11,882
Views
900
CrossRef citations to date
0
Altmetric
Articles

A review of biochar as a low-cost adsorbent for aqueous heavy metal removal

, , , , , , , & show all
Pages 406-433 | Published online: 12 Dec 2015

References

  • Ahmad, M., Lee, S. S., Oh, S. E., Mohan, D., Moon, D. H., Lee, Y. H., and Ok, Y. S. (2013). Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environmental Science and Pollution Research 20, 8364–8373.
  • Ahmad, M., Rajapaksha, A. U., Lim, J., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S., and Ok, Y. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19–33.
  • Ahmed, I. I., and Gupta, A. K. (2010). Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics. Applied Energy 87, 101–108.
  • Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., and Jiang, J. (2011). Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. Journal of Hazardous Materials 198, 282–290.
  • Aksu, Z., and Isoglu, I. A. (2005). Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry 40, 3031–3044.
  • Al-Muhtaseb, S. A., El-Naas, M. H., and Abdallah, S. (2008). Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons. Journal of Hazardous Materials 158, 300–307.
  • Al-Othman, Z. A., Ali, R., and Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal 184, 238–247.
  • Arivoli, S., Hema, M., and Barathiraja, C. (2008). Comparative study on metal ions adsorption on a low cost carbonaceous adsorbent kinetic equilibrium and mechanistic studies. Iranian Journal of Environmental Health Science & Engineering 5, 1–10.
  • Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., and Sizmur, T. (2011). A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution 159, 3269–3282.
  • Bello, O. S., and Ahmad, M. A. (2011a). Removal of remazol brilliant violet-5R dye using periwinkle shells. Chemistry and Ecology 27.
  • Bello, O. S., and Ahmad, M. A. (2011b). Response surface modeling and optimization of remazol brilliant blue reactive dye removal using periwinkle shell-based activated carbon. Separation Science and Technology 46, 2367–2379.
  • Bird, M. I., Wurster, C. M., de Paula Silva, P. H., Paul, N. A., and de Nys, R. (2012). Algal biochar: effects and applications. Global Change Biology Bioenergy 4, 61–69.
  • Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A., and Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching - a greenhouse experiment. Soil Use and Management 28, 177–184.
  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., and Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology 102, 8877–8884.
  • Cao, X., and Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology 101, 5222–5228.
  • Cao, X., Ma, L., Gao, B., and Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology 43, 3285–3291.
  • Cao, X., Ma, L., Liang, Y., Gao, B., and Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology 45, 4884–4889.
  • Cheung, C. W., Porter, J. F., and McKay, G. (2000a). Sorption kinetics for the removal of copper and zinc from effluents using bone char. Separation and Purification Technology 19, 55–64.
  • Cheung, C. W., Porter, J. F., and McKay, G. (2000b). Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. Journal of Chemical Technology and Biotechnology 75, 963–970.
  • Chien, S. H., and Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal 44, 265–268.
  • Choy, K. K. H., and McKay, G. (2005). Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere 60, 1141–1150.
  • Choy, K. K. H., Ko, D. C. K., Cheung, C. W., Porter, J. F., and McKay, G. (2004). Film and intraparticle mass transfer during the adsorption of metal ions onto bone char. Journal of Colloid and Interface Science 271, 284–295.
  • Crabtree, R. H. (2009). The organometallic chemistry of the transition metals. New York, NY: Wiley.
  • Dimovic, S. D., Smiciklas, I. D., Sljivic-Ivanovic, M. Z., Plecas, I. B., and Slavkovic-Beskoski, L. (2011). The effect of process parameters on kinetics and mechanisms of Co2+ removal by bone char. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 46, 1558–1569.
  • Dizge, N., Aydiner, C., Demirbas, E., Kobya, M., and Kara, S. (2008). Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies. Journal of Hazardous Materials 150, 737–746.
  • Dong, X. L., Ma, L. N. Q., and Li, Y. C. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials 190, 909–915.
  • Duku, M. H., Gu, S., and Hagan, E. B. (2011). Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews 15, 3539–3551.
  • El-Shafey, E. I. (2010). Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. Journal of Hazardous Materials 175, 319–327.
  • El-Shafey, E. I., Cox, M., Pichugin, A. A., and Appleton, Q. (2002). Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution. Journal of Chemical Technology and Biotechnology 77, 429–436.
  • Field, J. L., Keske, C. M. H., Birch, G. L., Defoort, M. W., and Cotrufo, M. F. (2013). Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts. Global Change Biology Bioenergy 5, 177–191.
  • Foo, K. Y., and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156, 2–10.
  • Genc-Fuhrman, H., Bregnhoj, H., and McConchie, D. (2005). Arsenate removal from water using sand-red mud columns. Water Research 39, 2944–2954.
  • Gerente, C., Lee, V. K. C., Le Cloirec, P., and McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption - Mechanisms and models review. Critical Reviews in Environmental Science and Technology 37, 41–127.
  • Gil, M. V., Fermoso, J., Pevida, C., Pis, J. J., and Rubiera, F. (2010). Intrinsic char reactivity of plastic waste (PET) during CO2 gasification. Fuel Processing Technology 91, 1776–1781.
  • Grierson, S., Strezov, V., and Shah, P. (2011). Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresource Technology 102, 8232–8240.
  • Gu, X. Y., and Wong, J. W. C. (2004). Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge. Environmental Science & Technology 38, 2934–2939.
  • Guo, M. X., Qiu, G. N., and Song, W. P. (2010). Poultry litter-based activated carbon for removing heavy metal ions in water. Waste Management 30, 308–315.
  • Gupta, S. S., and Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science 162, 39–58.
  • Hanay, O., Hasar, H., Kocer, N. N., and Aslan, S. (2008). Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge. Bulletin of Environmental Contamination and Toxicology 81, 42–46.
  • Harvey, O. R., Herbert, B. E., Rhue, R. D., and Kuo, L.-J. (2011). Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science & Technology 45, 5550–5556.
  • Ho, Y.-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials 136, 681–689.
  • Ho, Y. S., and McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection 76, 332–340.
  • Ho, Y. S., Ng, J. C. Y., and McKay, G. (2000). Kinetics of pollutant sorption by biosorbents: Review. Separation and Purification Methods 29, 189–232.
  • Holford, I. C. R., Wedderburn, R. W. M., and Mattingly, G. E. G. (1974). A Langmuir two-surface equation as a model for phosphate adsorption by soils. Journal of Soil Science 25, 242–255.
  • Hwang, I. H., Nakajima, D., Matsuto, T., and Sugimoto, T. (2008). Improving the quality of waste-derived char by removing ash. Waste Management 28, 424–434.
  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., and Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology 101, 8868–8872.
  • Inyang, M., Gao, B., Ding, W., Pullammanappallil, P., Zimmerman, A. R., and Cao, X. (2011). Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology 46, 1950–1956.
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., and Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology 110, 50–56.
  • Inyang, M. D., Gao, B., Zimmerman, A., Zhou, Y., and Cao, X. (2014). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environmental Science and Pollution Research 22, 1868–1876.
  • Jaradat, A. Q., Fowler, K., Grimberg, S. J., and Holsen, T. M. (2009). Transport of colloids and associated hydrophobic organic chemicals through a natural media filter. Journal of Environmental Engineering 135, 36–45.
  • Jeppu, G. P., and Clement, T. P. (2012). A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. Journal of Contaminant Hydrology 129, 46–53.
  • Kailash, D., Dharmendra, P., and Anil, V. (2010). Low cost adsorbents for heavy metal removal from wastewater: a review. Research Journal of Chemistry and Environment 14, 100–103.
  • Karakoyun, N., Kubilay, S., Aktas, N., Turhan, O., Kasimoglu, M., Yilmaz, S., and Sahiner, N. (2011). Hydrogel–biochar composites for effective organic contaminant removal from aqueous media. Desalination 280, 319–325.
  • Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., and Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environmental Science & Technology 44, 6189–6195.
  • Keiluweit, M., and Kleber, M. (2009). Molecular-level interactions in soils and sediments: the role of aromatic pi-systems. Environmental Science & Technology 43, 3421–3429.
  • Ko, D. C. K., Cheung, C. W., Choy, K. K. H., Porter, J. F., and McKay, G. (2004). Sorption equilibria of metal ions on bone char. Chemosphere 54, 273–281.
  • Kong, H., He, J., Gao, Y., Wu, H., and Zhu, X. (2011). Cosorption of phenanthrene and mercury(II) from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry 59, 12116–12123.
  • Kookana, R. S. (2010). The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Australian Journal of Soil Research 48, 627–637.
  • Koutcheiko, S., Monreal, C. M., Kodama, H., McCracken, T., and Kotlyar, L. (2007). Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresource Technology 98, 2459–2464.
  • Krauskopf, B. K. (1967). Introduction to geochemistry. New York, NY: McGraw Hill.
  • Kumar, S., Loganathan, V. A., Gupta, R. B., and Barnett, M. O. (2011). An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environmental Management 92, 2504–2512.
  • Laird, D. A., Brown, R. C., Amonette, J. E., and Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioproducts & Biorefining 3, 547–562.
  • Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., and Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158, 443–449.
  • Lattao, C., Cao, X., Mao, J., Schmidt-Rohr, K., and Pignatello, J. J. (2014). Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. Environmental Science & Technology 48, 4790–4798.
  • Lehmann, J., and Joseph, S. (Eds.). (2012). Biochar for environmental management: Science and technology. New York, NY: Routledge.
  • Liao, R., Gao, B., and Fang, J. (2013). Invasive plants as feedstock for biochar and bioenergy production. Bioresource Technology 140, 439–442.
  • Li, L., and Zhang, H. X. (2004). Preparing levoglucosan derived from waste material by pyrolysis. Energy Sources 26, 1053–1059.
  • Liu, Z., and Zhang, F. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials 167, 933–939.
  • Liu, Z., Zhang, F.-S., and Wu, J. (2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89, 510–514.
  • Lu, C. Y., Liu, C. T., and Su, F. S. (2009). Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes. Desalination 249, 18–23.
  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., and Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research 46, 854–862.
  • Meng, J., Feng, X., Dai, Z., Liu, X., Wu, J., and Xu, J. (2014). Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure. Environmental Science and Pollution Research 21, 7035–7046.
  • Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M., and Pittman, C. U. Jr. (2014b). Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal 236, 513–528.
  • Mohan, D., and Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents: A critical review. Journal of Hazardous Materials 142, 1–53.
  • Mohan, D., Pittman, C. U. Jr., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Gómez-Serrano, V., and Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science 310, 57–73.
  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., and Pittman, C. U. Jr. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials 188, 319–333.
  • Mohan, D., Sarswat, A., Ok, Y., and Pittman, C. U. Jr. (2014a). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: A critical review. Bioresource Technology 160, 191–202.
  • Mousavi, H. Z., Hosseynifar, A., Jahed, V., and Dehghani, S. A. M. (2010). Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent. Brazilian Journal of Chemical Engineering 27, 79–87.
  • Mukherjee, A., Zimmerman, A. R., and Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247–255.
  • Ofomaja, A. E. (2008). Sorptive removal of Methylene blue from aqueous solution using palm kernel fibre: Effect of fibre dose. Biochemical Engineering Journal 40, 8–18.
  • Ofomaja, A. E. (2010). Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresource Technology 101, 5868–5876.
  • Otero, M., Rozada, F., Morán, A., Calvo, L. F., and García, A. I. (2009). Removal of heavy metals from aqueous solution by sewage sludge based sorbents: competitive effects. Desalination 239, 46–57.
  • Pan, X., Wang, J., and Zhang, D. (2009). Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism. Desalination 249, 609–614.
  • Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., and Gidarakos, E. (2012). Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management 96, 35–42.
  • Perez-Marin, A. B., Zapata, V. M., Ortuno, J. F., Aguilar, M., Saez, J., and Llorens, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of Hazardous Materials 139, 122–131.
  • Phuengprasop, T., Sittiwong, J., and Unob, F. (2011). Removal of heavy metal ions by iron oxide coated sewage sludge. Journal of Hazardous Materials 186, 502–507.
  • Purevsuren, B., Avid, B., Gerelmaa, T., Davaajav, Y., Morgan, T. J., Herod, A. A., and Kandiyoti, R. (2004). The characterisation of tar from the pyrolysis of animal bones. Fuel 83, 799–805.
  • Qiu, H., Lv, L., Pan, B.-C., Zhang, Q.-J., Zhang, W.-M., and Zhang, Q.-X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A 10, 716–724.
  • Qiu, Y. P., Cheng, H. Y., Xu, C., and Sheng, D. (2008). Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Research 42, 567–574.
  • Quek, A., Zhao, X. S., and Balasubramanian, R. (2010). Mechanistic insights into copper removal by pyrolytic tire char through equilibrium studies. Industrial & Engineering Chemistry Research 49, 4528–4534.
  • Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., and Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology 166, 303–308.
  • Ranjan, D., Talat, M., and Hasan, S. H. (2009). Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. Journal of Hazardous Materials 166, 1050–1059.
  • Rhee, S.-W., and Park, H.-S. (2010). Effect of mixing ratio of woody waste and food waste on the characteristics of carbonization residue. Journal of Material Cycles and Waste Management 12, 220–226.
  • Ryu, C., Sharifi, V. N., and Swithenbank, J. (2007). Waste pyrolysis and generation of storable char. International Journal of Energy Research 31, 177–191.
  • Sag, Y., and Aktay, Y. (2000). Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochemistry 36, 157–173.
  • Scheytt, T., Mersmann, P., Leidig, M., Pekdeger, A., and Heberer, T. (2004). Transport of pharmaceutically active compounds in saturated laboratory columns. Ground Water 42, 767–773.
  • Srivastava, N. K., and Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials 151, 1–8.
  • Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., and Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal 240, 574–578.
  • Tong, X. J., Li, J. Y., Yuan, J. H., and Xu, R. K. (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal 172, 828–834.
  • Uchimiya, M., Chang, S., and Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials 190, 432–441.
  • Uchimiya, M., Lima, I. M., Klasson, K. T., Chang, S., Wartelle, L. H., and Rodgers, J. E. (2010). Immobilization of heavy metal ions (Cu(II), Cd(II), Ni(II), and Pb(II)) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 58, 5538–5544.
  • Vijayaraghavan, K., Padmesh, T. V. N., Palanivelu, K., and Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials 133, 304–308.
  • Wang, S. S., Gao, B., Zimmerman, A. R., Li, Y. C., Ma, L. N., Harris, W. G., and Migliaccio, K. W. (2015a). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134, 257–262.
  • Wang, S. S., Gao, B., Zimmerman, A. R., Li, Y. C., Ma, L., Harris, W. G., and Migliaccio, K. W. (2015b). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology 175, 391–395.
  • Wu, F. C., Tseng, R. L., and Juang, R. S. (2009a). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal 150, 366–373.
  • Wu, F. C., Tseng, R. L., and Juang, R. S. (2009b). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal 153, 1–8.
  • Xu, T., and Liu, X. Q. (2008). Peanut shell activated carbon: Characterization, surface modification and adsorption of Pb2+ from aqueous solution. Chinese Journal of Chemical Engineering 16, 401–406.
  • Xue, Y. W., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., and Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal 200, 673–680.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X. D., Pullammanappallil, P., and Yang, L. Y. (2011a). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials 190, 501–507.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X. D., Pullammanappallil, P., and Yang, L. (2011b). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology 102, 6273–6278.
  • Yao, Y., Gao, B., Wu, F., Zhang, C.Z. and Yang, L.Y. (2015). Engineered Biochar from Biofuel Residue: Characterization and Its Silver Removal Potential. ACS Applied Materials & Interfaces 7, 10634–10640.
  • Youssef, A. M., El-Nabarawy, T., and Samra, S. E. (2004). Sorption properties of chemically-activated carbons 1. Sorption of cadmium(II) ions. Colloids and Surfaces A-Physicochemical and Engineering Aspects 235.
  • Zuo, X.-J., Fu, D.-F., and Li, H. (2012). Adsorption removal of copper, zinc and cadmium in aqueous solutions and road runoff by carbonized mulch: heavy metal removal by carbonized mulch. Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB), 1180–1185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.