4,317
Views
184
CrossRef citations to date
0
Altmetric
Original Articles

A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation

, , , &
Pages 443-466 | Published online: 21 Jan 2016

References

  • Allabaksh, M. B., Mandal, B. K., Kesarla, M. K., Kumar, K. S., and Pamanji, S. R. (2010). Preparation of stable zero valent iron nanoparticles using different chelating agents. J. Chem. Pharm. Res. 2(5), 67–74.
  • Almeelbi, T., and Bezbaruah, A. (2012). Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res. 14, 900.
  • Arnold, W. A., and Roberts, A. L. (2000). Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34, 1794–1805.
  • Babuponnusami, A., and Muthukumar, K. (2012). Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Separ. Purif. Technol. 98, 130–135.
  • Balko, B. A., and Tratnyek, P. G. (1998). Photoeffects on the reduction of carbon tetrachloride by zero-valent iron. J. Phys. Chem. B 102, 1459–1465.
  • Bang, S., Johnson, M. D., Korfiatis, G. P., and Meng, X. (2005). Chemical reaction between arsenic and zero-valent iron. Water Res. J. 39, 763–770.
  • Bezbaruah, A. N., Krajangpan, S., Chisholm, B. J., Khan, E., and Bermudez, J. J. (2009). Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J. Hazard. Mater. 166, 1339–1343.
  • Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T., and Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27, 6059–6068.
  • Boparai, H. K., Meera Joseph, M., and O'Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458–465.
  • Bystrzejewska-Piotrowska, G., Golimowski, J., and Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management 29, 2587–2595.
  • Calderon, B., Aracil, I., and Fullana, A. (2012). Deodorization of a gas stream containing dimethyl disulfide with zero-valent iron nanoparticles. Chem. Eng. J. 183, 325–331.
  • Carpenter, E. E., Calvin, S., Stroud, R. M., and Harris, V. G. (2003). Passivated iron as core-shell nanoparticles. Chem. Mater. 15, 3245–3246.
  • Carroll, D., Sleep, B., Krol, M., Boparai, H., and Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resources 51, 104–122.
  • Chatterjee, S., Lim, S.-R., Woo, S. H. (2010). Removal of reactive black 5 by zero-valent iron modified with various surfactants. Chem. Eng. J. 160, 27–32.
  • Chen, H., Luo, H., Lan, Y., Dong, T., Hu, B., and Wang, Y. (2011). Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone(PVP-K30) modified nanoscale zero valent iron. J. Hazard. Mater. 192, 44–53.
  • Chen, J., Xiu, Z., Lowry, G. V., and Alvarez, P. J. J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research 45, 1995–2001.
  • Crane, R. A. and Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 211–212, 112–125.
  • Deng, B., and Hu, S. (2001). Reductive dechlorination of chlorinated solvents on zerovalent iron surfaces. In: Smith, J. A., Burns, S. E., editors. Physicochemical groundwater remediation. New York: Kluwer Academic:139–159.
  • Dickinson, M., and Scott, T. B. (2010). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J. Hazard. Mater. 178, 171–179.
  • Dong, H., and Lo, I. M. C. (2013). Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Res. 47, 419–427.
  • Dukhin, A. S., and Goetz, P. J. (2002). Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. New York: Elsevier Science.
  • Elliott, D. W., and Zhang, W. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 35, 4922–4926.
  • Esfahani, A. R., Firouzi, A. F., Sayyad, G., Kiasat, A., Alidokht, L., and Khataee, A. R. (2014). Pb(II) removal from aqueous solution by polyacrylic acid stabilized zero-valent iron nanoparticles: process optimization using response surface methodology. Res. Chem. Intermed. 40, 431–445.
  • ESTCP Cost and Performance Report ER 200431. (2010). Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas. US Department of Defence. https://clu-in.org/ download/ contaminantfocus/ dnapl/ Treatment_Technologies/ DNAPL-ZVI-ER-200431-C&P.pdf (Accessed 02/12/2015).
  • Fan, J., Guo, Y., Wang, J., and Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater. 166, 904–910.
  • Fang, Z., Chen, J., Qiu, X., Cheng, W., and Zhu, L. (2011). Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268, 60–67.
  • Fang, Z., Qiu, X., Chen, J., and Qiu, X. (2010). Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl. Catal. B: Environ. 100, 221–228.
  • Fu, F., Dionysiou, D. D., and Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 267, 194–205.
  • Geng, B., Jin, Z., Li, T., and Qi, X. (2009). Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75, 825–830.
  • Ghauch, A., Tuqan, A., and Assi, H. A. (2009). Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ. Pollution 157, 1626–1635.
  • Giasuddin, A. B., Kanel, S. R., and Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ. Sci. Technol. 41, 2022–2027.
  • Gillham, R. W., and O'Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron in ground water. Groundwater 32, 958–967.
  • He, F., and Zhao, D. (2005). Preparation and characterization of a new class of starch- stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39, 3314–3320.
  • He, F., Zhao, D., Liu, J., and Roberts, C. B. (2007). Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind. Eng. Chem. Res. 46, 29–34.
  • Hojeong, K., Hye-Jin, H., Juri, J., Seong-Hye, K., and Ji-and Won, Y. (2010). Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 176, 1038–1043.
  • Hsu, J., Liao, C., and Wei, Y. (2011). Nitrate removal by synthetic nanoscale zero-valent iron in aqueous recirculated reactor. Sustain. Environ. Res. 21, 353–359.
  • Hu, J., Lo, I. M., and Chen, G. (2004). Removal of Cr(VI) by magnetite nanoparticle. Water Sci. Technol. 50, 139–146.
  • Hwang, Y.-H., and Shin, H.-S. (2013). Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate. J. Environ. Sci. 25, 2177–2184.
  • Hwang, Y.-H., Kim, D.-G., and Shin, H.-S. (2011). Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Appl. Catal. B: Environ. 105, 144–150.
  • Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., and Mallouk, T. E. (2007). Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ. Sci. Technol. 41, 6418–6424.
  • Interstate Technology and Regulatory Council. (2005). Permeable reactive barriers: lessons learned/new directions. Report # PRB-4. Washington DC: ITRC.
  • Iurascu, B., Siminiceanu, J., Vione, D., Vicente, M. A., and Gil, A. (2009). Phenol degradation in water through a heterogeneous photo-Fenton process catalysed by Fe-treated laponite. Water Res. 43, 1313–1322.
  • Jiang, Z., Lv, L., Zhang, W., Du, Q., Pan, B., Yang, L., and Zhang, Q. (2011). Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: Role of surface functional groups. Water Res. 45, 2191–2198.
  • Johnson, R. L., Johnson, G. O., Nurmi, J. T., and Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environ. Sci. Technol. 43, 5455–60.
  • Jortner, J., and Rao, C. N. (2002). Nanostructured advanced materials. Perspectives and directions. Pure Appl. Chem. 74, 1491–1506.
  • Kanel, S. R., and Choi, H. (2007). Transport characteristics of surface-modified nanoscale zerovalent iron in porous media. Water Sci. Technol. 55, 157–162.
  • Kanel, S. R., Greneche, J. M., and Choi, H. (2006). Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40, 2045–2050.
  • Kanel, S. R., Manning, B., Charlet, L., and Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39, 1291–1298.
  • Kanel, S. R., Nepal, D., Manning, B., and Choi, H. (2007). Transport of surface-modified iron nanoparticle in porous media and application to arsenic (III) remediation. J. Nanopart. Res. 9, 725–735.
  • Kassaee, M. Z., Motamedi, E., Mikhak, A., and Rahnemaie, R. (2011). Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chem. Eng. J. 166, 490–495.
  • Keller, A. A., Garner, K., Miller, R. J., and Lenihan, H. S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 7(8), e43983.
  • Kim, H. J. (2009). Transport, reactivity and fate of polyelectrolyte modified zero valent iron nanoparticles used for groundwater remediation in heterogeneous porous media. Doctoral thesis, Carnegie Mellon University, Pittsburgh, PA, USA
  • Kim, H. J., Phenrat, T., Tilton, R. D., and Lowry, G. V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 43, 3824–3830.
  • Kim, J. S., Shea, P. J., Yang, J. E., and Kim, J. E. (2007). Halide salts accelerate degradation of high explosives by zerovalent iron. Environ. Pollut. 147, 634–41.
  • Kim, S. A., Kamala-Kannan, S., Lee, K., Park, Y., Shea, P. J., Lee, W., Kim, H., and Oh, B. (2013). Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem. Eng. J. 217, 54–60.
  • Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D., and Zboril, R. (2011). Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82, 1178–1184.
  • Konstantina, T., Elpida, P., and Nikolaos, P. N. (2007). Modeling of arsenic immobilization by zero valent iron. Eur. J. Soil Biol. 43, 356–367.
  • Krajangpan, S., Jarabek, L., Jepperson, J., Chisholm, B., and Bezbaruah, A. (2008). Polymer modified iron nanoparticles for environmental remediation. Polym. Preprints 49, 921–922.
  • Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., and Sedlak, D. L. (2008). Bactericidal effect of zerovalent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 42, 4927–4933.
  • Li, H., De Boer, C. V., Buchau, A., Klaas, N., Rucker, W. M., and Hermes, H. (2012). Development of an inductive concentration measurement sensor of nano sized zero valent iron. Paper presented at the 9th International Multi-conference on Systems, Signals and Devices, Chemnitz, Germany.
  • Li, H., Zhou, Q., Wu, Y., F J., Wang, T., and Jiang, G. (2009). Effects of waterborne nano-iron onmedaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. Saf. 72, 684–692.
  • Li, X., Elliott, D. W., and Zhang, W. (2006). Zero valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 31, 111–122.
  • Li, X., and Zhang, W. (2006). Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22, 4638–4642.
  • Li, Z., Greden, K., Alvarez, P. J. J., Gregory, K. B., and Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ. Sci. Technol. 44, 3462–3467.
  • Liang, L., Gu, B., and Yin, X. (1996). Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep. Technol. 6, 111–122.
  • Liao, C. J., Chung, T. L., Chen, W., and Kuo, S. L. (2007). Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide. J. Mol. Catal. A: Chem. 265, 189–194.
  • Lien, H. L. and Zhang, W. X. (2001). Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf. A: Physicochem. Eng. Aspects 191, 97–105.
  • Lien, L., Elliott, D. W., Sun, Y. P., and Zhang, W. X. (2006). Recent progress in zero-valent iron nanoparticles for groundwater remediation. J. Environ. Eng. Manage. 16(6), 371–380.
  • Lin, Y., Weng, C., and Chen, F. (2008). Effective removal of AB24 dye by nano/micro-size zero-valent iron. Separ. Purif. Technol. 64, 26–30.
  • Lin, Y. H., Tseng, H.-H., Wey, M.-Y., and Lin, M.-D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci. Total Environ. 408, 2260–2267.
  • Liou, Y. H., Lo, S., Kuan, W. H., Lin, C., and Weng, S. C. (2006). Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res. 40, 2485–2492.
  • Liu, H. B., Chen, T. H., Chang, D. Y., Chen, D., Liu, Y., He, H. P., Yuan, P., and Frost, R. (2012). Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Mater. Chem. Phys. 133, 205–211.
  • Liu, Y. Q., Majetich, S. A., Tilton, R. D., Sholl, D. S., and Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol 39, 1338–1345.
  • Liu, Y., Phenrat, T., and Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on nZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol. 41, 7881–7887.
  • Liu, Y., Shen, J. M., Chen, Z. L., and Liu, Y. (2011). Degradation of p-chloronitrobenzene in drinking water by manganese silicate catalyzed ozonation. Desalination 279, 219–224.
  • Lowry, G. V., and Johnson, K. M. (2004). Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38, 5208–5216.
  • Ludwig, R. D., Su, C., Lee, T. R., Wilkin, R. T., Acree, S. D., Ross, R. R., and Keeley, A. (2007). In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environ. Sci. Technol. 41, 5299–5305.
  • Lv, X., Xu, J., Jiang, G., Tang, J., and Cut, X. (2012). Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions. J. Colloid Interface Sci. 369, 460–469.
  • Madhavi, V., Reddy, A. V. B., Reddy, K. G., and Madhavi, G. (2012). A simple method for the determination of efficiency of stabilized Fe0 nanoparticles for detoxification of chromium (VI) in water. J. Chem. Pharm. Res. 4, 1539–1545.
  • Matheson, L. J., and Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045–2053.
  • Morgada, M. E., Levy, I. K., Salomone, V., Farias, S. S., Lopez, G., and Litter, I. M. (2009). Arsenic (V) removal with nanoparticulate zerovalent iron: Effect of UV light and humic acids. Catal. Today 143, 261–268.
  • Morrison, I. D., and Ross, S. (2002). Colloidal dispersions: suspensions, emulsions, and foams. New York: Wiley.
  • Nazlı, E. (2008). Characterization of the adsorption behavior of aqueous Cd(II) and Ni(II) ions on nanoparticles of zero-valent iron. Master's thesis, School of Engineering and Science of İzmir Institute of Technology, Turkey.
  • Nhung, N. T., and Thuong, N. T. K. (2008). Research on the removal of hexavalent chromium from aqueous solution by iron nanoparticles. VNU J. Sci. (Nat. Sci. Technol.) 233–237.
  • O'Hara, S., Krug, T., Quinn, J., Clausen, C., and Geiger, C. (2006). Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation 16, 35–56.
  • O'Carroll, D., Sleep, B., Krol, M., Boparai, H., and Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122.
  • O'Hannesin, S. F. and Gillham, R. W. (1998). Long-term performance of an in situ ‘ironwall’ for remediation of VOCs. Groundwater 36, 164–170.
  • Olegario, J. T., Yee, N., Miller, M., Sczepaniak, J., and Manning, B (2010). Reduction of Se (VI) to Se(-II) by zerovalent iron nanoparticle suspensions. J. Nanopart. Res. 12, 2057–2068.
  • Orth, W. S., and Gillham, R. W. (1996). Dechlorination of trichloroethene in aqueous solution using Fe(0). Environ. Sci. Technol. 30, 66–71.
  • Phenrat, T., Long, T. C., Lowry, G. V., and Veronesi, B. (2009). Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol. 43, 195–200.
  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., and Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41, 284–290.
  • Ponder, S. M., Darab, J. G., and Mallouk, T. E. (2000). Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nano-scale zero-valent iron. Environ. Sci. Technol. 34, 2564–2569.
  • Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L. F., Shuh, D. K., and Mallouk, T. E. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem. Mater. 13, 479–486.
  • Poursaberi, T., Konoz, E., Sarrafi, A. H. M., Hassanisadi, M., and Hajifathli, F. (2012). Application of nanoscale zero-valent iron in the remediation of DDT from contaminated water. Chem. Sci. Trans. 1, 658–668.
  • Pradhan, A. A., and Gogate, P. R. (2010). Degradation of p-nitro phenol using acoustic cavitation and Fenton chemistry. J. Hazard. Mater. 173, 517–522.
  • Puls, R. W., Paul, C. J., and Powell, R. M. (1999). The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl. Geochem. 14, 989–1000.
  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O'Hara, S., Krug, T., Major, D., Yoon, W. S., Gavaskar, A., and Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 39, 1309–1318.
  • Reijnders, L. (2006). Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J. Clean. Prod. 14, 124–133.
  • Ryu, A., Jeong, S., Jang, A., and Choi, H. (2011). Reduction of highly concentrated nitrate using nanoscale zero-valent iron: Effects of aggregation and catalyst on reactivity. Appl Catal B: Environ. 105, 128–135.
  • Saad, R., Thiboutot, S., Ampleman, G., Dashan, W., and Hawari, J. (2010). Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15). Chemosphere 81, 853–858.
  • Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water saturated sand columns. Environ. Sci. Technol. 42, 3349–3355.
  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett. 5, 2489–2494.
  • Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ. Eng. Sci. 24, 45–57.
  • Satapanajaru, T., Chompuchan, C., Suntornchot, P., and Pengthamkeerati, P. (2011). Enhancing decolorization of reactive black 5 and reactive red 198 during nano zerovalent iron treatment. Desalination 266, 218–230.
  • Selvarani, M., and Prema, P. (2012). Removal of toxic metal hexavalent chromium [cr (vi)] from aqueous solution using starch – stabilized nanoscale zerovalent iron as adsorbent: Equilibrium and kinetics. Int. J. Environ. Sci. 2, 1962–1975.
  • Shen, J. M., Chen, Z. L., Xu, Z. Z., Li, X. Y., Xu, B. B., and Qi, F. (2008). Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J. Hazard. Mater. 152, 1325–1331
  • Shi, L., Lin, Y., Zhang, X., and Chen, Z. (2011). Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr (VI) from aqueous solution. Chem. Eng. J. 171, 612–617.
  • Shih, Y. H., Hsu, C. Y., and Su, Y. F. (2011). Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Separ. Purif. Technol. 76, 268–274.
  • Shin, K., and Cha, D. K. (2008). Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72, 257–262.
  • Shu, H., Chang, M., Chen, C., and Chen, P. (2010). Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. J. Hazard. Mater. 184, 499–505.
  • Singh, R., Misra, V., and Singh, R. P. (2011). Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J. Nanopart. Res. 13, 4063–4073.
  • Sinha, A., and Bose, P. (2006). Dehalogenation of 2-chloronapthalene by cast iron. Water Air Soil Poll. 172, 375–390.
  • Sirk, K. M., Saleh, N. B., Phenrat, T., Kim, H.-J., Dufour, B., Ok, J., Golas, P. L., Matyjaszewski, K., Lowry, G. V., and Tilton, R. D. (2009). Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ. Sci. Technol. 43, 3803–3808.
  • Stumm, W., and Morgan, J. J. (1996). Aquatic chemistry (3rd ed.). New York: Wiley.
  • Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X., and Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 120, 47–56.
  • Sun, Y. P., Li, X. Q., Zhang, W. X., and Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspects 308, 60–66.
  • Tanboonchuy, V., Hsu, J., Grisdanurak, N., and Liao, C. (2011). Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. J. Hazard. Mater. 186, 2123–2128.
  • Tiraferri, A., Chen, K.-L., Sethi, R., and Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J. Colloid Interface Sci. 324, 71–79.
  • Tiraferri, A., and Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J. Nanopart. Res. 11, 635–645.
  • Tratnyek, P. G., and Johnson, R. L. (2006). Nanotechnologies for environmental clean up. Nano Today 1, 44–48.
  • U.S. Environmental Protection Agency. (2008a). Brownfields and land revitalization programs: changing American land and lives. Report number: EPA 560-F-08-241. Washington, DC: Office of Solid Waste and Emergency Response.
  • U.S. Environmental Protection Agency. (2008b). Nanotechnology for site remediation fact sheet. Report number: EPA 542-F-08-009. Washington, DC: Office of Solid Waste and Emergency Response.
  • U.S. Environmental Protection Agency. (2010). Field scale Remediation Experience using Iron Nanoparticles and Evolving Risk-Benefit Understanding, U.S. EPA Technology Innovation and Field Services Division and Contaminated Land: Applications in Real Environments (CL:AIRE) https://clu-in.org/conf/tio/nano-iron_121410/ (Accessed 02/12/2015).
  • Uzum, C., Shahwan, T., Eroglu, A. E., Lieberwirth, I., Scott, T. B., and Hallam, K. R. (2008). Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem. Eng. J. 144, 213–220.
  • Uzum, C., Shahwan, T., Eroglu, A. E., Lieberwirth, I., Scott, T. B., and Hallam, K. R. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay Sci. 43, 172–181.
  • Vogel, T. M., Criddle, C. S., and McCarty, P. L. (1987). ES critical reviews: Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21, 722–736.
  • Wang, C. B., and Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156.
  • Wang, C. M., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., and Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131, 8824–8832.
  • Wen, Z., Zhang, Y., and Dai, C. (2014). Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf. A: Physicochem. Eng. Aspects 457, 433–440.
  • Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D., and Biswas, P. (2006). Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345.
  • Wu, D., Shen, Y., Ding, A., Qiu, M., Yang, Q., and Zheng, S. (2013). Phosphate removal from aqueous solutions by nanoscale zero-valent iron. Environ. Technol. 34, 2663–2669.
  • Wu, L., Shamsuzzoha, M., and Ritchie, S. M. C. (2005). Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. J. Nanopart. Res. 7, 469–476.
  • Xi, Y., Megharaj, M., and Naidu, R. (2011). Dispersion of zerovalent iron nanoparticles onto bentonites and use of these catalysts for orange II decolourization. Appl. Clay Sci. 53, 716–722.
  • Xie, L., and Shang, C. (2005). Role of humic acid and quinine model compounds in bromated reduction by zerovalent iron. Environ. Sci. Technol. 39, 1092–1100.
  • Yan, W., Herzing, A. A., Kiely, C. J., and Zhang, W. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. J. Contam. Hydrol. 118, 96–104.
  • Yang, G. C. C., Tu, H., and Hung, C. (2007). Stability of nanoiron slurries and their transport in the subsurface environment. Separ. Purif. Technol. 58, 166–172.
  • Yildirim, I. Z., and Prezzi, M. (2011). Chemical, mineralogical and morphological properties of steel slag. Adv. Civil Eng. 2011, 463638.
  • You, Y., Han, J., Chiu, P. C., and Jin, Y. (2005). Removal and inactivation of waterborne viruses using zerovalent iron. Environ. Sci. Technol. 39, 9263–9269.
  • Zhang, M., He, F., Zhao, D., and Hao, X. (2011). Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Res. 45, 2401–2414.
  • Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5, 323–332.
  • Zhang, X., Lin, S., Lu, X., and Chen, Z. (2010). Removal of Pb (II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem. Eng. J. 163, 243–248.
  • Zhang, X. W., and Elliott, D. W. (2006). Applications of iron nanoparticles for groundwater remediation. Remediation 16, 7–21.
  • Zhao, Z. S., Liu, J. F., Tai, C., Zhou, Q. F., Hu, J. T., and Jiang, G. B. (2008). Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin. Sci. China Series B: Chem. 51, 186–192.
  • Zhu, B.-W., Lim, T.-T., and Feng, J. (2006). Reductive dechlorination of 1 2, 4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere 65, 1137–1143.
  • Zhu, B.-W., Lim, T.-T., and Feng, J. (2008). Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions. Environ. Sci. Technol. 42, 4513–4519.
  • Zhu, H., Jia, Y., Wu, X., and Wang, H. (2009). Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 172, 1591–1596.
  • Ziajahromi, S., Zand, A. D., and Khanizadeh, M. (2012). Nitrate removal from water using synthesis nanoscale zero-valent iron (nZVI). International Conference on Applied Life Sciences (ICALS2012), Turkey, 10–12 September 2012, 59–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.