasting and ferric chloride leaching of copper converter slag for extracting copper, nickel and cobalt values. Hydrometallurgy 7(3), 243–252.
  • Anand, S., Rao, K.S., and Jena, P.K. (1983). Pressure leaching of copper converter slag using dilute sulphuric acid for the extraction of cobalt, nickel and copper values. Hydrometallurgy 10(3), 305–312.
  • Anand, S., Rao, P.K., and Jena, P.K. (1980). Recovery of metal values from copper converter and smelter slags by ferric chloride leaching. Hydrometallurgy 5(4), 355–365.
  • Arslan, C., and Arslan, F. (2002). Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy 67(1–3), 1–7.
  • Ash Ch., Borůvka, L., Tejnecký, V., Šebek, O., Nikodem, A., and Drábek, O. (2013). Temporal dissolution of potentially toxic element from silver smelting slag by synthetic environmental solutions. J. Environ. Manage. 129, 157–163.
  • Baghalha, M., Papangelakis, V.G., and Curlook, W. (2007). Factors affecting the leachability of Ni/Co/Cu slags at high temperature. Hydrometallurgy 85(1), 42–52.
  • Banfield, J.F., Barker, W.W., Welch, S.A., Taunton, A. (1999). Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci. USA, 96(7), 3404–3411.
  • Banza, A.N., Gock, E., and Kongolo, K. (2002). Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction. Hydrometallurgy 67(1–3), 63–69.
  • Basir, S.M. A., and Rabah, M.A. (1999). Hydrometallurgical recovery of metal values from brass melting slag. Hydrometallurgy 53(1), 31–44.
  • Beşe A.V., Ata, O.N., Çelik, C., and Çolak, S. (2003). Determination of the optimum conditions of dissolution of copper in converter slag with chlorine gas in aqueous media. Chem. Eng. Process.: Process Intensificat. 42(4), 291–298.
  • Beşe, A.V. (2007). Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching. Ultrasonics Sonochem. 14(6), 790–796.
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., and Scheckel, K. (2014). Remediation of heavy metal(oid)s contaminated soils – To mobilize or to immobilize?. J. Hazard. Mater. 266, 141–166.
  • Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20(3–4), 591–604.
  • Bourven, I., Joussein, E., and Guibaud, G. (2011). Characterisation of the mineral fraction in extracellular polymeric substances (EPS) from activated sludges extracted by eight different methods. Bioresource Technol. 102(14), 7124–7130
  • Brandl, H., and Faramarzi, M.A. (2006). Microbe-metal interactions for the biotechnological treatment of metal containing solid waste. China Particuology 4(2), 93–97.
  • Brandl, H., Bosshard, R., and Wegmann, M. (2001). Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59(2–3), 319–326.
  • Braud, A., Hoegy, F., Jezequel, K., Lebeau, T., and Schalk, I.J. (2009). New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine–iron uptake Pathway. Environ. Microbiol. 11(5), 1079–1091
  • Brown Jr.G. E., and Calas, G. (2011). Environmental mineralogy – Understanding element behavior in ecosystems. Comptes Rendus Geosci. 343(2–3), 90–112.
  • Cappuyns, V., and Swennen, R. (2008). The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. J. Hazard. Mater. 158(1), 185–195.
  • Carranza, F., Romero, R., Mazuelos, A., Iglesias N., and Forcat O. (2009). Biorecovery of copper from converter slags: Slags characterization and exploratory ferric leaching tests. Hydrometallurgy 97(1–2), 39–45.
  • Carrillo-Gonzalez, R., Simunek, J., Sauve, S., and Adriano, D. (2006). Mechanisms and pathways of trace element mobility in soils. In: Sparks, D.L. (Ed.), Advances in Agronomy, vol. (pp. 111–178). San Diego: Academic.
  • Chen, M.S., Han, Z.R., and Wang, L.Z. (2012). Recovery of valuable metals from copper slags by hydrometallurgy. Adv. Mater. Res. 402, 35–40.
  • Comte, S., Guibaud G., and Baudu M. (2006). Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Process Biochem. 41(4), 815–823.
  • Comte, S., Guibaud, G., and Baudu, M. (2008). Biosorption of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J. Hazard. Mater. 151(1), 185–193.
  • Çubukçu, A., and Tüysüz, N. (2007). Trace element concentrations of soils, plants and waters caused by a copper smelting plant and other industries, Northeast Turkey. Environ. Geol. 52(1), 93–108.
  • D’Abzac, P., Bordas, F., van Hullebusch, E., Lens, P.N. L., and Guibaud, G. (2010a). Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges. Coll. Surf. B: Biointerf. 80(2), 161–168
  • D'Abzac, P., Bordas, F., van Hullebusch, E.D., Lens, P.N. L., and Guibaud, G. (2010b). Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl. Microbiol. Biotechnol. 85(5), 1589–1599.
  • Davenport, W.G., King, M., Schlesinger, M., and Biswas, A.K. (2002). Extractive metallurgy of copper. 4th edn/Pergamon 1–417.
  • Deng, T., and Ling, Y. (2007). Processing of copper converter slag for metal reclamation. Part I: extraction and recovery of copper and cobalt. Waste Manage. Res. 25, 440–448.
  • Eary, L.E., and Williamson, M.A. (2006). Simulations of the neutralizing capacity of silicate rocks in acid mine drainage environments. 7th International Conference on Acid Rock Drainage. American Society of Mining and Reclamation.
  • Edmunds, M., and Shand, P. (2008). Natural groundwater quality. Chapter 1: Baseline Inorganic chemistry of European Groundwaters. Blackwell Publishing: Oxford.
  • Ehrlich, H.L. (1998). Geomicrobiology: its significance for geology. Earth-Sci. Rev. 45(1–2), 45–60.
  • Erüst, C., Akcil, A., Gahan, C.S, Tuncuk, A., and Deveci, H. (2013). Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J. Chem. Technol. Biotechnol. 88, 2115–2132.
  • Ettler, V., Legendre, O., Bodénan, F., and Touray, J.C. (2001). Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Pribram, Czech Republic. Canadian Mineralogist 39, 873–888.
  • Ettler, V., Mihaljevič M., Touray, J.C., and Piantone, P. (2002). Leaching of polished sections: an integrated approach for studying the liberation of heavy metals from lead-zinc metallurgical slags. Bull. Soc. Geol. Fr. 2, 161–169.
  • Ettler, V., Piantone, P., and Touray, J.C. (2003). Mineralogical control on inorganic contaminant mobility in leachate from lead-zinc metallurgical slag: experimental approach and long- term assessment. Mineralogical Magazine 67(6), 1269–1283.
  • Ettler, V., Komárková M., Jehlička, J., Coufal, P., Hradil, D., Machovič V., and Delorme, F. (2004). Leaching of lead metallurgical slag in citric solutions- implications for disposal and weathering in soil environments. Chemosphere 57(7), 567–577.
  • Ettler, V., Jehlička, J., Mašek, V., and Hruška, J. (2005). The leaching behaviour of lead metallurgical slag in high-molecular-weight (HMW) organic solutions. Mineralogical Magazine 69(5), 737–747.
  • Ettler, V., Johan, Z., Kříbek, B., Šebek, O., and Michaljevič, M. (2009). Mineralogy and environmental stability of slags from Tsumeb smelter, Namibia. Appl. Geochem. 24(1), 1–15.
  • Ettler, V., and Johan, Z. (2014). 12 years of leaching of contaminants from Pb smelter slags: geochemical/mineralogical controls and slag recycling potential. Appl. Geochem. 40, 97–103.
  • Flemming, H.C. (2011). The perfect slime. Coll. Surf. B: Biointerfaces 86(2), 251–259.
  • Fomina, M., and Gadd, G.M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technol. 160, 3–14.
  • Gadd, G.M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Res. 111(1), 3–49.
  • Gadd, G.M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643.
  • Ganne, P., Cappuyns, V., Vervoort, A., Buvé L., and Swennen, R. (2006). Leachability of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium). Sci. Total Environ. 356(1–3), 69–85.
  • Gbor, P.K., Mokri, V., and Jia Ch. Q. (2000). Characterization of smelter slag. J. Environ. Sci. Health, Part A: Toxic/Hazardous Substances Environ. Eng. 35(2), 147–167.
  • Gee, C., Ramsey, M.H., Maskall, J., and Thornton, I. (1997). Mineralogy and weathering processes in historical smelting slags and their effect on the mobilisation of lead. J. Geochem. Exploration 58(2–3), 249–257.
  • Gorai, B., Jana, R.K., and Premchand (2003). Characteristics and utilization of copper slags-a review. Resources, Conservation Recycling 39(4), 299–313.
  • Guibaud, G., Bordas, F., Saaid, A., D’abzac, P., and van Hullebusch, E. (2008). Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids and Surfaces B: Biointerfaces 63(1), 48–54.
  • Guibaud, G., Bhatia, D., d’Abzac, P., Bourven, I., Bordas, F., van Hullebusch, E.D., and Lens, P.N. L. (2012). Cd(II) and Pb(II) sorption by extracellular polymeric substances (EPS) extracted from anaerobic granular biofilms: Evidence of a pH sorption-edge. J. Taiwan Inst. Chem. Eng. 43(3), 444–449.
  • Haferburg, G., and Kothe, E. (2007). Microbes and metals: interactions in the environment. J. Basic Microbiol. 47, 453–467.
  • Harish, V., Sreepada, R.A., Suryavanshi, U., Shanmuganthan, P., and Sumathy, A. (2011). Assessing the effect of leachate of copper slag from the ISASMELT process on cell growth and proximate components in microalgae Chlorella vulgaris (Beijerinck). Toxicological Environ. Chem. 93(7), 1399–1412.
  • Hernlem, B.J., Vane, L.M, and Sayles, G.D. (1999). The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Res. 33(4), 95–960.
  • Herreros, O., Quiroz, R., Manzano, E., Bou, C., and Viñals, J. (1998). Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy 49(1–2), 87–101.
  • Hong, S., Candelone, J.P., Soutif, M., and Boutron, C.F. (1996). A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. Sci. Total Environ. 188(2–3), 183–193
  • Hudson-Edwards, K.A., Schell Ch., and Macklin, M.G. (1999). Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl. Geochem. 14(8), 1015–1030.
  • Jamieson, H.E. (2011). Geochemistry and mineralogy of solid mine wastes: Essential knowledge for predicting environmental impact. Elements Magazine 7(6), 381–386
  • Kaksonen, A.H., Lavonen, L., Kuusenaho, M., Kolli, A., Närhi, H., Vestola, E., Puhakka, J.A., and Tuovinen, O.H. (2011). Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Minerals Eng. 24(11), 1113–1121.
  • Kierczak, J., Néel, C., Puziewicz, J., and Bril, H. (2009). The mineralogy and weathering of slag produced by the smelting of Ni-ores, Szklary, southwestern Poland. Canadian Mineralogist 47(3), 557–572.
  • Kierczak, J., Bril, H., Néel, C., and Puziewicz, J. (2010). Pyrometallurgical slags in upper and lower silesia (Poland): From Environmental Risk to use of slag-based products- A review. Archives Environ. Protection 36(3), 111–126.
  • Kierczak, J., and Pietranik, A. (2011). Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, Southwestern Poland. Canadian Mineralogist 49(5), 1281–1296.
  • Kierczak, J., Potysz, A., Pietranik, A., Tyszka, R., Modelska, M., Néel, C., Ettler, V., and Mihaljevič, M. (2013). Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). J. Geochem. Exploration 124, 183–194.
  • Kim, B.H., and Gadd, G.M. (2008). Bacterial physiology and metabolism. Cambridge University Press: New York.
  • Konhauser, K.O., Kappler, A., and Roden, E.E. (2011). Iron in microbial metabolism. Elements Magazine 7(2), 89–93.
  • Kordosky, G.A. (1992). Copper solvent extraction: the state of the art. J. Minerals Metals Materials Soc. 44(5), 40–45.
  • Kordosky, G.A. (2002). Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually. J. South African Inst. Mining Metallurgy Nov-DEc. 445-450. SA ISSN 0038–223X/3.00 +0.00.
  • Kucha, H., Martens, A., Ottenburgs, R., De Vos, W., and Viaene, W. (1996). Primary minerals of Zn–Pb mining and metallurgical dumps and their environmental behavior at Plombieres, Belgium. Environ. Geol. 27, 1–15.
  • Kuo, Y., Wang, J., Wang Ch., and Tsai Ch. (2008). Effect of water quenching and SiO2 addition during vitrification of fly ash Part 1: On the crystalline characteristics of slags. J. Hazard. Mater. 152(3), 994–1001.
  • Lee J-ch., and Pandey, B.D. (2012). Bio-processing of solid wastes and secondary resources for metal extraction-A review. Waste Manage. 32(1), 3–18.
  • Lim, T.T., and Chu, J. (2006). Assessment of the use of spent copper slag for land reclamation. Waste Manage. Res. 24(1), 67–73.
  • Lottermoser, B.G. (2002). Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Mineralogical Magazine 66(4), 475–490.
  • Lottermoser, B.G. (2005). Evaporative mineral precipitates from the historical smelting slag dump, Rio Tinto, Spain. J. Mineralogy Geochem. 181(2), 183–190.
  • Lottermoser, B.G. (2010). Mine Wastes: Characterization, Treatment and Environmental Impact: [2.1]: Early Historical Observations on Sulfide Oxidation and Acid Mine Drainage, [2.7]: Acid generation prediction”. Springer 3rd edition.
  • Lottermoser, B.G. (2011). Recycling, reuse and rehabilitation of mine wastes. Elements Magazine 7(6), 405–410
  • Manasse, A., Mellini, M., and Viti, C. (2001). The copper slags of the Capattoli Valley, Campiglia Marittima, Italy. European J. Mineralogy 13, 949–960.
  • Manase, A., and Mellini, M. (2002). Chemical and textural characterization of medieval slags from the Massa Marittima smelting sites (Tuscany, Italy). J. Cultural Heritage 3, 187–198.
  • Manz, M., and Castro, L.J. (1997). The environmental hazard caused by smelter slags from the Sta. Maria de la Paz Mining District, Mexico. Environ. Pollution 98(1), 7–13.
  • Mateus, A., Pinto A, Alves, L.C., Matos, J.X., Figueiras, J., and Neng, N.R. (2011). Roman and modern slag at, S. Domingos mine (IPB, Portugal): Compositional features and implications for their long-term stability and potential reuse. Int. J. Environ. Waste Manage. 8, 133–159.
  • Maweja, K., Mukongo, T., Mbaya, R.K., and Mochubele, E.A. (2010). Effect of annealing treatment on the crystallisation and leaching of dumped base metal smelter slags. J. Hazard. Mater. 183(1–3), 294–300
  • Mehta, K.D., Pandey, B.D., and Premchand (1999). Bio-assisted Leaching of copper, nickel and cobalt from copper converter slag. Mater. Trans. JIM 40(3), 214–221.
  • Mihailova, I., and Mehandjiev, D. (2010). Characterization of fayalite from copper slags. J. Univ. Chem. Technol. Metallurgy 45(3), 317–326.
  • Mostafa, N.Y., El-Hemaly, S.A. S., Al-Wakeel, E.I., El-Korashy, S.A., and Brown, P.W. (2001). Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag. Cement Concrete Res. 31(6), 899–904.
  • Moura, W.A., Gonçalves, J.P., and Lima, M.B. L. (2007). Copper slag waste as a supplementary cementing material to concrete. J. Mater. Sci. 42(7), 2226–2230.
  • Moustakas, K., Mavropoulos, A., Katsou, E., Haralambous, K.J., and Loizidou, M. (2012). Leaching properties of slag generated by a gasification/vitrification unit: The role of pH, particle size, contact time and cooling method used. J. Hazard. Mater. 207–208, 44–50.
  • Muravyov, M.I., Fomchenko, N.V., Usoltsev, A.V., Vasilyev, E.A., and Kondrat’eva, T.F., (2012). Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy 119–120, 40–46.
  • Muravyov, M.I., and Fomchenko, N.V. (2013). Leaching of Nonferrous Metals from Copper Converter Slag with Application of Acidophilic Microorganisms. Appl. Biochem. Microbiol. 49(6), 561–569.
  • Nadirov, R.K, Syzdykova, L.I., Zhussupova, A.K., and Usserbaev, M.T. (2013). Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int. J. Mineral Processing 124, 145–149.
  • Najimi, M., Sobhani, J., and Pourkhorshidi, A.R. (2011). Durability of copper slag contained concrete exposed to sulfate attack. Construct. Building Mater. 25(4), 1895–1905.
  • Navarro, A., Cardellach, E., Mendoza, J.L., Corbella, M., and Domènech, L.M. (2008). Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almerıa, Spain). Appl. Geochem. 23(4), 895–913.
  • Nickel, E. (1995). The definition of a mineral. Canadian Mineralogist 33, 689–690.
  • Pal, A., and Paul, A.K. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation (Review). Indian J. Microbiol. 48(1), 49–64.
  • Parsons, M.B., Bird, D.K., Einaudi, M.T., and Alpers Ch.N. (2001). Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California. Appl. Geochem. 16(14), 1567–1593.
  • Piatak, N.M., Seal, R.R., Hammarstrom, J.M., Meier, A.L., and Briggs, P.H. (2003). Geochemical Characterization of Slags, Other Mine Waste, and Their Leachate from the Elizabeth and Ely Mines (Vermont), the Ducktown Mining District (Tennessee), and the Clayton Smelter Site (Idaho). U.S. Department of the Interior, U.S. Geological Survey
  • Piatak, N.M., Seal, R.R., and Hammarstrom, J.M. (2004). Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Appl. Geochem. 19, 1039–1064.
  • Piatak, N.M., and Seal, R.R. (2010). Mineralogy and the release of elements from slag from the Hegeler Zinc smelter, Illinois (USA). Appl. Geochem. 25, 302–320.
  • Piatak, N.M., and Seal, R.R. (2012). Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic site, Pennsylvania, USA. Appl. Geochem. 27, 623–643.
  • Piatak N.M., Parsons, M.B., and Seal, R.R. (2015). Characteristics and Environmental Aspects of Slags: A review. Appl. Geochem. in press doi: 10.1016/j.apgeochem.2014.04.009.
  • Puziewicz, J., Zainoun, K., and Brill, H. (2007). Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Swietochlowice, Upper Silesia, Poland. Canadian Mineralogist 45, 1189–1200.
  • Radetzki, M. (2009). Seven thousand years in the service of humanity-the history of copper, the red metal. Resources Policy 34(4), 176–184.
  • Reuter, M., Xiao, Y., and Boin, U. (2004). Recycling and environmental issues of metallurgical slags and salt fluxes. VII International Conference on Molten Slag Fluxes and Salts, The South-African Institute of Mining and Metallurgy.
  • Rozendaal, A., and Horn, R. (2013). Textural, mineralogical and chemical characteristics of copper reverb furnace smelter slag of the Okiep Copper District, South Africa. Minerals Eng. 52, 184–190.
  • Rudnik, E., Burzyńska, L., and Gumowska, W. (2009). Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag. Minerals Eng. 22(1), 88–95.
  • Sāez, R., Nocete, F., Nieto, J.M., Capitān, M.A., and Rovira, S. (2003). The extractive metallurgy of copper from Cabezo Jurē, Huelva, Spain: Chemical and mineralogical study of slags dated to the third millennium b.c.. Canadian Mineralogist 41, 627–638.
  • Saha, R., Saha, N., Donofrio, R.S., and Bestervelt, L.L. (2013). Microbial siderophores: a mini review. J. Basic Microbiol. 53(4), 303–317.
  • Seignez, N., Bulteel, D., Damidot, D., Gauthier, A., and Potdevin, J.L. (2006). Weathering of metallurgical slag heaps: multi-experimental approach of the chemical behaviours of lead and zinc. Waste Manage. Environ. III, WIT Trans. Ecol. Environ. 92, 31–40.
  • Seignez, N., Gauthier, A., Bulteel, D., Bautier, M., Recourt, P., Damidot, D., and Potdevin, J.L. (2007). Effect of Pb-rich entities during alteration of a partially vitrified metallurgical waste. J. Hazard. Mater. 149, 418–431.
  • Seignez, N., Gauthier, A., Bulteel, D., Damidot, D., and Potdevina, J.L. (2008). Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions. Appl. Geochem. 23(12), 3699–3711
  • Shanmuganathan, P., Lakshmipathiraj, P., Srikanth, S., Nachiappan, A.L., and Sumathy, A. (2008). Toxicity characterization and long-term stability studies on copper slag from the ISASMELT process. Resources, Conserv. Recycling 52(4) 601–611.
  • Shen, H., and Forssberg, E. (2003). An overview of recovery of metals from slags. Waste Manage. 23(10), 933–949.
  • Shi, C., and Qian, J. (2000). High performance cementing materials from industrial slags – a review. Resources, Conserv. Recycling 29(3), 195–207.
  • Shi, C., Meyer Ch., and Behnoodc, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conserv. Recycling 52(10), 1115–1120.
  • Smith, K.S. (2007). Strategies to predict metal mobility in surficial mining environments. In: DeGraff, J.V. Understanding and responding to hazardous substances at mine sites in the Western United States. The Geological Society of America. Reviews in Engineering Geology XVII, 25–45.
  • Sobanska, S., Ledésert, B., Deneele, D., and Laboudigue, A. (2000). Alteration in soils of slag particles resulting from lead smelting. Earth Planetary Sci. 331(4), 271–278.
  • Southam, G. (2012). Minerals as substrates for life: The Prokaryotic view. Elements Magazine 8(2), 101–106.
  • Sparks, D.L. (2005a). Environmental Catalysis. Chapter 1: Metal and oxyanion sorption on naturally occurring oxide and clay mineral surfaces, 3–36. Chapter 3: Precipitation and Dissolution of Iron and Manganese Oxides, 61–83. Taylor and Francis Group, 2005.
  • Sparks, D.L. (2005b). Toxic metals in the environment: the role of surfaces. Elements Magazine 1(4), 193–196.
  • Spence, J.R., and Soderstorm, M.D. (1999). Practical Aspects of Copper Solvent Extraction from Acidic Leach Liquors. in Jergensen, G.V.: Copper leaching, solvent extraction and electrowinning Technology, Chapter 4: Theory and practice of solvent extraction. Society for Mining, Metallurgy and Exploration
  • Sposito, G. (2008). The chemistry of soils, 2nd edn. New York, NY: Oxford University Press.
  • Sueoka, Y., and Sakakibara, M. (2013). Primary Phases and Natural Weathering of Smelting Slag at an Abandoned Mine Site in Southwest Japan. Minerals 3(4), 412–426.
  • Sukla, L.B., Panda, S.C., and Jena, P.K. (1986). Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometallurgy 16(2), 153–165.
  • Sukla, L.B., Kar, R.N., and Panchanadikar, V. (1992). Leaching of copper converter slag with Aspergillus niger culture filtrate. BioMetals 5, 169–172.
  • Sukla, L.B., Kar, R.N., and Panchanadikar, V. (1995). Bioleaching of copper converter slags using Aspergillus niger isolated from lateritic nickel ore. Int. J. Environ. Studies 47(2), 81–86.
  • Suzuki, I. (2001). Microbial leaching of metals from sulfide minerals. Biotechnol. Adv. 19, 119–132.
  • Svedberg, P., and Tilton, J.E. (2006). The Real, Real Price of Nonrenewable Resources: Copper 1870–2000. World Develop. 34, 501–519.
  • Taylor, K., and Konhauser, K.O. (2011). Iron in Earth surface systems: A major player in chemical and biological processes. Elements Magazine 7(2), 83–88.
  • Teng, T.T., Yusup, Y., and Low, L.W. (2012). Heavy Metal Ion Extraction Using Organic Solvents: An Application of the Equilibrium Slope Method. Stoichiometry and Research – The Importance of Quantity in Biomedicine. Dr Alessio Innocenti (Ed.), ISBN: 978-953-51-0198-7, InTech, Available from: http://www.intechopen.com/books/stoichiometry-and-research-the-importan-ce-of-quantity-inbiomedicine/stoichiometry-of-metal-complexes-extracted-us-ing-organic-solvents
  • The International Copper Study Group (ICSG). The world copper factbook 2013. 1–57. Lisbon: ICSG. Retrieved from http://www.icsg.org/index.php/component/jdownloads/finish/170/1188.
  • Themelis, M.J. (1994). Pyrometallurgy near the end of 20th century. Industrial Insight 46(8), 51–57.
  • Tiller, K.G. (1989). Heavy metals in soils and their environmental significance. Adv. Soil Sci. 9, 113142.
  • Tshiongo, N., Mbaya, R.K. K., Maweja, K., and, Tshabalala, L.C. (2010). Effect of Cooling Rate on base Metals Recovery From Copper Matte Smelting Slags. World Academy Science, Eng. Technol. 4, 236–240.
  • Tshiongo, N., Mbaya, R.K. K., and Maweja, K. (2011). Leaching kinetics of Cu, Co, Zn, Pb and Fe from copper smelting slags cooled in different ways after tapping. The Southern African Institute of Mining and Metallurgy 6th Southern African Base Metals Conference 2011, Phalaborwa.
  • Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A., and Hirata, A. (2003). Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 223, 287–292
  • Tyszka, R., Kierczak, J., Pietranik, A., Ettler, V., and Mihaljevič, M. (2014). Extensive weathering of zinc smelting slag in the heap in Upper Silesia (Poland): potential environmental risks posed by mechanical disturbance of slag deposits. Appl. Geochem. 40, 70–81.
  • U.S. Congress, Office of Technology Assessment, (1988). Copper: Technology and Competitiveness. OTA-E-367. Washington, DC: U.S. Government Printing Office). . Chapter 6.
  • Uroz, S., Calvaruso Ch., Turpault M-P., and Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17(8), 378–387.
  • van Hullebusch, E.D., Yin N-H., Seignez, N., Labanowski, J., Gauthier, A., Lens, P.N. L., Avril, C., and Sivry, Y. (2015). Bio-alteration of metallurgical wastes by Pseudomonas aeruginosa in a semi flow-through reactor. J. Environ. Manage. 147, 297–305.
  • Vaughan, D.J., and Lloyd, J.R (2011). Mineral-organic-microbe interactions: Environmental impacts from molecular to macroscopic scales. Comptes Rendus Geosci. 343(2–3), 140–159.
  • Vdović N., Billon, G., Gabelle, C., and Potdevin, J.L. (2006). Remobilization of metals from slag and polluted sediments (Case Study: The canal of the Deûle River, northern France). Environ. Pollution 141(2), 359–369.
  • Vera, M., Schippers A, and Sand, W. (2013). Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A. Appl. Microbiology Biotechnol. 97(17), 7529–7541.
  • Vestola, E.A., Kuusenaho, M.K, Narhi, H.M., Tuovinen, O.H., Puhakka, J.A., Plumb, J.J., and Kaksonen, A.H. (2010). Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 103(1–4), 74–79.
  • Vítková M., Ettler, V., Johan, Z., Kříbek, B., Šebek, O., and Michaljevič, M. (2010). Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineralogical Magazine 74(4), 581–600.
  • Vu, B., Chen, M., Crawford, R.J., and Ivanowa, E.P. (2009). Bacterial extracellular polysaccharides in biofilm formation (Review). Molecules 14(7) 2535–2554.
  • Watling, H.R. (2006). The bioleaching of sulphide minerals with emphasis on copper sulphides. Hydrometallurgy 84(1–2), 81–108.
  • White, Ch., Wilkinson, S.C., and Gadd, G.M. (1995). The role of Microorganisms in Biosorption of Toxic Metals and Radionuclides. Int. Biodeterioration Biodegradation 35(1–3), 17–40.
  • Willscher, S., and Bosecker, K. (2003). Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy 71(1–2), 257–264
  • Wingender, J., Neu, T.R., and Flemming, H.C. (1999). Microbial extracellular polymeric substances. Characterization, Structure and Function. Chapter 1. What are bacterial extracellular polymeric substances?, Chapter 5. EPS and Macro-Environment. Springerlink
  • Yang, Y., Li, S., Bi, X., Wu, P., Liu, T., Li, F., and Liu, C. (2010b). Lead, Zn and Cd in slags, stream sediments and soils in an abandoned Zn smelting region, southwest of China, and Pb and S isotopes as source traces. J. Soils Sediments 10(8), 1527–1539.
  • Yang, Z., Rui-lin, M., Wang-dong, N., and Hui, W. (2010a). Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103(1–4), 25–29.
  • Yin, N.-H., Sivry, Y., Avril, C., Borensztajn, S., Labanowski, J., Malavergne, V., Lens, P.N. L., Rossano, S., and van Hullebusch, E.D., (2014). Bioweathering of lead blast furnace (LBF) metallurgical slags by Pseudomonas aeruginosa. Int. Biodeterioration Biodegradation 86, 372–381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.