1,102
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Measuring nitrification inhibition by metals in wastewater treatment systems: Current state of science and fundamental research needs

, , , &
Pages 249-289 | Published online: 15 Oct 2015

References

  • Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K., and Chandran, K. (2010). N2O emissions from activated sludge processes, 2008–2009: results of a national monitoring survey in the United States. Environmental Science and Technology 44, 4505–4511.
  • Ahn, J. H., Kwan, T., and Chandran, K. (2011). Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: microbial ecology through nitrous oxide production. Environmental Science and Technology 45, 2734–2740.
  • Ahn, J. H., Yu, R., and Chandran, K. (2008). Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor. Biotechnology and Bioengineering 100, 1078–1087.
  • Anderson, J., Semprini, L., and Radniecki, T. S. (2014). The influence of water hardness on silver ion and silver nanoparticle fate and toxicity toward Nitrosomonas europaea. Environmental Engineering Science 31, 403–409.
  • Anthony, R. M., and Breimhurst, L. H. (1981). Determining maximum influent concentrations of priority pollutants for treatment plants. Journal of the Water Pollution Control Federation 53, 1457–1468.
  • Arvin, E., Dyreborg, S., Menck, C., and Olsen, J. (1994). A mini-nitrification test for toxicity screening, minntox. Water Research 28, 2029–2031.
  • Ballinger, S., Head, I., Curtis, T., and Godley, A. (2002). The effect of C/N ratio on ammonia oxidising bacteria community structure in a laboratory nitrification-denitrification reactor. Water Science and Technology 46, 543–550.
  • Barnes, D., and Bliss, P. J. (1983). Biological control of nitrogen in wastewater treatment. New York, NY: E. & F. N. Spon.
  • Beg, S. A., and Hassan, M. M. (1987). Effects of inhibitors on nitrification in a packed-bed biological flow reactor. Water Research 21, 191–198.
  • Beg, S. A., Hassan, M. M., and Chaudhry, M. A. S. (1998). Chromium (VI) inhibition in multi-substrate carbon oxidation and nitrification process in an upflow packed bed biofilm reactor. Biochemical Engineering Journal 1, 143–152.
  • Bissett, A., Brown, M. V., Siciliano, S. D., and Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: toward a systems approach. Ecology Letters 16, 128–139.
  • Blackburne, R., Vadivelu, V. M., Yuan, Z., and Keller, J. (2007). Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research 41, 3033–3042.
  • Blum, D. J. W., and Speece, R. E. (1991). A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. Research Journal of the Water Pollution Control Federation 63, 198–207.
  • Bollmann, A., Schmidt, I., Saunders, A. M., and Nicolaisen, M. H. (2005). Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Applied and Environmental Microbiology 71, 1276–1282.
  • Boon, N., Windt, W., Verstraete, W., and Top, E. M. (2002). Evaluation of nested PCR–DGGE (denaturing gradient gel electrophoresis) with group‐specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiology Ecology 39, 101–112.
  • Braam, F., and Klapwijk, A. (1981). Effect of copper on nitrification in activated-sludge. Water Research 15, 1093–1098.
  • Burgess, J. E., Quarmby, J., and Stephenson, T. (1999). Role of micronutrients in activated sludge-based biotreatment of industrial effluents. Biotechnology Advances 17, 49–70.
  • Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier and D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). New York, NY: Wiley.
  • Campos, J. L., Mosquera-Corral, A., Sanchez, M., Méndez, R., and Lema, J. M. (2002). Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. Water Research 36, 2555–2560.
  • Çeçen, F., Semerci, N., and Geyik, A. G. (2010a). Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge. Journal of Hazardous Materials 178, 619–627.
  • Çeçen, F., Semerci, N., and Geyik, A. G. (2010b). Inhibitory effects of Cu, Zn, Ni and Co on nitrification and relevance of speciation. Journal of Chemical Technology and Biotechnology 85, 520–528.
  • Cenci, G., and Morozzi, G. (1979). The validity of the TTC-test for dehydrogenase activity of activated sludges in the presence of chemical inhibitors. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe B: Hygiene, Betriebshygiene, Praventive Medizin 169, 320–330.
  • Chandran, K. (1999). Biokinetic characterization of ammonium and nitrite oxidation by a mixed nitrifying culture using extant respirometry. Doctoral dissertation, University of Connecticut.
  • Chandran, K., and Love, N. G. (2008). Physiological state, growth mode, and oxidative stress play a role in Cd (II)-mediated inhibition of Nitrosomonas europaea 19718. Applied and Environmental Microbiology 74, 2447–2453.
  • Chandran, K., and Smets, B. F. (2000). Single‐step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. Biotechnology and Bioengineering 68, 396–406.
  • Chandran, K., and Smets, B. F. (2001). Estimating biomass yield coefficients for autotrophic ammonia and nitrite oxidation from batch respirograms. Water Research 35, 3153–3156.
  • Chandran, K., and Smets, B. F. (2005). Optimizing experimental design to estimate ammonia and nitrite oxidation biokinetic parameters from batch respirograms. Water Research 39, 4969–4978.
  • Chandran, K., Stein, L. Y., Klotz, M. G., and van Loosdrecht, M. C. (2011). Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions 39, 1832.
  • Choi, O. K., Clevenger, T. E., Deng, B., Surampalli, R. Y., Ross, L. Jr., and Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research 43, 1879–86.
  • Choi, O. K., Deng, K., Kim, N. J., Ross, L., and Hu, Z. Q. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 42, 3066–3074.
  • Daims, H., Purkhold, U., Bjerrum, L., Arnold, E., Wilderer, P., and Wagner, M. (2001). Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Science and Technology 43, 9–18.
  • Dalzell, D. J. B., Alte, S., Aspichueta, E., de la Sota, A., Etxebarria, J., Gutierrez, M., Hoffmann, C. C., Sales, D., Obst, U., and Christofi, N. (2002). A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere 47, 535–545.
  • Dionisi, H. M., Layton, A. C., Harms, G., Gregory, I. R., Robinson, K. G., and Sayler, G. S. (2002). Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Applied and Environmental Microbiology 68, 245–253.
  • Dyreborg, S., and Arvin, E. (1995). Inhibition of nitrification by creosote-contaminated water. Water Research 29, 1603–1606.
  • Ellis, T. G., Barbeau, D. S., Smets, B. F., and Grady, C. P. L. (1996). Respirometric technique for determination of extant kinetic parameters describing biodegradation. Water Environment Research 68, 917–926.
  • Elnabarawy, M. T., Robideau, R. R., and Beach, S. A. (1988). Comparison of three rapid toxicity test procedures: Microtox, polytox, and activated sludge respiration inhibition. Toxicity Assessment 3, 361–370.
  • Francis, C. A., Beman, J. M., and Kuypers, M. M. (2007). New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME Journal 1, 19–27.
  • Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B. (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences 102, 14683–14688.
  • Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W., and DeLong, E. F. (2008). Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences 105, 3805–3810.
  • Fukushima, T., Whang, L. M., Lee, Y. C., Putri, D. W., Chen, P. C., and Wu, Y. J. (2014). Transcriptional responses of bacterial amoA gene to dimethyl sulfide inhibition in complex microbial communities. Bioresource Technology, 165, 137–144.
  • Fulladosa, E., Murat, J. C., and Villaescusa, I. (2005). Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target. Chemosphere 58, 551–557.
  • Geets, J., De Cooman, M., Wittebolle, L., Heylen, K., Vanparys, B., De Vos, P., Verstraete, W., and Boon, N. (2007). Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology 75, 211–221.
  • Gernaey, K., Verschuere, L., Luyten, L., and Verstraete, W. (1997). Fast and sensitive acute toxicity detection with an enrichment nitrifying culture. Water Environment Research 69, 1163–1169.
  • Gilmore, K. R., Husovitz, K. J., Holst, T., and Love, N. G. (1999). Influence of organic and ammonia loading on nitrifier activity and nitrification performance for a two-stage biological aerated filter system. Water Science and Technology 39, 227–234.
  • Ginestet, P., Audic, J. M., Urbain, V., and Block, J. C. (1998). Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide. Applied and Environmental Microbiology 64, 2266–2268.
  • Gitipour, A., El Badawy, A., Arambewela, M., Miller, B., Scheckel, K., Elk, M., Santo Domingo, J. W., Thiel, S., and Tolaymat, T. (2013). The impact of silver nanoparticles on the composting of municipal solid waste. Environmental Science and Technology 47, 14385–14393.
  • Grady, C. L., Smets, B. F., and Barbeau, D. S. (1996). Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology. Water Research 30, 742–748.
  • Groeneweg, J., Sellner, B., and Tappe, W. (1994). Ammonia oxidation in nitrosomonas at NH3 concentrations near km. Effects of pH and temperature. Water Research 28, 2561–2566.
  • Grunditz, C., Gumaelius, L., and Dalhammar, G. (1998). Comparison of inhibition assays using nitrogen removing bacteria: Application to industrial wastewater. Water Research 32, 2995–3000.
  • Grunditz, C., and Dalhammar, G. (2001). Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Research 35, 433–440.
  • Gruttner, H., Winthernielsen, M., Jorgensen, L., Bogebjerg, P., and Sinkjaer, O. (1994). Inhibition of the nitrification process in municipal wastewater treatment plants by industrial discharges. Water Science and Technology 29, 69–77.
  • Gutierrez, M., Etxebarria, J., and de las Fuentes, L. (2002). Evaluation of wastewater toxicity: comparative study between Microtox (R) and activated sludge oxygen uptake inhibition. Water Research 36, 919–924.
  • Hall, E. R., and Murphy, K. L. (1985). Sludge age and substrate effects on nitrification kinetics. Journal of the Water Pollution Control Federation 57, 13–418.
  • Hall, S., Hugenholtz, P., Siyambalapitiya, N., Keller, J., and Blackall, L. (2002). The development and use of real-time PCR for the quantification of nitrifiers in activated sludge. Microorganisms in Activated Sludge and Biofilm Processes III 46, 267–272.
  • Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K., Richardson, P. M., and DeLong, E. F. (2006). Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biology 4, e95.
  • Han, K., and Levenspiel, O. (1988). Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnology and Bioengineering 32, 430–447.
  • Harms, G., Layton, A. C., Dionisi, H. M., Gregory, I. R., Garrett, V. M., Hawkins, S. A., Robinson, K. G., and Sayler, G. S. (2003). Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental Science and Technology 37, 343–351.
  • Harper, S. C., Manoharan, R., Mavinic, D. S., and Randall, C. W. (1996). Chromium and nickel toxicity during the biotreatment of high ammonia landfill leachate. Water Environment Research 68, 19–24.
  • Hartmann, L., and Laubenberger, G. (1968). Toxicity measurements in activated sludge. J San Eng Division 94, 257–270.
  • Hockenbury, M. R., and Grady, C. P. L. Jr.. (1977). Inhibition of nitrification: Effects of selected organic compounds. Journal of the Water Pollution Control Federation 49, 768–777.
  • Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C. (1995). Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters 132, 203–208.
  • Hong, S., Choi, I., Lim, B. J., and Kim, H. (2012). A DO- and pH-based early warning system of nitrification inhibition for biological nitrogen removal processes. Sensors 12, 16334–16352.
  • Hu, Z. Q., Chandran, K., Grasso, D., and Smets, B. F. (2002). Effect of nickel and cadmium speciation on nitrification inhibition. Environmental Science and Technology 36, 3074–3078.
  • Hu, Z. Q., Chandran, K., Grasso, D., and Smets, B. F. (2003). Impact of metal sorption and internalization on nitrification inhibition. Environmental Science and Technology 37, 728–734.
  • Hu, Z. Q., Chandran, K., Grasso, D., and Smets, B. F. (2004). Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Research 38, 3949–3959.
  • Insel, G., Karahan, O., Özdemir, S., Pala, L., Katipoglu, T., Cokgör, E. U., and Orhon, D. (2006). Unified basis for the respirometric evaluation of inhibition for activated sludge. Journal of Environmental Science and Health Part A 41, 1763–1780.
  • International Organization for Standardization. (2006). Water quality: Toxicity test for assessing the inhibition of nitrification of activated sludge microorganisms. ISO 9509:2006.
  • Joss, A., Derlon, N., Cyprien, C., Burger, S., Szivak, I., Traber, J., Siegrist, H., and Morgenroth, E. (2011). Combined nitritation–anammox: advances in understanding process stability. Environmental Science and Technology 45, 9735–9742.
  • Juliastuti, S. R., Baeyens, J., and Creemers, C. (2003a). Inhibition of nitrification by heavy metals and organic compounds: The ISO 9509 test. Environmental Engineering Science 20, 79–90.
  • Juliastuti, S. R., Baeyens, J., Creemers, C., Bixio, D., and Lodewyckx, E. (2003b). The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge. Journal of Hazardous Materials 100, 271–283.
  • Kapoor, V., Pitkänen, T., Ryu, H., Elk, M., Wendell, D., and Santo Domingo, J. W. (2015). Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA-and DNA-based quantitative PCR assays. Applied and Environmental Microbiology 81, 91–99.
  • Keener, W. K., and Arp, D. J. (1993). Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Applied and Environmental Microbiology 59, 2501–2510.
  • Keinänen-Toivola, M. M., Revetta, R. P., and Santo Domingo, J. W. (2006). Identification of active bacterial communities in a model drinking water biofilm system using 16S rRNA‐based clone libraries. FEMS Microbiology Letters 257, 182–188.
  • Kelly, J. J., Siripong, S., McCormack, J., Janus, L. R., Urakawa, H., El Fantroussi, S., Noble, P. A., Sappelsa, L., Rittmann, B. E., and Stahl, D. A. (2005). DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples. Water Research 39, 3229–3238.
  • Kelly, R. T. II, Henriques, I. D., and Love, N. G. (2004). Chemical inhibition of nitrification in activated sludge. Biotechnology and Bioengineering 85, 683–694.
  • Kim, K. T., Kim, I. S., Hwang, S. H., and Kim, S. D. (2006). Estimating the combined effects of copper and phenol to nitrifying bacteria in wastewater treatment plants. Water Research 40, 561–568.
  • Kim, Y. M., Cho, H. U., Lee, D. S., Park, D., and Park, J. M. (2011). Comparative study of free cyanide inhibition on nitrification and denitrification in batch and continuous flow systems. Desalination 279, 439–444.
  • Kindaichi, T., Kawano, Y., Ito, T., Satoh, H., and Okabe, S. (2006). Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnology and Bioengineering 94, 1111–1121.
  • King, E. F., and Dutka, B. J. (1986). Respirometric techniques. In Toxicity testing using microorganisms Bitton, G., and Dutka, B. J., Eds., (Chapter 5). Boca Raton, CRC Press, 75–113.
  • Kong, Z., Vanrolleghem, P. A., and Verstraete, W. (1993). An activated sludge-based biosensor for rapid IC 50 estimation and on-line toxicity monitoring. Biosensors and Bioelectronics 8, 49–58.
  • Kong, Z., Vanrolleghem, P., Willems, P., and Verstraete, W. (1996). Simultaneous determination of inhibition kinetics of carbon oxidation and nitrification with a respirometer. Water Research 30, 825–836.
  • Kostigen Mumper, C., Ostermeyer, A. K., Semprini, L., and Radniecki, T.S. (2013). Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Chemosphere 93, 2493–2498.
  • Kowalchuk, G. A., and Stephen, J. R. (2001). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews in Microbiology 55, 485–529.
  • Kristensen, G. H., Jørgensen, P. E., Henze, M., Kristensen, G. H., Jørgensen, P. E., and Henze, M. (1992). Characterization of functional microorganism groups and substrate in activated sludge and wastewater by AUR, NUR and OUR. Water Science and Technology 25, 43–57.
  • Kroiss, H., Schweighofer, P., Frey, W., and Matsche, N. (1992). Nitrification inhibition-a source identification method for combined municipal and/or industrial wastewater treatment plants. Water Science and Technology 26, 1135–1146.
  • La Cour Jansen, J., Kristensen, G. H., and Laursen, K. D. (1992). Activated sludge nitrification in temperate climate. Water Science and Technology 25, 177–184.
  • Lam, P., Lavik, G., Jensen, M. M., van de Vossenberg, J., Schmid, M., Woebken, D., Gutiérrez, D., Amann, R., Jetten, M. S., and Kuypers, M. M. (2009). Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences 106, 4752–4757.
  • Lee, Y. W., Ong, S. K., and Sato, C. (1997). Effects of heavy metals on nitrifying bacteria. Water Science and Technology 36, 69–74.
  • Lee, Y. W., Tian, Q., Ong, S. K., Sato, C., and Chung, J. (2009). Inhibitory effects of copper on nitrifying bacteria in suspended and attached growth reactors. Water Air and Soil Pollution 203, 17–27.
  • Li, M., Ford, T., Li, X., and Gu, J. -D. (2011). Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria. Environmental Science and Technology 45, 3547–3553.
  • Limpiyakorn, T., Sonthiphand, P., Rongsayamanont, C., and Polprasert, C. (2011). Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology 102, 3694–3701.
  • Liu, H., Li, G., Zhang, M., and Du, G. (2009). Real-time PCR quantification of ammonia-oxidising bacteria in aerobic granular sludge and activated sludge influenced by pentachlorophenol. International Journal of Environment and Pollution 37, 256–265.
  • Lu, H., Chandran, K., and Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research 64, 237–254.
  • Ma, Y., Sundar, S., Park, H., and Chandran, K. (2015). The effect of inorganic carbon on microbial interactions in a biofilm nitritation–anammox process. Water Research 70, 246–254.
  • Madoni, P., Davoli, D., and Guglielmi, L. (1999). Response of sOUR and AUR to heavy metal contamination in activated sludge. Water Research 33, 2459–2464.
  • Mamais, D., Noutsopoulos, C., Stasinakis, A. S., Kouris, N., and Andreadakis, A. D. (2008). Comparison of bioluminescence and nitrification inhibition methods for assessing toxicity to municipal activated sludge. Water Environment Research 80, 484–489.
  • Manser, R., Gujer, W., and Siegrist, H. (2005). Consequences of mass transfer effects on the kinetics of nitrifiers. Water Research, 39, 4633–4642.
  • Martell, A. E. (1981). Chemistry of carcinogenic metals. Environmental Health Perspectives 40, 207–226.
  • Milner, M., Curtis, T., and Davenport, R. (2008). Presence and activity of ammonia-oxidising bacteria detected amongst the overall bacterial diversity along a physico-chemical gradient of a nitrifying wastewater treatment plant. Water Research 42, 2863–2872.
  • Monod, J., Wyman, J., and Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. Journal of Molecular Biology, 12, 88–118.
  • Neufeld, R., Greenfield, J., and Rieder, B. (1986). Temperature, cyanide and phenolic nitrification inhibition. Water Research 20, 633–642
  • Nowak, O., Schweighofer, P., and Svardal, K. (1994). Nitrification inhibition-A method for the estimation of actual maximum autotrophic growth rates in activated sludge systems. Water Science and Technology 30, 9–19.
  • Nowak, O., and Svardal, K. (1993). Observations on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds. Water Science and Technology 28, 115–123.
  • Ochoa-Herrera, V., León, G., Banihani, Q., Field, J. A., and Sierra-Alvarez, R. (2011). Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems. Science of the Total Environment 412, 380–385.
  • Okano, Y., Hristova, K. R., Leutenegger, C. M., Jackson, L. E., Denison, R. F., Gebreyesus, B., Lebauer, D., and Scow, K. M. (2004). Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Applied and Environmental Microbiology 70, 1008–1016.
  • Oslislo, A., and Lewandowski, Z. (1985). Inhibition of nitrification in the packed bed reactors by selected organic compounds. Water Research 19, 423–426
  • Ostermeyer, A. K., Kostigen Mumper, C., Semprini, L., and Radniecki, T. S. (2013). Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environmental Science and Technology 47, 4403–14410.
  • Park, H., Rosenthal, A., Jezek, R., Ramalingam, K., Fillos, J., and Chandran, K. (2010a). Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities. Water Research 44, 5005–5013.
  • Park, H., Rosenthal, A., Ramalingam, K., Fillos, J., and Chandran, K. (2010b). Linking community profiles, gene expression and N-removal in anammox bioreactors treating municipal anaerobic digestion reject water. Environmental Science and Technology 44, 6110–6116.
  • Park, H.-D., Wells, G. F., Bae, H., Criddle, C. S., and Francis, C. A. (2006). Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and Environmental Microbiology 72, 5643–5647.
  • Park, S.-J., Park, B.-J., and Rhee, S.-K. (2008). Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605–615.
  • Park, S., and Ely, R. L. (2008). Candidate stress genes of Nitrosomonas europaea for monitoring inhibition of nitrification by heavy metals. Applied and Environmental Microbiology 74, 5475–5482.
  • Paungfoo, C., Prasertsan, P., Burrell, P. C., Intrasungkha, N., and Blackall, L. L. (2007). Nitrifying bacterial communities in an aquaculture wastewater treatment system using fluorescence in situ hybridization (FISH), 16S rRNA gene cloning, and phylogenetic analysis. Biotechnology and Bioengineering 97, 985–990.
  • Philips, S., Laanbroek, H. J., and Verstraete, W. (2002). Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Biotechnology 1, 115–141.
  • Poulsen, L. K., Ballard, G., and Stahl, D. A. (1993). Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Applied and Environmental Microbiology 59, 1354–1360.
  • Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M. C., Koops, H.-P., and Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology 66, 5368–5382.
  • Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Röser, A., and Koops, H. -P. (2003). 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. International Journal of Systematic and Evolutionary Microbiology 53, 1485–1494.
  • Qin, Y. Y., Zhang, X. W., Ren, H. Q., Li, D. T., and Yang, H. (2008). Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment. Applied Microbiology and Biotechnology 79, 135–145.
  • Quan, Z. X., Rhee, S. K., Zuo, J. E., Yang, Y., Bae, J. W., Park, J. R., Lee, S. T., and Park, Y. H. (2008). Diversity of ammonium‐oxidizing bacteria in a granular sludge anaerobic ammonium‐oxidizing (anammox) reactor. Environmental Microbiology 10, 3130–3139.
  • Radniecki, T. S., Semprini, L., and Dolan, M. E. (2009). Expression of merA, amoA and hao in continuously cultured Nitrosomonas europaea cells exposed to zinc chloride additions. Biotechnology and Bioengineering 102, 546–553.
  • Rotthauwe, J.-H., Witzel, K.-P., and Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63, 4704–4712.
  • Rowan, A. K., Snape, J. R., Fearnside, D., Barer, M. R., Curtis, T. P., and Head, I. M. (2003). Composition and diversity of ammonia‐oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology Ecology 43, 195–206.
  • Ruiz, G., Jeison, D., and Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research 37, 1371–1377.
  • Ryberg, D., and Alexander, J. (1990). Mechanisms of chromium toxicity in mitochondria. Chemico-Biological Interactions 75, 141–151.
  • Sayavedra‐Soto, L. A., Hommes, N. G., Russell, S. A., and Arp, D. J. (1996). Induction of ammonia monooxygenase and hydroxylamine oxidoreductase mRNAs by ammonium in Nitrosomonas europaea. Molecular Microbiology 20, 541–548.
  • Schmid, M. C., Hooper, A. B., Klotz, M. G., Woebken, D., Lam, P., Kuypers, M. M., Pommerening‐Roeser, A., Op Den Camp, H. J., and Jetten, M. S. (2008). Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium‐oxidizing bacteria. Environmental Microbiology 10, 3140–3149.
  • Semerci, N., and Çeçen, F. (2007). Importance of cadmium speciation in nitrification inhibition. Journal of Hazardous Materials 147, 503–512.
  • Shammas, N. K. (1986). Interactions of temperature, pH, and biomass on the nitrification process. Journal of the Water Pollution Control Federation 58, 52–59.
  • Short, M. D., Abell, G. C., Bodrossy, L., and van den Akker, B. (2013). Application of a novel functional gene microarray to probe the functional ecology of ammonia oxidation in nitrifying activated sludge. PloS One 8, e77139.
  • Siripong, S., and Rittmann, B. E. (2007). Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Research 41, 1110–1120.
  • Smith, C. J., and Osborn, A. M. (2009). Advantages and limitations of quantitative PCR (Q‐PCR)‐based approaches in microbial ecology. FEMS Microbiology Ecology 67, 6–20.
  • Spanjers, H., Vanrolleghem, P., Olsson, G., and Dold, P. (1996). Respirometry in control of the activated sludge process. Water Science and Technology 34, 117–126.
  • Starkey, R. L. (1955). Relations of micronutrients to development of microorganisms. Soil Science 79, 1–14.
  • Stasinakis, A. S., Mainais, D., Thomaidis, N. S., Danika, E., Gatidou, G., and Lekkas, T. D. (2008). Inhibitory effect of triclosan and nonylphenol on respiration rates and ammonia removal in activated sludge systems. Ecotoxicology and Environmental Safety 70, 199–206.
  • Stasinakis, A. S., Petalas, A. V., Mamais, D., Thomaidis, N. S., Gatidou, G., and Lekkas, T. D. (2007). Investigation of triclosan fate and toxicity in continuous-flow activated sludge systems. Chemosphere 68, 375–381.
  • Stasinakis, A. S., Thomaidis, N. S., Mamais, D., Papanikolaou, E. C., Tsakon, A., and Lekkas, T. D. (2003). Effects of chromium (VI) addition on the activated sludge process. Water Research 37, 2140–2148.
  • Stensel, H. D., Mcdowell, C. S., and Ritter, E. D. (1976). Automated biological nitrification toxicity test. Journal of the Water Pollution Control Federation 48, 2343–2350.
  • Subbarao, G., Nakahara, K., Hurtado, M. D. P., Ono, H., Moreta, D., Salcedo, A. F., Yoshihashi, A., Ishikawa, T., Ishitani, M., and Ohnishi-Kameyama, M. (2009). Evidence for biological nitrification inhibition in Brachiaria pastures. Proceedings of the National Academy of Sciences 106, 17302–17307.
  • Surmacz-Gorska, J., Gernaey, K., Demuynck, C., Vanrolleghem, P., and Verstraete, W. (1996). Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements. Water Research 30, 1228–1236.
  • Tomlinson, T. G., Boon, A. G., and Trotman, C. N. A. (1966). Inhibition of nitrification in the activated sludge process of sewage disposal. Journal of Applied Bacteriology 29, 266–291.
  • Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. P., and Schleper, C. (2005). Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology 7, 1985–1995.
  • Tyagi, R. D., Couillard, D., and Tran, F. (1988). Heavy metals removal from anaerobically digested sludge by chemical and microbiological methods. Environmental Pollution 50, 295–316.
  • U.S. Department of Health, Education, and Welfare. (1965). Interaction of heavy metals and biological sewage treatment processes. Washington, DC: Author.
  • U.S. Environmental Protection Agency. (1977). Federal guidelines for state and local pretreatment programs (Vols. I, II, and III). Washington, DC: Author.
  • U.S. Environmental Protection Agency. (2004). Local limits development guidance: Appendices. Washington, DC: Author.
  • U.S. Environmental Protection Agency. (2011). Introduction to the national pretreatment program. EPA-833-B-11-001. Washington, DC: Author.
  • Van der Star, W. R., Abma, W. R., Blommers, D., Mulder, J.-W., Tokutomi, T., Strous, M., Picioreanu, C., and Van Loosdrecht, M. (2007). Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Research 41, 4149–4163.
  • Walker, C., De La Torre, J., Klotz, M., Urakawa, H., Pinel, N., Arp, D., Brochier-Armanet, C., Chain, P., Chan, P., and Gollabgir, A. (2010). Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences 107, 8818–8823.
  • Whang, L. M., Chien, I., Yuan, S. L., and Wu, Y. J. (2009). Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants. Chemosphere 75, 234–242.
  • Wood, P. M. (1996). Nitrification as a bacterial energy source. In J. I. Prosser (Ed.), Nitrification. Oxford, England: IRL Press.
  • World Health Organization. (2015). Ten chemicals of major public health concern. Retrieved from http://www.who.int/ipcs/assessment/public_health/chemicals_phc/en/
  • Ye, L., and Zhang, T. (2010). Estimation of nitrifier abundances in a partial nitrification reactor treating ammonium-rich saline wastewater using DGGE, T-RFLP and mathematical modeling. Applied Microbiology and Biotechnology 88, 1403–1412.
  • You, S. J., Tsai, Y. P., and Huang, R. Y. (2009a). Effects of heavy metals on the specific ammonia and nitrate uptake rates in activated sludge. Environmental Engineering Science 26, 1207–1215.
  • You, S. J., Tsai, Y. P., and Huang, R. Y. (2009b). Effect of heavy metals on nitrification performance in different activated sludge processes. Journal of Hazardous Materials 165, 987–994.
  • Yu, R., and Chandran, K. (2010). Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiology 10, 70.
  • Yu, R., Kampschreur, M. J., van Loosdrecht, M. C., and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science and Technology 44, 1313–1319.
  • Yu, R., Lai, B., Vogt, S., and Chandran, K. (2011). Elemental profiling of single bacterial cells as a function of copper exposure and growth phase. PloS One 6, e21255.
  • Yuan, Z., Bogaert, H., Leten, J., and Verstraete, W. (2000). Reducing the size of a nitrogen removal activated sludge plant by shortening the retention time of inert solids via sludge storage. Water Research, 34, 539–549.
  • Zhu, G., Peng, Y., Li, B., Guo, J., Yang, Q., and Wang, S. (2008). Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology 192, 159–195.
  • Ziembińska, A., Ciesielski, S., and Miksch, K. (2009). Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE). Journal of General and Applied Microbiology 55, 373–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.