606
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

The Application of Low-Intensity Ultrasound Irradiation in Biological Wastewater Treatment: A Review

&
Pages 2728-2761 | Published online: 25 Aug 2015

REFERENCES

  • Akhurst, D.J., Jones, G.B., Clark, M., and McConchie, D. (2006). Phosphate removal from aqueous solutions using neutralized bauxite refinery residues (Baux-solTM0). Environ. Chem. 3, 65–74.
  • Barton, S., Bullock, C., and Weir, D. (1996). The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance. Enzyme. Microb. Technol. 18, 190–194.
  • Bien, J.B., Kempa, E.S., and Bien, J.D. (1997). Influence of ultrasonic field on structure and parameters of sewage sludge for dewatering process. Water Sci. Technol. 36, 287–291.
  • Bochu, W., Lanchun, S., Jing, Z., Yuanyuan, Y., and Yanhong, Y. (2003). The influence of Ca2+ on the proliferation of S. cerevisiae and low ultrasonic on the concentration of Ca2+ in the S. cerevisiae cells. Colloids Surf. B Biointerfaces 32, 35–42.
  • Bougrier, C., Carrère, H., and Delgenès, J.P. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106, 163–169.
  • Braguglia, C.M., Gagliano, M.C., and Rossetti, S. (2012). High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresour. Technol. 110, 43–49.
  • Chang, J.H., Ellis, A.V., Yan, C.T., and Tung, C.H. (2009). The electrochemical phenomena and kinetics of EDTA–copper wastewater reclamation by electrodeposition and ultrasound. Sep. Purif. Technol. 68, 216–221.
  • Chisti, Y. (2003). Sonobioreactors: using ultrasound for enhanced microbial productivity.Trends Biotechnol. 21, 89–93.
  • Cho, S.K., Hwang, Y.H., Kim, D.H., Jeong, I.S., Shin, H.S., and Oh, S.E. (2013). Low strength ultrasonication positively affects the methanogenic granules toward higher AD performance. Part I: physico-chemical characteristics. Bioresour. Technol. 136, 66–72.
  • Cho, S.K., Kim, D.H., Jeong, I.S., Shin, H.S., and Oh, S.E. (2013). Application of low-strength ultrasonication to the continuous anaerobic digestion processes: UASBr and dry digester. Bioresour. Technol. 141, 167–173.
  • Cho, S.K., Kim, D.H., Kim, M.H., Shin, H.S., and Oh, S.E. (2012). Enhanced activity of methanogenic granules by low-strength ultrasonication. Bioresour. Technol. 120, 84–88.
  • Chu, C., Chang, B., Liao, G., Jean, D., and Lee, D. (2001). Observation on changes in ultrasonically treated waste-activated sludge. Water Res. 35, 1038–1046.
  • Coats, E.R., Mockos, A., and Loge, F.J. (2011). Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal. Bioresour. Technol. 102, 1019–1027.
  • Dai, C.Y., Wang, B.C., Duan, C.R., and Sakanishi, A. (2003). Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii. Colloids Surf. B Biointerfaces 30, 37–41.
  • Dai, C.Y., Wang, B.C., Zhou, H., He, C.L., Duan, C.R., Liu WQ, Toyamab, Y., and Sakanishib, A. (2004). Effect of low frequency ultrasonic stimulation on the secretion of siboflavin produced by Ecemothecium ashbyii. Colloids Surf. B Biointerfaces 34, 7–11.
  • Debik, E., and Manav, N. (2010). Sequence optimization in a sequencing batch reactor for biological nutrient removal from domestic wastewater. Biopro. Biosyst. Eng. 33, 533–540.
  • Dewila, R., Baeyens, J., and Goutvrind, R. (2006). The use of ultrasonics in the treatment of waste activated sludge. Chinese J. Chem. Eng. 14, 105–113.
  • Ding, W.C., Long, T.R., Zeng, X.L., and Xu, L. (2006). Low intensity ultrasonic treatment to enhance aerobic digestion of excess sludge. China Water Wastewater 22, 88–91.
  • Duan, X.M., Zhou, J.T., Qiao, S., and Wei, H.F. (2011). Application of low intensity ultrasound to enhance the activity of anammox microbial consortium for nitrogen removal. Bioresour. Technol. 102, 4290–4293.
  • Elbeshbishy, E., Hafez, H., and Nakhla, G. (2011b). Ultrasonication for biohydrogen production from food waste. Int. J. Hydrogen Energy 36, 2896–2903.
  • Farooq, R., Rehman, F., Baig, S., Sadique, M., Khan, S., Farooq, U., Rehman, A., Farooq, A., Pervez, A., Hassan Mukhtar-ul and Shaukat, S.F. (2009). The effect of ultrasound irradiation on the anaerobic digestion of activated sludge. World Appl. Sci. J. 6, 234–237.
  • Foladori, P., Laura, B., Gianni, A., and Giuliano, Z. (2007). Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry -Fecal indicators, wastewater and activated sludge. Water Res. 41, 235–243.
  • Ge, S.J., Peng, Y.Z., Wang, S.Y., Guo, J.H., Ma, B., Zhang, L., and Gao, X. (2010). Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresour. Technol. 102, 9012–9019.
  • Gogate, P.R., and Kabadi, A.M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J. 44, 60–72.
  • Gong, C.P., Li, M., and Wang, Y. (2012). Effect of on-line ultrasound on the characteristics of activity sludge mixed liquor in a fluidized bed membrane bioreactor. J. Environ. Eng. Sci. 6, 311–315.
  • Gonze, E., Pillot, S., Valette, E., Gonthier, Y., and Bernis, A. (2003). Ultrasonic treatment of an aerobic activated sludge in a batch reactor. Chem. Eng. Process. 42, 965–975.
  • Gronroos, A., Kyllonen, H., Korpijarvi, K., Pirkonen, P., Paavola, T., Jokela, J., and Rintala, J. (2005). Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrason. Sonochem. 12, 115–120.
  • Guo, Y.P., Kim, S.H., Sung, S.H., and Lee, P.H. (2010). Effect of ultrasonic treatment of digestion sludge on bio-hydrogen production from sucrose by anaerobic fermentation. Int. J. Hydrogen Energy 35, 3450–3455.
  • Huan, L., Jin, Y.Y., Bux, Mahar, R.B., Wang, Z.Y., and Nie, Y.F. (2009). Effects of ultrasonic disintegration on sludge microbial activity and dewater ability. J Hazard. Mater. 161, 1421–1426.
  • Ji, G.D., Zhai, F.M., Wang, R.J., and Ni, J.R. (2010). Sludge granulation and performance of a low superficial gas velocity sequencing batch reactor (SBR) in the treatment of prepared sanitary wastewater. Bioresour. Technol. 102, 9058–9064.
  • Jin, R.C., Yang, G.F., Yu, J.J., and Zheng, P. (2012). The inhibition of the Anammox process: A review. Chem. Eng. J. 197, 67–79.
  • Jin, R.C., Yang, G.F., Zhang, Q.Q., Ma, C., Yu, J.J., and Xing, B.S. (2013a). The effect of sulfide inhibition on the ANAMMOX process. Water Res. 47, 1459–1469.
  • Jin, R.C., Zhang, Q.Q., Yang, G.F., Xing, B.S., Ji, Y.X., and Chen, H. (2013b). Evaluating the recovery performance of the ANAMMOX process following inhibition by phenol and sulfide. Bioresour. Technol. 142, 162–170.
  • Jin, R.F., Liu, G.F,, Li, C.L., Xu, R.J., Li, H.Y., Zhang, L.X., and Zhou, J.T. (2013). Effects of carbon-nitrogen ratio on nitrogen removal in a sequencing batch reactor enhanced with low-intensity ultrasound. Bioresour. Technol. 148, 128–134.
  • Keen, G.A., and Prosser, J.I. (1987). Steady state and transient growth of autotrophic nitrifying bacteria. Arch. Microbiol. 147, 73–79.
  • Kim, D.H., Jeong, E., Oh, S.E., and Shin, H.S. (2010). Combined (alkaline+ultrasound) pretreatment effect on sewage sludge disintegration. Water Res. 4, 3093–3100.
  • Kim, Y., and Lee, J. (2005). Effect of ultrasound on methanogenic activity of anaerobic granules. Jpn. J. Appl. Phys. 44, 8259–8261.
  • Kwiatkowska, B., Bennett, J., Akunna, J., Walker, G.M., and Bremner, D.H. (2011). Stimulation of bioprocesses by ultrasound. Biotechnol. Adv. 29, 768–780.
  • Laurent, J., Casellas, M., Pons, M.N., and Dagot, C. (2009). Flocs surface functionality assessment of sonicated activated sludge in relation with physico-chemical properties. Ultrason. Sonochem. 16, 488–494.
  • Lin, L.D., and Wu, J.Y. (2002). Enhancement of shikonin production in single and two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound. Biotechnol. Bioeng. 78, 81–88.
  • Liu, C., Xiao, B., Dauta, A., Peng, G.F., Liu, S.M., and Hu, Z.Q. (2009). Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge. Bioresour. Technol. 100, 6217–6222.
  • Liu, H., He, Y.H., Quan, X.C., Yan, Y.X., Kong, X.H., and Lia, A.J. (2005a). Enhancement of organic pollutant biodegradation by ultrasound irradiation in a biological activated carbon membrane reactor. Process Biochem. 40, 3002–3007.
  • Liu, H., He, Y.H., Zhang, L.S., and Ouyang, W. (2004). Organic pollutants biodegradation in micro-polluted water enhanced by ultrasonic. Environ. Sci. Technol. 25, 57–60.
  • Liu, H., and Yan, Y.X. (2008). Enhancement effect of low intensity ultrasound on biological wastewater treatment system in low temperature and design of application on biological wastewater treatment. Environ. Sci. Technol. 29, 721–725.
  • Liu, H., Yan, Y.X., Wang, W.Y., and Yu, Y.Y. (2005b). Improvement of the activity of activated sludge by low intensity ultrasound. Environ. Sci. Technol. 26, 124–128.
  • Liu, H., Yan, Y.X., Wang, W.Y., and Yu, Y.Y. (2007). Low-intensity ultrasound stimilateds biological activity of aerobic activated sludge. Front Environ. Sci. Eng. China. 1, 67–72.
  • Liu, S.T., and Yang, F.L. (2009). The enhancement by electrical/magnetic field and multi-species coupling of anammox technology for autotrophic nitrogen removal. PhD thesis, Dalian University of Technology, China.
  • Liu, S.T., Yang, F.L., Meng, F.G., Chen, H.H., and Gong, Z. (2008). Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. J. Biotechnol. 138, 96–102.
  • Liu, Y.Y., Takatsuki, H., Yoshikoshi, A., Wang, B.C., and Sakanishi, A. (2003). Effects of ultrasound on the growth and vacuolar H+-ATPase activity of aloe arborescens callus cells. Colloid Surf. B Biointerfaces 32, 105–116.
  • Lu, H.B., Qin, L., Lee, K., Cheung, W., Chan, K., and Leung, K. (2009). Identification of genes responsive to low-intensity pulsed ultrasound stimulations. Biochem. Biophys. Res. Co. 378, 569–573.
  • Mata-Alvarez, J., Macé, S., and Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74, 3–16.
  • Matsuura, K., Hirotsune, M., Nuokawa, Y., Satoh, M., and Honda, K. (1994). Acceleration of cell growth and ester formation by ultrasonic wave irradiation. J. Biosci. Bioeng. 1, 36–40.
  • Mohammadi, A.R., Mehrdadi, N., Bidhendi, G.N., and Torabian, A. (2011). Excess sludge reduction using ultrasonic waves in biological wastewater treatment. Desalination 275, 67–73.
  • Neis, U., Nickel, K., and Tiehm, A. (2001). Ultrasonic disintegration of sewage sludge for enhanced anaerobic biodegradation. Adv. Sonochem. 6, 59–90.
  • Neyens, E., Baeyens, J., Dewil, R., and De heyder, B. (2004). Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 106, 83–92.
  • Nickel, K., and Neis, U. (2007). Ultrasonic disintegration of biosolids for improved biodegradation. Ultrason. Sonochem. 14, 450–455.
  • Onyeche, T.I., Schläfer, O., Bormann, H., Schröder, C., and Sievers, M. (2002). Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics 40, 31–35.
  • Özbek, B., and Ülgen, K.Ö. (2000). The stability of enzymes after sonication. Process Biochem. 35, 1037–1043.
  • Peeters, B., Dewil, R., Lechat, D., and Smets, I.Y. (2011). Quantification of the exchangeable calcium in activated sludge flocs and its implication to sludge settleability. Sep. Purif. Technol. 83, 1–8.
  • Pérez-Elvira, S.I., Ferreira, L.C., Donoso-Bravo, A., Fdz-Polanco, M., and Fdz-Polanco, F. (2010). Full-stream and part-stream ultrasound treatment effect on sludge anaerobic digestion. Water Sci. Technol. 61, 1363–1372.
  • Pham, T.T. H., Brar, S.K., Tyagia, R.D., and Surampalli, R.Y. (2009). Ultrasonication of wastewater sludge-consequences on biodegradability and flowability. J. Hazard. Mater. 163, 891–898.
  • Pilli, S., Bhunia, P., Yan, S., LeBlanc, R.J., Tyagi, R.D., and Surampalli, R.Y. (2011). Ultrasonic pretreatment of sludge: a review. Ultrason. Sonochem. 18, 1–18.
  • Pitt, W.G., and Ross, S.A. (2003). Ultrasound increases the rate of bacterial cell growth. Biotechnol. Progr. 19, 1038–1044.
  • Rai, C.L., Struenkmann, G., Mueller, J., and Rao, P.G. (2004). Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry. Environ. Sci. Technol. 38, 5779–5785.
  • Rodriguez, D.C., Pino, N., and Penuela, G. (2011). Monitoring the removal of nitrogen by applying a nitrification–denitrification process in a sequencing batch reactor (SBR). Bioresour. Technol. 102, 2316–2321.
  • Rokhina, E.K., Lens, P., and Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol. 27, 298–306.
  • Sangave, P.C., and Pandit, A.B. (2004). Ultrasound pre-treatment for enhanced biodegradability of the distillery wastewater. Ultrason. Sonochem. 11, 197–203.
  • Schläfer, O., Onyeche, T., Bormann, H., Schläfer, C., and Sievers, M. (2002). Ultrasound stimulation of micro-organism for enhanced biodegradation. Ultrasonics 40, 25–29.
  • Schläfer, O., Sievers, M., Klotzbücher, H., and Onyeche, T.I. (2000). Improvement of biological activity by low energy ultrasound assisted bioreactors. Ultrasonics 38, 711–716.
  • Sears, K.J., Alleman, J.E., and Gong, W.L. (2005). Feasibility of using ultrasonic irradiation to recover active biomass from waste activated sludge. J. Biotechnol. 119, 389–399.
  • Shi, L.C., Wang, B.C., Zhu, L.C., Liu, J., Yang, Y.H., and Duan, C.R. (2003). The influence of low-intensity ultrasonic on some physiological characteristics of Saccharomyces cerevisiae. Colloids Surf. B Biointerfaces 30, 61–66.
  • Shi, Y.J., Wang, X.H., Yu, H.B., Xie, H.J., Teng, S.X., Sun, X.F., Tian, H.B., and Wang, S.G. (2011). Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide. Bioresour. Technol. 102, 2536–2541.
  • Show, K.Y., Mao, T., and Lee, D.J. (2007). Optimization of sludge disruption by sonication. Water Res. 41, 4741–4747.
  • Sinisterra, J.V. (1992). Application of ultrasound to biotechnology: An overview. Ultrasonics 3, 180–185.
  • Steinbach, W.J., and Shetty, A.K. (2001). Use of the diagnostic bacteriology laboratory: a practical review for the clinician. Postgrad. Med. J. 77, 148–156.
  • Tan, Y.F., and Ji, G.D. (2010). Bacterial community structure and dominant bacteria in activated sludge from a 70°C ultrasound-enhanced anaerobic reactor for treating carbazole-containing wastewater. Bioresour. Technol. 101, 174–180.
  • Tiehm, A., Nickel, K., and Nies, U. (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci. Technol. 36, 121–128.
  • Tiehm, A., Nickel, K., Zellhorn, M., and Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 35, 2003–2009.
  • Tyagi, V.K., Lo, S.L., Appels, L., and Dewi, R. (2014). Ultrasonic treatment of waste sludge: a review on mechanisms and applications. Crit. Rev. Environ. Sci. Technol. 11, 1220–1288.
  • U.S. Environmental Protection Agency. (2010). Local limits development guidance. EPA/833/R-04/002A. Washington, DC: EPA.
  • Van Hulle, S.W. H., Vandeweyer, H.J. P., Meesschaert, B.D., Vanrolleghem, P.A., Dejans, P., and Dumoulin, A. (2010). Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem. Eng. J. 162, 1–20.
  • Wang, F., Lu, S., and Ji, M. (2006). Components of released liquid from ultrasonic waste activated sludge disintegration. Ultrason. Sonochem. 13, 334–338.
  • Wang, Q., Kuninobu, M., Kakimoto, K., Ogawa, H.I., and Kato, Y. (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresour. Technol. 68, 309–313.
  • Wang, S.L., Wu, X.H., Wang, Y.S., Li, Q.F., and Tao, M.J.(2008). Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound. Ultrason. Sonochem. 15, 933–937.
  • Wang, X.X., Qiu, Z.F., Lu, S.G., and Ying, W.C. (2010). Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge. J. Hazard. Mater. 176, 35–40.
  • Xia, S.Q., Li, J.Y., and Wang, R.C. (2008). Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier bio-film reactor. Ecol. Eng. 32, 256–262.
  • Xie, B., and Liu, H. (2010). Enhancement of biological nitrogen removal from wastewater by low-intensity ultrasound. Water Air Soil Pollut. 211, 157–163.
  • Xie, B.Z., Liu, H., and Yan, Y.X. (2009). Improvement of the activity of anaerobic sludge by low-intensity ultrasound. J. Environ. Manage. 90, 260–264.
  • Xie, B.Z., Wang, L., and Liu, H. (2008). Using low intensity ultrasound to improve the efficiency of biological phosphorus removal. Ultrason. Sonochem. 15, 775–781.
  • Xie, F.C., Cai, T.T., Ma, Y., Li, H.Y., Li, C.C., Huang, Z.Y., and Yuan, G.Q. (2009). Recovery of Cu and Fe from printed circuit board waste sludge by ultrasound: Evaluation of industrial application. J. Clean. Prod. 17, 1494–1498.
  • Xu, M.L., Wen, X.H., Yu, Z.Y., Li, Y.S., and Huang, X. (2011). A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge. Bioresour. Technol. 102, 5617–5625.
  • Yachmenev, V., Condon, B., Klasson, T., and Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased. Mater. Bio. 3, 25–31.
  • Yan, Y.X., Liu, H., Zhang, S.L., and Xie, B.Z. (2006). Treatment of domestic wastewater using sequence batch reactor enhanced by low intensity ultrasound. Environ. Sci. Technol. 27, 1596–1602.
  • Yan, Y.X., and Liu, H. (2006). Optimization of the proportion of irradiated sludge for enhancement of sludge activity in biological treatment of waste water by low intensity ultrasound. Environ. Sci. Technol. 27, 903–908.
  • Yang, G.F., Guo, X.L., Chen, S.X., Liu, J.H., Guo, L.X., and Jin, R.C. (2013a). The evolution of Anammox performance and granular sludge characteristics under the stress of phenol. Bioresour. Technol. 137, 332–339.
  • Yang, G.F., and Jin, R.C. (2012). The joint inhibitory effects of phenol, copper (II), oxytetracycline (OTC) and sulfide on Anammox activity. Bioresour. Technol. 126, 187–192.
  • Yang, G.F., Ni, W.M., Wu, K., Wang, H., Yang, B.E., Jia, X.Y., and Jin, R.C. (2013b). The effect of Cu(II) stress on the activity, performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process. Chem. Eng. J. 226, 39–45.
  • Yang, G.F., Zhang, Q.Q., and Jin, R.C. (2013c). Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline (OTC) stress. Bioresour. Technol. 129, 65–71.
  • Yasuda, K., Kato, D., Xu, Z., Sakka, M., and Sakka, K. (2010). Effect of ultrasonic frequency on enzymatic hydrolysis of cellulose. Jpn. J. Appl. Phys. 49, 07–08.
  • Yoon, S., Kim, H., and Lee, S. (2004). Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production. Process Biochem. 39, 1923–1929.
  • Yu, G.H., He, P.J., Shao, L.M., and Zhu, Y.S. (2009). Enzyme extraction by ultrasound from sludge flocs. J. Environ. Sci. 21, 204–210.
  • Yu, G.H., He, P.J., Shao, L.M., and Zhu, Y.S. (2008). Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water Res. 42, 1925–1934.
  • Yu, J.J., Chen, H., Zhang, J., Ji, Y.X., Liu, Q.Z., and Jin, R.C. (2013). Enhancement of ANAMMOX activity by low-intensity ultrasound irradiation at ambient temperature. Bioresour. Technol. 142, 693–696.
  • Zeng, X.L., Long, T.R., Ding, W.C., Xu, L., and Zou, L. (2006). Improvement of biological activity of aerobic sludge by low energy ultrasonic irradiation. China Water Wastewater 22, 88–91.
  • Zhang, G., He, J., Zhang, P., and Zhang, J. (2009). Ultrasonic reduction of excess sludge from activated sludge system. II: Urban sewage treatment. J. Hazard. Mater. 164, 1105–1109.
  • Zhang, G., Zhang, P., Gao, J., and Chen, Y. (2008). Using acoustic cavitation to improve the bio-activity of activated sludge. Bioresour. Technol. 99, 1497–1502.
  • Zhang, G., Zhang, P., Yang, J., and Chen, Y. (2007). Ultrasonic reduction of excess sludge from the activated sludge system. J. Hazard. Mater. 145, 515–519.
  • Zhang, P.Y,.M. Zhang, G.M., and Wang, W. (2007). Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresour. Technol. 98, 207–210.
  • Zhang, Q.Q., Chen, H., Liu, J.H., Yang, B.E., Ni, W.M., and Jin, R.C. (2014). The robustness of ANAMMOX process under the transient oxytetracycline (OTC) shock. Bioresour. Technol. 153, 39–46.
  • Zhang, Q.Q., Yang, G.F., Wang, H., Wu, K., Jin, R.C., and Zheng, P. (2013). Estimating the recovery of ANAMMOX performance from inhibition by copper (II) and oxytetracycline (OTC). Sep. Purif. Technol. 113, 90–103.
  • Zhang, R.N., Jin, R.F., Liu, G.F., Zhou, J.T., and Li, C.L. (2011). Study on nitrogen removal performance of sequencing batch reactor enhanced by low intensity ultrasound. Bioresour. Technol. 102, 5717–5721.
  • Zheng, M., Liu, Y.C., Xu, K.N., Wang, C.W., He, H., Zhu, W., and Dong, Q. (2013). Use of low frequency and density ultrasound to stimulate partial nitrification and simultaneous nitrification and denitrification. Bioresour. Technol. 146, 537–542.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.