924
Views
57
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Hydraulic/Organic Shock/Transient Loads in Anaerobic Wastewater Treatment: A Review

&
Pages 2693-2727 | Published online: 04 Sep 2015

REFERENCES

  • Acharya, S.M., Kundu, K., and Sreekrishnan, T.R. (2015). Improved stability of anaerobic digestion through the use of selective acidogenic culture. J. Environ. Eng. 141, 1--8.
  • Ahring, B., Sandberg, M., and Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digesters. Appl. Microbiol. Biotechnol. 43, 559–565
  • Ahring, B.K., and Westermann, P.J. (1988). Product inhibition of butyrate metabolism by acetate and hydrogen in thermophilic coculture. Appl. Environ. Microbiol. 54, 2393–2397.
  • Akram, A. (2006). Submerged anaerobic membrane bioreactor. Doctoral dissertation. London: Chemical Engineering Department, Imperial College.
  • Akram, A., and Stuckey, D.C. (2008). Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC). Process Biochem. 43, 93–102.
  • Angenent, L.T., Abel, S.J., and Sung, S. (2002). Effect of an organic shock load on the stability of an anerobic migrating blanket reactor. J. Environ. Eng. 128, 1109–1120.
  • Aquino, S.F., and Stuckey, D.C. (2007). Bioavailability and toxicity of metal nutrients during anaerobic digestion. J. Environ. Eng. 133(1), 28–35.
  • Arnaiz, C., Buffiere, P., Elmaleh, S., Lebrato, J., and Moletta, R. (2003). Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors. Environ. Technol. 24, 1431–1443.
  • Arnaiz, C., Buffiere, P., Lebrato, J., and Moletta, R. (2007). The effect of transient changes in organic load on the performance of an anaerobic inverse turbulent bed reactor. Chem. Eng. Process 46, 1349–1356
  • Bachman, A., Beard, V.L., and Mc Carty, P.L. (1982). Comparison of fixed-film reactors with a modified sludge blanket reactor. Proceedings, 1st Int. Conf. on fixed film biological processes, Park Ridge, NJ: Noyes, 1192–1211.
  • Bae, J., and McCarty, P.L. (1993). Inhibition of butyrate oxidation by formate during methanogenesis. Appl. Environ. Microbiol. 59, 628–630.
  • Baloch, M.I., and Akunna, J.C. (2003). Effect of rapid hydraulic shock loads on the performance of granular bed baffled reactor. Environ. Technol. 24, 361–368
  • Barber, W.P., and Stuckey, D.C. (1999). The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Res. 33(7), 1559–1578.
  • Baskir, C.I., and Hansford, G.S. (1980). Product formation in the continuous culture of microbial populations grown on carbohydrates. Biotech. Bioeng. 22, 1857–1875.
  • Beyenal, H., and Lewandowski, Z. (2000). Combined effect of substrate concentration and flow velocity on effective diffusivity in biofilms. Water Res. 34(2), 528–538.
  • Bhatia, D., Vieth, W.R., and Venkatasubramanian, K. (1985). Steady-state and transient behavior in microbial methanification: II. Mathematical modeling and verification. Biotech. Bioeng. 17, 1199–1207.
  • Bjornsson, L., Murto, M., and Mattiasson, B. (2000). Evaluation of parameters for monitoring an anaerobic co-digestion process. Appl. Microbiol. Biotechnol. 54 (6), 844–849.
  • Bolzonella, D., Battistoni, P., Mata-Alvarez, J., and Cecchi, F. (2003). Anaerobic digestion of organic solid wastes: process behaviour in transient conditions. Water Sci. Technol. 48 (4) 1–8.
  • Boone, D.R., and Bryant, M.P. (1980). Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov., gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40, 626–632.
  • Boone, D.R., and Xun, L. (1987). Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Appl. Environ. Microbiol. 53, 1589–1592.
  • Boone, D.R., Johnson, R.L., and Liu, Y. (1989). Diffusion of the interspecies electron carriers hydrogen and formate in methanogenic ecosystems, and implications in the measurement of Km for hydrogen or formate uptake. Appl. Environ. Microbiol 55, 1735–1741.
  • Borja, R., and Banks, C.J. (1995). Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. J. Biotechnol. 39, 251–259.
  • Borja, R., Banks, C.J., and Wang, Z. (1995). Effect of organic loading rate on anaerobic treatment of slaughterhouse wastewater in a fluidised-bed reactor. Bioresour. Technol. 52(2), 157–162.
  • Borja, R., Gonzalez, E., Raposo, F., Millan, F., and Martin, A. (2001). Performance evaluation of a mesophilic anaerobic fluidized-bed reactor treating wastewater derived from the production of proteins from extracted sunflower flour. Bioresour. Technol. 76, 45–52.
  • Brito, A.G., and Melo, L.F. (1999). Mass transfer coefficients within anaerobic biofilms: effects of external liquid velocity. Water Res. 33(17), 3673–3678.
  • Bryant, M.P. J. (1979). Microbial methane production – theoretical aspects. Anim. Sci. 48, 193–201
  • Cadi, S., Huyard, H., Manem, J., and Moletta, R. (1994). Anaerobic digestion of a synthetic wastewater containing starch by a membrane reactor, Environ. Technol. 15, 1029–1039.
  • Cayless, S.M., da Motta Marques, M.L., and Lester, J.N. (1989). The effect of transient loading, pH and temperature shocks on anaerobic filters and fluidised beds. Environ. Technol. Lett. 10, 951–968.
  • Chelliapan, S., Wilby, T., Yuzir, A., and Sallis, P.J. (2011). Influence of organic loading on the performance and microbial community structure of an anaerobic stage reactor treating pharmaceutical wastewater. Desalination 271(1), 257–264.
  • Chen, Z., Wang, Y., Li, K., and Zhou, H. (2014). Effects of increasing organic loading rate on performance and microbial community shift of an up-flow anaerobic sludge blanket reactor treating diluted pharmaceutical wastewater. J. Biosci. Bioeng. 118, 284–288.
  • Chua, H., Hu, W.F., Yu, P.H. F., and Cheung, M.W. L. (1997). Response of an anaerobic fixed-film reactor to hydraulic shock loadings. Bioresour. Technol. 61, 79–83.
  • Chudoba, J. (1967). Residual organic matter in activated sludge process effluents I: degradation of saccharides, fatty acids and amino acids under batch conditions. Scientific papers of the Institute of Chemical Technology (Czech). Technol. Waste 12, 39–76
  • Clark, R.H., and Speece, R.E. (1970). The pH tolerance of anaerobic digestion. In: Jenkins, S.H. (Ed.), Advances in Water Pollution Research. Proc. 5th Int. Conf. of Water Pollution Research in San Francisco, Pergamon Press, pp. II-27, 1–14.
  • Cohen, A., Breure, A.M., van Andel, J.G., and van Deursen, A. (1980). Influence of phase separation on the anaerobic digestion of glucose–l. Maximum COD-turnover rate during continuous operation. Water Res. 14, 1439–1448
  • Cohen, A., Breure, A.M., van Andel, J.G., and van Deursen, A. (1982). Influence of phase separation on the anaerobic digestion of glucose-II. Stability and kinetic response to shock loading. Water Res. 16, 449–455.
  • Collins, L.J., and Paskins, A.R. (1987). Measurement of trace concentrations of hydrogen in biogas from anaerobic digesters using an exhaled hydrogen monitor. Water Res. 21(12), 1567–1572.
  • Conklin, A., Stensel, H.D., and Ferguson, J. (2006). Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ. Res. 78(5) 486–496.
  • Cord-Ruwisch, R., Seitz, H., and Conrad, R. (1988). The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149, 350–357.
  • Cord-Ruwisch, R., Mercz, T.I., Hoh, C., and Strong, G.E. (1997). Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. Biotechnol. Bioeng. 56, 626–634.
  • Cresson, R., Dabert, P., and Bernet, N. (2009). Microbiology and performance of a methanogenic biofilm reactor during the start-up period. J. Appl. Microbiol. 106, 863–876.
  • Daniels, L., Sparling, R., and Sprott, G.D. (1984). The bioenergetics of methanogenesis. Biochim. Biophys. Acta 768(2), 113–163.
  • Demirel, B., and Scherer, P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol. 7, 173–190.
  • Demirel, B., and Yenigun, O. (2004). Anaerobic acidogenesis of dairy wastewater: the effects of variations in hydraulic retention time with no pH control. J. Chem. Technol. Biotechnol. 79, 755–760.
  • Denac, M., Griffin, K., Lee, P.L, and Greenfiled, P.F. (1988). Selection of controlled variables for a high rate anaerobic reactor. Environ. Technol. Lett. 9, 1029–1040.
  • Dinopoulou, G., Rudd, T., Lester, J.N. (1988). Anaerobic acidogenesis of a complex wastewater: 1. The influence of operational parameters on reactor performance. Biotechnol. Bioeng. 31, 958–968.
  • Dogan, T., Ince, O., Oz, N.A., and Ince, B.K. (2005). Inhibition of volatile fatty acid production in granular sludge from a UASB reactor. J. Environ. Sci. Health 40, 633–644.
  • Dong, X., Plugge, C.M., and Stams, A.J. M. (1994). Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. 60, 2834–2838.
  • Dwyer, D.F., Weeg-Aerssens, E., Shelton, D.R., and Tiedje, J.M. (1988). Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl. Environ. Microbiol 54, 1354–1359.
  • El Farhan, M., and Shieh, W.K. (1999). Overloading responses of a glucose fed anaerobic fluidized bed reactor. Biochem. Eng. J. 3, 17–23.
  • Eng, S.C., Fernandes, X.A., and Paskins, A.R. (1986). Biochemical effects of administering shock loads of sucrose to a laboratory-scale anaerobic (UASB) effluent treatment plant. Water Res. 20 (6), 789–794.
  • Espinosa, A.L., Rosas, K., Ilangovan, K., and Noyola, A. (1995). Effects of trace metal on the anaerobic degradation of volatile fatty acids in molasses stillage. Water Sci. Technol. 32, 121–129.
  • Fannin, K.F. (1987). Start-up, operation, stability and control. In: Chynoweth, D.P., Isaacson, R. (Eds.), Anaerobic digestion of biomass. London: Elsevier,, pp. 171–196.
  • Feng, H., Hu, L., Mahmood, Q., Fang, C., Qiu, C., and Shen, D. (2009). Effects of temperature and feed strength on a carrier anaerobic baffled reactor treating dilute wastewater. Desalination 239, 111–121
  • Fukuzaki, S., Nishio, N., Shobayshi, M., and Nagai, S. (1990). Inhibition of the fermentation of propionate to methane by hydrogen, acetate and propionate. Appl. Environ. Microbiol. 56, 719–723.
  • Gorris, L.G. M., van Deursen, J.M. A., van der Drift, C., and Vogels, G.D. (1989). Inhibition of propionate degradation by acetate in methanogenic fluidized bed reactors. Biotechnol. Lett. 11, 61–66.
  • Graef, S., and Andrews, J. (1974). Stability and control of anaerobic digestion. J WPCF 46 (4), 2129–2143, 666–682.
  • Griffin, M.E., McMahon, K.D., Mackie, R.I., and Raskin, L. (1998). Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Bioeng. 57 (3), 342–355.
  • Grobicki, A., and Stuckey, D.C. (1989). The role of formate in the anaerobic baffled reactor. Water Res. 23(12), 1599–1602.
  • Grobicki, A., and Stuckey, D.C. (1991). Performance of the anaerobic baffled reactor under steady-state and shock loading conditions. Biotechnol. Bioeng. 37, 344–355.
  • Grotenhuis, J.T. C., Kissel, J.C., Plugge, C.M., Stams, A.J. M., and Zehnder, A.J. B. (1991). Role of substrate concentration in particle size distribution of methanogenic granular sludge in UASB reactors. Water Res. 25, 21–27
  • Guiot, S.R., Safi, B., Frigon, J.C., Mercier, P., Mulligan, C., Tremblay, R., and Samson, R. (1995). Performances of a full‐scale novel multiplate anaerobic reactor treating cheese whey effluent. Biotechnol. Bioeng. 45(5), 398–405.
  • Gujer, W., and Zehnder, A.J. B. (1983). Conversion processes in anaerobic digestion. Water Sci. Technol 15(8-9), 127–167.
  • Hanaki, K., Hirunmasuwan, S., and Matsuo, T. (1994). Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol. Water Res. 28, 877–885.
  • Harper, S.R., and Pohland, F.G. (1986). Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol. Bioeng. 28, 585–602.
  • Hawkes, F.R., Rozzi, A., Black, K., Guwy, A., and Hawkes, D.L. (1992). The stability of anaerobic digesters operating on a food-processing wastewater. Water Sci. Technol. 25(7), 73–82.
  • Hickey, R.F., Vanderwielen, J., and Switzenbaum, M.S. (1987). The effect of organic toxicants on methane production and hydrogen gas levels during the anaerobic digestions of waste activated sludge. Water Res. 21, 1417–1427.
  • Hickey, R.F., and Switzenbaum, M. (1991). The response and utility of hydrogen and carbon monoxide as process indicators of anaerobic digesters subjected to organic and hydraulic overloads. J. Water Pollut. Control. Fed. 63, 129–140.
  • Hoh, C.Y., and Cord-Ruwisch, R. (1996). A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. I. Model formulation. Biotechnol. Bioeng. 51, 597–604.
  • Holm‐Nielsen, J.B., and Esbensen, K.H. (2011). Monitoring of biogas test plants—a process analytical technology approach. J. Chemometr. 25(7), 357–365.
  • Hori, T., Haruta, S., Ueno, Y., Ishii, M., and Igarashi, Y. (2006). Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl. Environ. Microbiol. 72(2), 1623–1630.
  • Hori, T., Haruta, S., Sasaki, D., Hanajima, D., Ueno, Y., Ogata, A., Ishii, M., and Igarashi, Y. (2014). Reorganization of the bacterial and archaeal populations associated with organic loading conditions in a thermophilic anaerobic digester. J. Biosci. Bioeng. 119(3), 337–344.
  • Horiuchi J.I., Shimizu, T., Tada, K., Kanno, T., and Kobayashi, M. (2002). Selective production of organic acids in anaerobic acid reactor. Bioresour. Technol. 82, 209–213
  • Huang, Y.H., Huang, G.H., Chou, S., and Cheng, S.S. (2000). Hydrogen as a quick indicator of organic shock loading in UASB. Water Sci. Technol. 42 (3–4), 43–50.
  • Hu, A.Y., and Stuckey, D.C. (2006). Treatment of dilute wastewaters using a novel submerged anaerobic membrane bioreactor. J. Environ Eng. ASCE 132 (2), 190–198
  • Inanc, B., Matsui, S., and Ide, S. (1999). Propionic acid accumulation in anaerobic digestion of carbohydrates: an investigation on the role of hydrogen gas. Water Sci. Technol. 40 (1), 93–100.
  • Jetten, M.S. M., Stams, A.J. M., and Zehnder, A.J. B. (1992). Methanogenesis from acetate: a comparison of acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS. Microbiol. Rev. 8, 181–198.
  • Johir, M.A. H., Vigneswaran, S., Sathasivan, A., Kandasamy, J., and Chang C.Y. (2012). Effect of organic loading rate on organic matter and foulant characteristics in membrane bio-reactor. Bioresour. Technol. 113, 154–160
  • Kalyuzhnyi, S.V., Sklyar, V.I., Davlyatshina, M.A., Parshina, S.N., Simankova, M.V., Kostrikina, N.A., and Nozhevnikova, A.N. (1996). Organic removal and microbiological features of UASB-reactor under various organic loading rates. Bioresour. Technol. 55 (1), 47–54.
  • Karlsson, A., Einarsson, P., Schnurer, A., Sundberg, C., Ejlertsson, J., and Svensson, B.H.: (2012). Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester, J. Biosci. Bioeng. 114, 446–452.
  • Kaspar, H.F., and Wuhrmann, K. (1978). Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl. Environ. Microbiol. 36, 1–7,
  • Kennedy, K.J., and Van den Berg, L. (1982). Stability and performance of anaerobic fixed film reactors during hydraulic overloading at 10–35 C. Water Res. 16(9), 1391–1398.
  • Kida, K., Tanemura, K., Ohno A., and Sonoda, Y. (1991). Comparison of performance among four different processes for the anaerobic treatment of wastewater with a low concentration of organic matter. Environ. Technol. 12, 497–502.
  • Kim, J., and Lee, C. (2015). Response of a continuous biomethanation process to transient organic shock loads under controlled and uncontrolled pH conditions. Water Res. 73, 68–77.
  • Kundu, K., Sharma, S., and Sreekrishnan, T.R. (2012). Effect of operating temperatures on the microbial community profiles in a high cell density hybrid anaerobic bioreactor. Bioresour. Technol. 118, 502–511
  • Kundu, K., Sharma, S., and Sreekrishnan, T.R. (2013). Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature. Bioresour. Technol. 129, 538–547.
  • Labib, F., Ferguson, J.F., Benjamin, M.M., Merigh, M., and Ricker, N.L. (1992). Anaerobic Butyrate Degradation in a Fluidized-Bed Reactor: Effects of Increased Concentrations of H2, and Acetate. Environ. Sci. Technol. 26, 369–376
  • Langenhoff, A.A. M., Intrachandra, N., and Stuckey, D.C. (2000). Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor: Influence of hydraulic retention time. Water Res. 34 (4), 1307–1317.
  • Lau, I.W. C., and Fang, H.P. (1997). Effect of temperature shock to thermophilic granules. Water Res. 31(10), 2626–2632.
  • Leitão, R.C., Van Haandel, A.C., Zeeman, G., and Lettinga, G. (2006). The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresour. Technol. 97(9), 1105–1118.
  • Lerm, S., Kleyböcker, A., Miethling-Graff, R., Alawi, M., Kasina, M., Liebrich, M., and Würdemann, H. (2012). Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manage. 32(3), 389–399.
  • Li, J., Jin, Y., Ren, J., and Zhu, W. (2014). Impact of organic load shock on the dynamic transition of microbial communities during the anaerobic start-up process. Energy Procedia 61, 2737–2740.
  • Lin, C.Y., Chou, J., and Lee, Y.S. (1998). Heavy metal-affected degradation of butyric acid in anaerobic digestion. Bioresour. Technol. 65(1), 159–161.
  • Liu, A.C., Chou, C.Y., Chen, L.L., and Kuo, C.H. (2015). Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis. J. Biotechnol. 194, 124–131.
  • Ma, J., Zhao, B., Frear, C., Zhao, Q., Yu, L., Li, X., and Chen, S. (2013). Methanosarcina domination in anaerobic sequencing batch reactor at short hydraulic retention time. Bioresour. Technol. 137, 41–50.
  • Madsen, M., Holm-Nielsen, J.B., and Esbensen, K.H. (2011). Monitoring of anaerobic digestion processes: A review perspective. Renew. Sust. Energ. Rev. 15(6), 3141–3155.
  • Marchaim, U., and Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresour. Technol. 43, 195–203.
  • Masse, L., and Masse, D.I. (2005). Effect of soluble organic, particulate organic, and hydraulic shock loads on anaerobic sequencing batch reactors treating slaughterhouse wastewater at 20ºC. Process. Biochem. 40, 1225–1232
  • Mata-Alvarez, J., Macé, S., and Llabres, P. (2000). Anaerobic digestion of organic solid wastes, an overview of research achievements and perspectives. Bioresour. Technol. 74, 3–16.
  • Mathiot, S., Escoffier, Y., Ehlinger, F., Couderc, J.P., Leyris, J.P., and Moletta, R. (1992). Control parameter variations in an anaerobic fluidised bed reactor subjected to organic shock loads. Water Sci. Technol. 25, 93–101.
  • Mawson, A.J., Earle, R.L., and Larsen, V.F. (1991). Degradation of acetic and propionic acids in the methane fermentation. Water Res. 25, 1549–1554.
  • McCarty, P.L., and Vath, C.A. (1962). Volatile fatty acid digestion at high loading rates. Int. J. Air. Water Poll. 6, 65–73.
  • McCarty, P.L. (1964). Anaerobic waste treatment fundamentals. Public. Works 95(9), 107.
  • McCarty, P.L. (1981). History and overview of anaerobic digestion. Second International Symposium on Anaerobic Digestion. Amsterdam: Elsevier Biomedical Press.
  • McCarty, P.L. (1982). One hundred years of anaerobic treatment. In Anaerobic digestion, D.E. Hughes et al. (eds). Amsterdam: Elsevier Biomedical Press, pp. 3–22.
  • McCarty, P.L., and Smith, D.P. (1986). Anaerobic wastewater treatment. Environ. Sci. Technol. 20, 1200–1206.
  • McCarty, P.L., and Mosey, F.E. (1991). Modelling of anaerobic digestion process (a discussion of concepts). Water Sci. Technol. 24(8), 17–33.
  • McInerney, M.J., Bryant, M.P., Hespell, R.B., and Costerton, J.W. (1981). Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41(4), 1029–1039.
  • Mitra, I.N., Sengupta, A.K., Kugelman, I.J., and Creighton, R. (1998). Evaluating composite ion exchangers (CIX) for improved stability of anaerobic biological reactors. Water Res. 32, 3267–3280.
  • Mizzouri, N.S., and Shaaban, M.G. (2013). Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater. J. Hazardous Mater. 250, 333–344.
  • Moletta, R., Escoffier, Y., Ehlinger, F., Coudert, J.P., and Leyris, J.P. (1994). On-line automatic control system for monitoring an anaerobic fluidized-bed reactor: Response to organic overload. Water Sci. Technol. 30 (12), 11–20.
  • Mosey, F.E. (1983). Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 15(8–9), 209–232.
  • Mosey F.E., and Fernandes, X.A. (1989). Patterns of hydrogen in biogas from the anaerobic digestion of milk sugars. Water Sci. Technol. 21, 187–196.
  • Murray W., and Van den Berg, L. (1981). Effects of nickel cobalt and molybdenum on the performance of methanoganic fixed film reactors. Appl. Environ. Microbiol. 42, 502–505.
  • Nachaiyasit, S., and Stuckey, D.C. (1997). The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 1. Step changes in feed concentration at constant retention time. Water Res. 31(11), 2737–2746.
  • Nadais, H., Capela, I., Arroja, L., and Duarte, A. (2001). Effect of organic, hydraulic and fat shock on the performance of UASB reactors with intermittent operation. Water Sci. Technol. 44, 49–56.
  • Padmasiri, S.I., Zhang, J., Fitch, M., Norddahl, B., Morgenroth, E., and Raskin, L. (2007). Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res. 41, 134–144.
  • Pauss, A., Andre, G., Perrier, M., and Guiot, S.R. (1990). Liquid-to-gas mass transfer in anaerobic processes: Inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl. Environ. Microbiol. 56, 1636–1644.
  • Pauss, A., and Guiot, S.R. (1993). Hydrogen monitoring in anaerobic sludge bed reactors at various hydraulic regimes and loading rates. Water Environ. Res. 65, 276–280.
  • Pavan, P., Musacco, A., Cecchi, F., Bassetti, A., and Mata‐Alvarez, J. (1994). Thermophilic semi‐dry anaerobic digestion process of the organic fraction of municipal solid waste during transient conditions. Environ. Technol. 15, 1173–1182.
  • Pavlostathis, S.G., and Giraldo-Gomez, E. (1991). Kinetics of anaerobic treatment: a critical review. Crit. Rev. Env. Contr. 21(5,6), 411–490.
  • Pribyl, M., Tucek, F., Wilderer, P.A., and Wanner, J. (1997). Amount and nature of soluble refractory organics pro duced by activated sludge micro-organisms in sequencing batch and continuous flow reactors. Water Sci. Technol. 35(1), 27–34.
  • Rajeshwari, K.V., Balakrishnan, M., Kansal, A., Kusum, L., and Kishore, V.V. N. (2000). State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sust. Energ. Rev. 4, 135–156.
  • Ren, N., Wang, B., and Huang, J.C. (1997). Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol. Bioeng. 54 (5), 428–433.
  • Robinson, J.A., and Tieje, J.M. (1982). Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl. Environ. Microbiol. 44, 1374–1384.
  • Sabry, T. (2008). Application of the UASB inoculated with flocculent and granular sludge in treating sewage at different hydraulic shock loads. Bioresour. Technol. 99, 4073–4077.
  • Sanchez, E.R., Borja, L., Travieso, A., Martin, M.F., and Colmenarejo. (2005). Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresour. Technol. 96, 335–344.
  • Sayed, S., Zeeuw, W, and Lettinga, G. (1984). Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. Agr. Wastes 11, 197–226.
  • Schiener, P., Nachaiyasit, S., and Stuckey, D.C. (1998). Production of soluble microbial products (SMP) in an anaerobic baffled reactor: Composition, biodegradability and the effect of process parameters. Environ. Technol. 19, 391–340.
  • Schmidt, J.E., and Ahring, B.K. (1993). Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59, 2546–2551.
  • Schmidt, J.E., and Ahring, B.K. (1995). Interspecies electron transfer during propionate and butyrate degradation in mesophilic granular sludge. Appl. Environ. Microbiol. 61, 2765–2767.
  • Sentürk, E., Ince, M., and Engin, G.O. (2012). The effect of transient loading on the performance of a mesophilic anaerobic contact reactor at constant feed strength. J. Biotechnol. 164, 232–237.
  • Senturk, E., Ince, M., and Engin, G.O. (2014). The effect of shock loading on the performance of a thermophilic anaerobic contact reactor at constant organic loading rate. J. Environ. Health Sci. Eng. 12(1), 84.
  • Souto, T.F., Aquino, S.F., Silva, S.Q., and Chernicharo, C.A. (2010). Influence of incubation conditions on the specific methanogenic activity test. Biodegradation 21(3), 411–424.
  • Spanjers, H., and Lier, J. (2006). Instrumentation in anaerobic treatment research and practice. Water Sci. Technol. 53(4–5), 63–76.
  • Speece, R.E., and McCarty, P.L. (1962). Nutrient requirements and biological solids accumulation in anaerobic systems. In 1st Internat. Conf. Water. Pollut. Res., London, 1–27.
  • Speece, R.E. (1996). Anaerobic biotechnology for industrial wastewaters. Nashville, TN: Archae Press.
  • Speece, R., Duran, M., Demirer, G., Zhang, H., and DiStefano, T. (1997). The role of process configuration in the performance of anaerobic systems. Water Sci. Technol. 36(6–7), 539–547.
  • Stams, A.J. M. (1994). Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66, 271–294.
  • Stams, A.J. M., and Dong, X. (1995). Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria. Antonie van Leeuwenhoek 68, 281–284.
  • Steinberg, L.M., and Regan, J.M. (2011). Response of lab-scale methanogenic reactors inoculated from different sources to organic loading rate shocks. Bioresour. Technol. 102 (19), 8790–8798.
  • Strong, G.E., and Ruwisch, R.C. (1995). An in situ dissolved-hydrogen probe for monitoring anaerobic digesters under overload conditions. Biotechnol. Bioeng. 45, 63–68.
  • Switzenbaum, M.S., and Danskin, S.C. (1982). Anaerobic expanded bed treatment of whey, Agr. Wastes 4(6), 411–426.
  • Takashima, M., and Speece, R.E. (1990). Mineral requirements for methane fermentation. Crit. Rev. Environ. Contr. 19, 465–479.
  • Tale, V.P., Maki, J.S., Struble, C.A., and Zitomer, D.H. (2011). Methanogen community structure-activity relationship and bioaugmentation of overloaded anaerobic digesters. Water Res. 45(16), 5249–5256.
  • Tale, V.P., Maki, J.S., and Zitomer, D.H. (2015). Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Res. 70, 138–147.
  • Therkelsen, H.H. (1976). Thermophilic anaerobic digestion of a strong complex substrate. Doctoral dissertation, University of Washington.
  • Thiele, J.H., and Zeikus, J.G. (1988). Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54, 20–29.
  • Van Lier, J.B., Grolle, K.C., Frijters, C.T., Stams, A.J., and Lettinga, G. (1993). Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures. Appl. Environ. Microbiol., 59(4), 1003–1011.
  • Van Lier, J.B., Mahmoud, N., and Zeeman, G. Anaerobic wastewater treatment. In: Henze M, van Loosdrecht M.C. M., Ekama, G.A., Brdjanovic D., Editors. Biological wastewater treatment: Principles modelling and design. London: IWA Publishing; 2008, 401–442.
  • Voolapalli, R.K., and Stuckey, D.C. (1998). Stability enhancement of anaerobic digestion through membrane gas extraction under organic shock loads. J. Chem. Tech. Biotechnol. 73, 153–161.
  • Voolapalli, R.K. (1999). Stability Enhancement of Anaerobic Digestion Through Intermediate Product Regulation. Doctoral dissertation. Dept. Chemical Engineering and Chemical Technology. London, Imperial College.
  • Voolapalli, R.K., and Stuckey, D.C. (1999). Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids. Appl. Environ. Microbiol. 65(11), 5009–5016.
  • Voolapalli, R.K., and Stuckey, D.C. (2001). Hydrogen production in anaerobic reactors during shock loads – influence of formate production and H2 kinetics. Water Res. 35(7), 1831–1841.
  • Warikoo, V., Meinerney, M.J., Robinson, J.A., and Suflita, J.M. (1996). Interspecies acetate transfer influences the extent of anaerobic benzoate degradation. Appl. Environ. Microbiol. 62, 26–32
  • Ward, A.J., Bruni, E., Lykkegaard, M.K., Feilberg, A., Adamsen, A.P., Jensen, A.P., and Poulsen, A.K. (2011). Real time monitoring of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass spectrometry. Bioresour. Technol. 102(5), 4098–4103
  • Witkowska, E., Buczkowska, A., Zamojska, A., Szewczyk, K.W., Ciosek, P. (2010). Monitoring of periodic anaerobic digestion with flow-through array of miniaturized ion-selective electrodes. Bioelectrochemistry. 80(1), 87–93.
  • Xing, J., Criddle, C., and Hickey, R. (1997). Effects of a long-term periodic substrate perturbation on an anaerobic community. Water Res. 31 (9), 2195–2204.
  • Yan, J.Q., Lo, K.V., and Liao, P.H. (1989). Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor. Biol. Waste 27 (1989) 289–305.
  • Yuzir, A., Chelliapan, S., and Sallis, P.J. (2011). Influence of step increases in hydraulic retention time on (RS)-MCPP degradation using an anaerobic membrane bioreactor. Bioresour. Technol. 102 (2011) 9456–9461.
  • Zaiat, M., Vieira, L.G. T., and Foresti, E. (1996). Liquid-phase mass transfer in fixed-bed of polyurethane foam matrices containing immobilized anaerobic sludge. Biotechnol. Tech. 10(2), 121–126.
  • Zehnder, A.J. (1988). Biology of anaerobic microorganisms. New York: Wiley-Liss.
  • Zhao, H., Li, J., Li, J., Yuan, X., Piao, R., Zhu, W., Li, H., Xiaofen, W., and Cui, Z. (2013). Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors. Bioresour. Technol. 140, 211–219.
  • Zhang, D., Li, J., Guo, P., Li, P., Suo, Y., Wang, X., and Cui, Z. (2011). Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioresour. Technol. 102(7), 4703–4711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.