741
Views
41
CrossRef citations to date
0
Altmetric
Articles

A review of anaerobic side-stream reactor for excess sludge reduction: Configurations, mechanisms, and efficiency

, , , &
Pages 382-405 | Published online: 15 Dec 2015

References

  • An, K., and Chen, G. (2008). Chemical oxygen demand and the mechanism of excess sludge reduction in an oxic-settling-anaerobic activated sludge process. J. Environ. Eng. 134, 469–477. doi:10.1061/(ASCE)0733-9372(2008)134:6(469)
  • Barker, D. J., and Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res. 33, 3063–3082. doi:10.1016/S0043-1354(99)00022-6
  • Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenès, J. P., Steyer, J. P., and Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: a review. J. Hazard. Mater. 183, 1–15. doi:10.1016/j.jhazmat.2010.06.129
  • Chen, B. G., and Liu, Y. (1999). Modeling of energy spilling in substrate-sufficient cultures. J. Environ. Eng. 125, 508–513.
  • Chen, G., Yip, W., Mo, H., and Liu, Y. (2001). Effect of sludge fasting/feasting on growth of activated sludge cultures. Water Res. 35, 1029–1037.
  • Chen, G.-H., An, K.-J., Saby, S., Brois, E., and Djafer, M. (2003). Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process). Water Res. 37, 3855–3866. doi:10.1016/S0043-1354(03)00331-2
  • Chon, D.-H., and Park, C. (2012). Method to reduce sludge generation in wastewater treatment systems. U.S. Patent No. US20120152812 A1.
  • Chon, D. H., Rome, M., Kim, H.-S., and Park, C. (2011a). Investigating the mechanism of sludge reduction in activated sludge with an anaerobic side-stream reactor. Water Sci. Technol. 63, 93–99.
  • Chon, D. H., Rome, M., Kim, Y. M., Park, K. Y., and Park, C. (2011b). Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes. Water Res. 45, 6021–6029. doi:10.1016/j.watres.2011.08.051
  • Chu, L., Wang, J., Wang, B., Xing, X. H., Yan, S., Sun, X., and Jurcik, B. (2009a). Changes in biomass activity and characteristics of activated sludge exposed to low ozone dose. Chemosphere 77, 269–272. doi:10.1016/j.chemosphere.2009.07.047
  • Chu, L., Yan, S., Xing, X.-H., Sun, X., and Jurcik, B. (2009b). Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Water Res. 43, 1811–1822. doi:10.1016/j.watres.2009.02.012
  • Chudoba, P., Morel, A., and Capdeville, B. (1992). The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system. Environ. Technol. 13, 761–770.
  • Coma, M., Rovira, S., Canals, J., and Colprim, J. (2013). Minimization of sludge production by a side-stream reactor under anoxic conditions in a pilot plant. Bioresour. Technol. 129C, 229–235. doi:10.1016/j.biortech.2012.11.055
  • Curtis, B.-A., Kutcher, T., and Marc, E. R. (2011). Conditioning system for activated sludge wastewater treatment processes. U.S. Patent No. 7993522 B2.
  • Curtis, B.-A., Roehl, M., Doyle, M., and Petit, P. J. (2007). Screening of inert solids from a low-yield wastewater treatment process. U.S. Patent No. 7569147 B2.
  • Datta, T., Liu, Y., and Goel, R. (2009). Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors. Chemosphere 76, 697–705. doi:10.1016/j.chemosphere.2009.02.040
  • Feng, X.-C., Guo, W.-Q., Yang, S.-S., Zheng, H.-S., Du, J.-S., Wu, Q.-L., and Ren, N.-Q. (2014). Possible causes of excess sludge reduction adding metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide (TCS), in sequence batch reactors. Bioresour. Technol. 173, 96–103. doi:10.1016/j.biortech.2014.09.085
  • Foladori, P., Andreottola, G., and Ziglio, G. (2010). Sludge reduction technologies in wastewater treatment plants. Greenwich, CT: IWA.
  • Goel, R. K., and Noguera, D. R. (2006). Evaluation of sludge yield and phosphorus removal in a cannibal solids reduction process. J. Environ. Eng. 132, 1331–1337.
  • Grady, C. P. L., Daigger, G. T., Love, N. G., and Filipe, C. D. M. (2011). Biological wastewater treatment (3rd ed.). New York, NY: CRC Press.
  • Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J., and Eshtiaghi, N. (2013). A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour. Technol. 155C, 289–299. doi:10.1016/j.biortech.2013.12.066
  • Jin, W. B., Wang, J. F., Zhao, Q. L., and Lin, J. K. (2008). Performance and mechanism of excess sludge reduction in an OSA (oxic-settling-anaerobic) process. Huanjing Kexue/Environ. Sci. 29, 726–732.
  • Johnson, B. R., Daigger, G. T., and Novak, J. T. (2008). The use of ASM based models for the simulation of biological sludge reduction processes. Water Pract. Technol. 3(3), 1–9. doi:10.2166/WPT.2008074
  • Khanal, S. K., and Huang, J. C. (2003). ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Res. 37, 2053–2062. doi:10.1016/S0043-1354(02)00618-8
  • Kim, Y. M., Chon, D.-H., Kim, H.-S., and Park, C. (2012). Investigation of bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR) to decrease the generation of excess sludge. Water Res. 46, 4292–300. doi:10.1016/j.watres.2012.04.040
  • Laspidou, C. S., and Rittman, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert bi omass. Water Res. 36, 2711–2720.
  • Lee, N. M. (1996). Use of protozoa and metazoa for decreasing sludge production in aerobic wastewater treatment. Biotechnol. Lett. 18, 429–434. doi:10.1007/BF00143465
  • Liu, Y. (2000). The So/Xo-dependent dissolved organic carbon distribution in substrate-sufficient batch culture of activated sludge. Water Res. 34, 1645–1651. doi:10.1016/S0043-1354(99)00293-6
  • Liu, Y. (1996). Bioenergetic interpretation on the S0/X0 ratio in substrate-sufficient batch culture. Water Res. 30, 2766–2770. doi:10.1016/S0043-1354(96)00157-1
  • Liu, Y. (2003). Chemically reduced excess sludge production in the activated sludge process. Chemosphere 50, 1–7.
  • Liu, Y., and Fang, H. H. P. (2003). Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit. Rev. Environ. Sci. Technol. 33, 237–273.
  • Liu, Y., and Tay, J. H. (2001). Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol. Adv. 19, 97–107. doi:10.1016/S0734-9750(00)00066-5
  • Low, E. W., and Chase, H. A. (1998). The use of chemical uncouplers for reducing biomass production during biodegradation. Water Sci. Technol. 37, 399–402.
  • Mason, C. A., Hamer, G., and Bryers, J. D. (1986). The death and lysis of microorganisms in environmental processes. FEMS Microbiol. Lett. 39, 373–401.
  • Neyens, E., and Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. 98, 51–67. doi:10.1016/S0304-3894(02)00320-5
  • Nielsen, P. R., and Jahn, A. (1999). Extraction of EPS. In Wingender, J., Neu, T. R., Flemming, H.-C. ( Eds.), Microbial extracellular polymeric substances (pp. 49–72). Berlin, Germany: Springer.
  • Novak, J. T., Chon, D. H., Curtis, B.-A., and Doyle, M. (2007). Biological solids reduction using the cannibal process. Water Environ. Res. 79, 2380–2386. doi:10.2175/106143007X183862
  • Novak, J. T., Sadler, M. E., and Murthy, S. N. (2003). Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res. 37, 3136–3144.
  • Park, C., Abu-Orf, M. M., and Novak, J. T. (2006). The digestibility of waste activated sludges. Water Environ. Res. 78, 59–68. doi:10.2175/106143005×84521
  • Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D., and Surampalli, R. Y. (2011). Ultrasonic pretreatment of sludge: a review. Ultrason. Sonochem. 18, 1–18. doi:10.1016/j.ultsonch.2010.02.014
  • Ragazzi, M., Rada, E. C., and Ferrentino, R. (2015). Analysis of a real scale experiences of novel sewage sludge treatments in an Italian pilot region. Desalin. Water Treat. doi:10.1080/19443994.2014.932717
  • Rensink, J. H., and Rulkens, W. H. (1997). Using metazoa to reduce sludge production. Water Sci. Technol. 36, 171–179.
  • Rocher, M., Goma, G., Pilas Begue, A., Louvel, L., and Rols, J. L. (1999). Towards a reduction in excess sludge production in activated sludge processes: Biomass physicochemical treatment and biodegradation. Appl. Microbiol. Biotechnol. 51, 883–890. doi:10.1007/s002530051478
  • Saby, S., Djafer, M., and Chen, G. H. (2003). Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Water Res. 37, 11–20.
  • Semblante, G. U., Hai, F. I., Ngo, H. H., Guo, W., You, S.-J., Price, W. E., and Nghiem, L. D. (2014). Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: performance, mechanisms, and implications. Bioresour. Technol. 155, 395–409.
  • Sheng, G.-P., Yu, H.-Q., and Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 28, 882–894. doi:10.1016/j.biotechadv.2010.08.001
  • Sun, L., Randall, C. W., and Novak, J. T. (2010). The influence of sludge interchange times on the oxic-settling-anoxic process. Water Environ. Res. 82, 519–523. doi:10.2175/106143009×12487095236711
  • Tchobanoglus, G., Burton, F., and Stensel, H. (2003). Wastewater engineering: Treatment and reuse. New York, NY: American Works Association.
  • Torregrossa, M., Di Bella, G., and Di Trapani, D. (2012). Comparison between ozonation and the OSA process: analysis of excess sludge reduction and biomass activity in two different pilot plants. Water Sci. Technol. 66, 185–192.
  • Troiani, C., Eusebi, A. L., and Battistoni, P. (2011). Excess sludge reduction by biological way: from experimental experience to a real full scale application. Bioresour. Technol. 102, 10352–10358. doi:10.1016/j.biortech.2011.08.124
  • Van Loosdrecht, M. C. M., and Henze, M. (1999). Maintenance, endogeneous respiration, lysis, decay and predation. Water Sci. Technol. 39, 107–117. doi:10.1016/S0273-1223(98)00780-X
  • Wang, J. F., and Zhao, Q. L. (2011). Microbial community analysis on oxic-settling-anaerobic process by using PCR-DGGE assay. Adv. Mater. Res. 255–260, 2934–2939. doi:10.4028/www.scientific.net/AMR.255–260.2934
  • Wang, J. F., Zhao, Q., Jin, W., and Lin, J. (2008). Mechanism on minimization of excess sludge in oxic-settling-anaerobic (OSA) process. Front. Environ. Sci. Eng. China 2, 36–43. doi:10.1007/s11783-008-0001-4
  • Weemaes, M. P. J., and Verstraete, W. H. (1998). Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 73, 83–92. doi:10.1002/(SICI)1097-4660(1998100)73: 2<83::AID-JCTB932>3.0.CO;2-2
  • Wei, Y., Van Houten, R. T., Borger, A. R., Eikelboom, D. H., and Fan, Y. (2003). Minimization of excess sludge production for biological wastewater treatment. Water Res. 37, 4453–4467. doi:10.1016/S0043-1354(03)00441-X
  • Westgarth, W., Sulzer, F., and Okum, D. (1964). Anaerobiosis in the activated sludge process. Proc. 2nd IAWPRC Conf. 43–55.
  • Yang, S.-S., Guo, W.-Q., Zhou, X.-J., Meng, Z.-H., Liu, B., and Ren, N.-Q. (2011). Optimization of operating parameters for sludge process reduction under alternating aerobic/oxygen-limited conditions by response surface methodology. Bioresour. Technol. 102, 9843–51. doi:10.1016/j.biortech.2011.07.079
  • Yang, X. F., Xie, M. L., and Liu, Y. (2003). Metabolic uncouplers reduce excess sludge production in an activated sludge process. Process Biochem. 38, 1373–1377. doi:10.1016/S0032-9592(03)00019-0
  • Ye, F. X., and Li, Y. (2005). Uncoupled metabolism stimulated by chemical uncoupler and oxic-settling-anaerobic combined process to reduce excess sludge production. Appl. Biochem. Biotechnol. 127, 187–199. doi:10.1385/ABAB:127:3:187
  • Ye, F. X., and Li, Y. (2010). Oxic-settling-anoxic (OSA) process combined with 3,3′,4′,5-tetrachlorosalicylanilide (TCS) to reduce excess sludge production in the activated sludge system. Biochem. Eng. J. 49, 229–234. doi:10.1016/j.bej.2010.01.001
  • Ye, F. X., Zhu, R., and Li, Y. (2008). Effect of sludge retention time in sludge holding tank on excess sludge production in the oxic-settling-anoxic (OSA) activated sludge process. J. Chem. Technol. Biotechnol. 83, 109–114. doi:10.1002/jctb
  • Zhou, Z., Qiao, W., Xing, C., An, Y., Shen, X., Ren, W., Jiang, L., and Wang, L. (2015a). Microbial community structure of anoxic–oxic-settling-anaerobic sludge reduction process revealed by 454-pyrosequencing. Chem. Eng. J. 266, 249–257. doi:10.1016/j.cej.2014.12.095
  • Zhou, Z., Qiao, W., Xing, C., Wang, C., Jiang, L.-M., Gu, Y., and Wang, L. (2015b). Characterization of dissolved organic matter in the anoxic–oxic-settling-anaerobic sludge reduction process. Chem. Eng. J. 259, 357–363. doi:10.1016/j.cej.2014.07.129

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.