1,376
Views
87
CrossRef citations to date
0
Altmetric
Original Articles

Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations

, , , , , & show all
Pages 592-634 | Published online: 26 Apr 2016

References

  • Agler, M. T., Wrenn, B. a, Zinder, S. H., and Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. TRENDS in Biotechnology, 29(2), 70–78.
  • Agler, M. T., Spirito, C. M., Usack, J. G., Werner, J. J., and Angenent, L. T. (2012a). Chain elongation with reactor microbiomes: Upgrading dilute ethanol to medium-chain carboxylates. Energy & Environmental Science, 5(8), 8189–8192.
  • Agler, M. T., Werner, J. J., Iten, L. B., Dekker, A., Cotta, M. A., Dien, B. S., and Angenent, L. T. (2012b). Shaping reactor micrbiomes to produce the fuel precursor n-butyrate from pretreated cellulosic hydrolysates. Environmental Science and Technology, 46, 10229–10238.
  • Amann, R. I., Ludwig, W., and Schleifer, K.-H. (1995). Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.
  • Angenent, L. T., Karim, K., Al Dahhan, M. H., Wrenn, B. A., and Dominguez Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS in Biotechnology, 22(9), 477–485.
  • Angenent, L. T., and Kleerebezem, R. (2011). Crystal ball. Microbial Biotechnology, 4, 109–137.
  • Arooj, M. F., Han, S.-K. K., Kim, S.-H. H., Kim, D.-H. H., and Shin, H.-S. S. (2008). Effect of HRT on ASBR converting starch into biological hydrogen. International Journal of Hydrogen Energy, 33(22), 6509–6514.
  • Arslan, D., Steinbusch, K. J. J., Diels, L., De Wever, H., Buisman, C. J. N., and Hamelers, H. V. M. (2012). Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation. Bioresource Technology, 118, 227–234.
  • Arslan, D., Steinbusch, K. J. J., Diels, L., De Wever, H., Hamelers, H. V. M., and Buisman, C. J. N. (2013). Selective carboxylate production by controlling hydrogen, carbon dioxide and substrate concentrations in mixed culture fermentation. Bioresource Technology, 136, 452–460.
  • Badiei, M., Jahim, J. M., Anuar, N., and Sheikh Abdullah, S. R. (2011). Effect of hydraulic retention time on biohydrogen production from palm oil mill effluent in anaerobic sequencing batch reactor. International Journal of Hydrogen Energy 36(10), 5912–5919.
  • Banerjee, A., Elefsiniotis, P., and Tuhtar, D. (1999). The effect of addition of potato-processing wastewater on the acidogenesis of primary sludge under varied hydraulic retention time and temperature. Journal of Biotechnology, 72, 203–212.
  • Bastidas-Oyanedel, J.-R. R., Mohd-Zaki, Z., Zeng, R. J., Bernet, N., Pratt, S., Steyer, J.-P. P., and Batstone, D. J. (2012). Gas controlled hydrogen fermentation. Bioresource Technology, 110, 503–9.
  • Bengtsson, S., Hallquist, J., Werker, A., and Walender, T. (2008). Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochemical Engineering Journal, 40, 492–499.
  • Buque-Taboada, E., Straathof, A., Heijnen, J., and van der Wielen, L. (2006). In situ product recovery (ISPR) by crystallization: Basic principles, design, and potential applications in whole-cell biocatalysis. Applied Microbiology and Biotechnology, 71(1), 1–12.
  • Buckel, W., Janssens, P. H., Schuhmann, A., Eikmanns, U., Messner, P., Sleytr, U., and Liesack, W. (1994). Clostridium viride sp. nov., a strickly anaerobic bacterium using 5-aminovalerate as growth substrate previously as signed to Clostridium aminovalericum. Archieves Microbiolology, 162, 387–394.
  • Chang, J. S., Lee, K. S., and Lin, P. J. (2002). Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy, 27, 1167–1174.
  • Chen, C., and Lin, C. (2003). Using sucrose as a substrate in an anaerobic hydrogen-producing reactor. Advances in Environmental Resources, 7(3), 695–699.
  • Chen, C. C., Lin, C. Y., and Lin, M. C. (2002). Acid-base enrichment enhances anaerobic hydrogen production process. Applied Microbiology and Biotechnology, 58(2), 224–228.
  • Chen, Y., Jiang, S., Yuan, H., Zhou, Q., and Gu, G. (2007). Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 41(3), 683–689.
  • Chen, Y., Li, X., Zheng, X., and Wang, D. (2013). Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 47, 615–622.
  • Chan, W., and Holtzapple, M. (2003). Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation. Applied Biochemical Biotechnology, 111, 93–112.
  • Coats, E. R., Gregg, M., and Crawford, R. L. (2011). Effect of organic loading and retention time on dairy manure fermentation. Bioresource Technology, 102(3), 2572–2577.
  • Cohen, A., Distel, B., van Deursen, A., Breure, A., and van Andel, J. (1985). Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: Changes induced by discontinuous or low-rate feed supply. Antonie van Leeuwenhoek, 51, 179–192.
  • Conrad, R., and Klose, M. (2000). Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots. FEMS Microbiology Ecology, 34(1), 27–34.
  • Danner, H. R. B., and Braun, R. (1999). Biotechnology for the production of commodity chemicals from biomass. Chemical Society Reviews, 28(6), 395–405.
  • Drake, H. L., Küsel, K., and Matthies, C. (2006). Acetogenic prokaryotes. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., and Stackebrandt, E. (Eds.), The prokaryotes (pp. 354–420). New York, NY: Springler-Verlag..
  • Drake, H. L., Daniel, S. L., Kusel, K., Matthies, C., Kuhner, C., and Stromeyer, S.-B. (1997). Acetogenic bacteria: What are the in-situ consequences of their diverse metabolic versatilities? BioFactors, 6, 13–24.
  • De Gioannis, G., Muntoni, A., Polettini, A., and Pomi, R. (2013). A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Management, 33, 1345–1361.
  • De Mes, T. Z. D., Stams, A. J. M., Reith, J. H., and Zeeman, G. (2003). Methane Production by Anaerobic Digestion of Wastewater and Solid Wastes. In Reith, J. H., Wijffels, R. H., and Barten, H. (Eds.), Bio-methane and bio-hydrogen (pp. 58–102). Petten: Dutch Biological Hydrogen Foundation..
  • Ding, H. B. B., Tan, G. A. Y., and Wang, J. Y. Y. (2010). N-caproate formation in mixed-culture fermentative hydrogen production. Bioresource Technology, 101(24), 9550–9559.
  • Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., and Yu, Z. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy, 34(2), 812–820.
  • Fang, H. H. P., Li, C., and Zhang, T. (2006). Acidophilic biohydrogen production from rice slurry. International Journal of Hydrogen Energy, 31(6), 683–692.
  • Fang, H. H. P., and Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82(1), 87–93.
  • Feng, L., Chen, Y., and Zheng, X. (2009). Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: The effect of pH. Environmental Science and Technology, 43(12), 4373–4380.
  • Fu, Z., and Holtzapple, M. (2011). Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse. Applied Microbiology and Biotechnology, 90, 1669–1679.
  • Gallert, C., and Winter, J. (2005). Bacterial metabolism in wastewater treatment systems. In Jördening, H. J. and Winter, J. (Eds.), Environmental biotechnology: Concepts and applications (pp. 1–48). Weinheim: Wiley-VCH.
  • Ghosh, S., and Pohland, F. G. (1974). Kinetics of substrate assimilation and product formation in anaerobic digestion. Journal of Environmental Federation, 46, 748–759.
  • Gomez, X., Cuetos, M. J., Prieto, J. I., and Moran, A. (2009). Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renewable Energy, 34, 970–975.
  • Grootscholten, T. I. M., Steinbusch, K. J. J., Hamelers, H. V. M., and Buisman, C. J. N. (2012). Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresource Technology, 135, 440–445.
  • Hafez, H., Nakhla, G., El. Naggar, M. H., Elbeshbishy, E., Baghchehsaraee, B., and Naggar, M. H. (2010). Effect of organic loading on a novel hydrogen bioreactor. International Journal of Hydrogen Energy, 35(1), 81–92.
  • Han, S.-K. K., and Shin, H.-S. S. (2004). Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy, 29(6), 569–577.
  • Hawkes, F. R., Dinsdale, R., Hawkes, D. L., and Hussy, I. (2002). Sustainable fermentative hydrogen production: Challenges for process optimisation. International Journal of Hydrogen Energy, 27(11–12), 1339–1347.
  • Hollister, E. B., Forrest, E. K., Heather, H. W., Ebbole, D. J., Malfatti, S. A., Tringe, S. G., Holtzapple, M. T., and Gentry, T. J. (2010). Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production. Bioenergy and Biofuels, 88, 389–399.
  • Holtzapple, M., Davison, R., Ross, M., Aldrett Lee, S., Nagwani, M., Lee, C. M., Lee, C., Adelson, S., Kaar, W., Gaskin, D., Shirage, H., Chang, N. S., Chang, V. S., and Loescher, E. M. (1999). Biomass conversion to mixed alcohol fuels using the MixAlco process. Applied Biochemistry and Biotechnology, 79(1), 609–631.
  • Holtzapple, M., and Granda, C. (2009). Carboxylate Platform: The MixAlco Process Part 1: Comparison of Three Biomass Conversion Platforms. Applied Biochemistry and Biotechnology, 156(1), 95–106.
  • Horiuchi, J. I., Shimizu, T., Tada, K., Kanno, T., and Kobayashi, M. (2002). Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource Technology, 82(3), 209–213.
  • Hussy, I., Hawkes, F. R., Dinsdale, R., and Hawkes, D. L. (2003). Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnology and Bioengineering, 84(6), 619–626.
  • Hussy, I., Hawkes, F. R., Dinsdale, R., and Hawkes, D. L. (2005). Continuous fermentative hydrogen production from sucrose and sugarbeet. International Journal of Hydrogen Energy, 30(5), 471–483.
  • Inanc, B., Matsui, S., and Ide, S. (1999). Propionic acid accumulation in anaerobic digestion of carbohydrates: An investigation on the role of hydrogen gas. Water Science and Technology, 40, 93–100.
  • Jonke, A., and Michal, G. (2007). Catalytic activity of enzymes. In Wolfgang, A. (Ed.), Enzymes in industry production and application (pp. 13–33). Weinheim: Wiley VCH.
  • Khanal, S. K., Chen, W.-H. H., Li, L., and Sung, S. (2004). Biological hydrogen production: Effects of pH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131.
  • Kim, D. H., Kim, S. H., and Shin, H. S. (2009). Hydrogen fermentation of food waste without inoculum addition. Enzyme and Microbial Technology, 45, 181–187.
  • Kim, D. H., Shin, H. S., and Kim, S. H. (2012a). Enhanced H2 fermentation of organic waste by CO2 sparging. International Journal of Hydrogen Energy, 37, 15563–15568.
  • Kim, D.-H. H., Han, S.-K. K., Kim, S.-H. H., and Shin, H.-S. S. (2006). Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy, 31(15), 2158–2169.
  • Kim, D.-H. H., Kim, S.-H. H., Jung, K.-W. W., Kim, M.-S. S., and Shin, H.-S. S. (2011a). Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Bioresource Technology, 102, 8646–8652.
  • Kim, D.-H. H., Kim, S.-H. H., Kim, H.-W. W., Kim, M.-S. S., and Shin, H.-S. S. (2011b). Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresource Technology, 102(18), 8501–8506.
  • Kim, I. S., Hwang, M. H., Jang, N. J., Hyun, S. H., and Lee, S. T. (2004). Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. International Journal of Hydrogen Energy, 29(11), 1133–1140.
  • Kim, T. H., Lee, Y., Chang, K. H., and Hwang, S. J. (2012b). Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation. Bioresource Technology, 103, 136–141.
  • Kleerebezem, R., and Stams, A. J. M. (2000). Kinetics of syntrophic cultures: A theoretical treatise on n-butyrate fermentation. Biotechnology and Bioengineering, 67(5), 529–543.
  • Kleerebezem, R., and van Loosdrecht, M. C. M. (2007). Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 18(3), 207–212.
  • Komemoto, K., Lim, Y. G., Nagao, N., Onoue, Y., Niwa, C., and Toda, T. (2009). Effect of temperature on VFA's and biogas production in anaerobic solubilization of food waste. Waste Management, 29, 2950–2955.
  • Kumar, G., Park, J. H., Kim, M. S., Kim, D. H., and Kim, S. H. (2014). Hydrogen fermentation of different galactose–glucose compositions during various hydraulic retention times (HRTs). International Journal of Hydrogen Energy, 39, 3(35), 20625–20631.
  • Kuchta, R. D., and Abeles, R. H. (1985). Lactate reduction in Clostridium propionicum. The Journal of Biological Chemistry, 260(24), 13181–13189.
  • Kyazze, G., Dinsdale, R., Hawkes, F. R., Guwy, A. J., Premier, G. C., and Donnison, I. S. (2008). Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresource Technology, 99(18), 8833–8839.
  • Kyazze, G., Martinez-Perez, N., Dinsdale, R., Premier, G. C., Hawkes, F. R., Guwy, A. J., and Hawkes, D. L. (2005). Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnology and Bioengineering, 93(5), 971–979.
  • Lay, J. J., Lee, Y. J., and Noike, T. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 33, 2579–2586.
  • Lee, K.-S. S., Hsu, Y.-F. F., Lo, Y.-C. C., Lin, P.-J. J., Lin, C.-Y. Y., and Chang, J.-S. S. (2008a). Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 33(5), 1565–1572.
  • Lee, Z. K., Li, S. L., Lin, J. S., Wang, Y. H., Kuo, P. C., and Cheng, S. S. (2008b). Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. International Journal of Hydrogen Energy, 33, 5234–5241.
  • Lee, W. S., Chua, A. S. M., Yeoh, H. K., and Ngoh, G. C. (2014). A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal, 235, 83–99.
  • Lemos, P. C., Serafim, L. S. L. S., and Reis, M. A. M. (2006). Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. Journal of Biotechnology, 122(2), 226–238.
  • Lewis, V., and Yang, S. T. (1992). Propionic acid fermentation by Propionibacterium acidipropionici: Effect of growth substrate. Applied Microbiology and Biotechnology, 47, 615–622.
  • Li, S. L. L., Kuo, S. C. C., Lin, J. S. S., Lee, Z. K. K., Wang, Y. H. H., and Cheng, S. S. S. (2008). Process performance evaluation of intermittent continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. International Journal of Hydrogen Energy, 33 (5), 1522–1531.
  • Li, W.-W. W., and Yu, H.-Q. Q. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972–982.
  • Lim, S.-J. J., Kim, B. J., Jeong, C.-M. M., Choi, J. dal-rae, Ahn, Y. H., and Chang, H. N. (2008). Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresource Technology, 99(16), 7866–7874.
  • Lin, C.-Y. Y., and Jo, C.-H. H. (2003). Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology & Biotechnology, 78(6), 678–684.
  • Liu, H., and Fang, H. H. P. (2002). Hydrogen production from wastewater by acidogenic granular sludge. Water Science & Technology, 47(1), 153–158.
  • Liu, X., Li, R., and Han, M. J. L. (2013). Hydrogen and metahne production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: Substrate conversion and energy yield. Bioresource Technology, 146, 317–323.
  • Luo, G., Xie, L., Zou, Z., Wang, W., and Zhou, Q. (2010). Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresource Technology, 101(3), 959–964.
  • Ma, J., Carballa, M., Van De Caveye, P., and Verstraete, W. (2009). Enhanced propionic acid degradation (EPAD) system: Proof of principle and feasibility. Water Research, 43(13), 3239–3248.
  • McInerney, M.J, Bryant, M. P., Herpell, R. B., and Costerton, J. W. (1981). Syntrophmonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid oxidizing bacterium. Applied Environmental Microbiology, 41(1), 1029–1039.
  • Massanet-Nicolau, J., Guwy, A., Dinsdale, R., Premier, G., and Esteves, S. (2010). Production of hydrogen from sewage biosolids in a continuously fed bioreactor: Effect of hydraulic retention time and sparging. International Journal of Hydrogen Energy, 35(2), 469–478.
  • Mercier, P., Yerushalmi, L., Rouleau, D., and Dochain, D. (2007). Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus. Journal of Chemical Technology & Biotechnology, 55(2), 111–121.
  • Metcalf, and Eddy, I., 2003. Wastewater engineering: Treatment and reuse (4th ed.). Boston: McGraw-Hill.
  • Michel-Savin, D., Marchal, R., and Vandecasteele, J. P. (1990). Control of the selectivity of butyric acid production and improvement of fermentation performance Clostridium tyrobutyricum. Applied Microbiology Biotechnology, 32, 387–392.
  • Min, K. S., Khan, A. R., Kwon, M. K., Jung, Y. J., Yun, Z., and Kiso, Y. (2005). Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids. Journal of Chemical Technology & Biotechnology, 80(8), 909–915.
  • Mohan, V. S., Lalit, B. V., and Sarma, P. N. (2008). Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresource Technology, 99(1), 59–67.
  • Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P., and Werker, A. (2011). Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresource Technology, 102, 3089–3097.
  • Nachiappan, B., Fu, Z., and Holtzapple, M. T. (2011). Ammonium carboxylate production from sygarcane trash using long-term air-lime pretreatment followed by mixed culture fermentation. Bioresource Technology, 102, 4210–4217.
  • Neyens, E., Baeyens, J., Dewil, R., and De Heyder, B. (2004). Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials, 106B, 83–92.
  • Oh, S.-E. E., Van Ginkel, S., and Logan, B. E. (2003). The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production. Environmental Science & Technology, 37(22), 5186–5190.
  • Okamoto, M., Miyahara, T., Mizuno, O., and Noike, T. (2000). Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Science and Technology, 41(3), 25–32.
  • Pant, D., Arslan, D., Van Bogaert, G., Alvarez, G. Y., De Wever, H., Diels, L., and Vanbroekhoven, K. (2013). Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environmental Technology, 34, 1935–1945.
  • Park, W., Hyun, S. H., Oh, S. E. E., Logan, B. E., and Kim, I. S. (2005). Removal of headspace CO2 increases biological hydrogen production. Environmental Science Technology, 39(12), 4416–4420.
  • Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B., and Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488(7411), 320–328.
  • Pham, T. N., Nam, W. J., Jeon, Y. J., and Yoon, H. H. (2012). Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresource Technology, 124, 500–503.
  • Pratt, S., Liew, D., Batstone, D. J., Werker, A. G., Morgan-Sagastume, F., and Lant, P. A. (2012). Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. Journal of Biotechnology, 159(1–2), 38–43.
  • Ragsdale, S. W., and Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochemica et Biophysica Acta, 1784, 1873–1898.
  • Ren, N., Xing, D., Rittmann, B. E., Zhao, L., Xie, T., and Zhao, X. (2007). Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environmental Microbiology, 9(5), 1112–1125.
  • Ren, N., Guo, W., Wang, X., Xiang, W., Liu, B., Ding, J., and Chen, Z. (2008). Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. International Journal of Hydrogen Energy, 33 (16), 4318–4324.
  • Seedorf, H., Fricke, W. F., Veith, B., Brüggemann, H., Liesegang, H., Strittmatter, A., Miethke, M., Buckel, W., Hinderberger, J., Li, F., Hagemeier, C., Thauer, R. K., and Gottschalk, G. (2008). The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proceedings of the National Academy of Sciences, 105, 2128–2133.
  • Shin, H.-S. S., Youn, J.-H. H., and Kim, S.-H. H. (2004). Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy, 29(13), 1355–1363.
  • Smith, D. P., and McCarty, P. L. (1989). Reduced product formation following perturbation of ethanol- and propionate-fed methanogenic CSTRs. Biotechnology and Bioengineering, 34(7), 885–895.
  • Stams, A. J. M. (1994). Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek, 66, 271–294.
  • Steinbusch, K. J. J., Hamelers, H. V. M., and Buisman, C. J. N. (2008). Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Research, 42, 4059–4066.
  • Steinbusch, K. J. J., Hamelers, H. V. M., Plugge, C. M., and Buisman, C. J. N. (2011). Biological formation of n-caproate and caprylate from acetate: Fuel and chemical production from low grade biomass. Energy & Environmental Science, 4(1), 216–224.
  • Tao, Y., Chen, Y., Wu, Y., He, Y., and Zhou, Z. (2007). High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. International Journal of Hydrogen Energy, 32(2), 200–206.
  • Temudo, M. F., Kleerebezem, R., and van Loosdrecht, M. (2007). Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. Biotechnology and Bioengineering, 98(1), 69–79.
  • Ten Brummeler, E., Horbach, H. C. J. M., and Koster, I. W. (1991). Dry anaerobic batch digestion of the organic fraction of municipal solid waste. Journal of Chemical Technology & Biotechnology, 50(2), 191–209.
  • Thanakoses, P., Black, A. S., and Holtzapple, M. T. (2003). Fermentation of corn stover to carboxylic acids. Biotechnology and Bioengineering, 83, 191–200.
  • Thauer, R. K., Jungermann, K., and Decker, K. (1977). Energy conversation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41(1), 100–180.
  • Ueno, Y., Fukui, H., and Goto, M. (2007). Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environmental Science & Technology, 41(4), 1413–1419.
  • Ueno, Y., Kawai, T., Sato, S., Otsuka, S., and Morimoto, M. (1995). Biological production of hydrogen from cellulose by natural anaerobic microflora. Journal Fermentation Bioengineering, 79(4), 395–397.
  • Ueno, Y., Otsuka, S., and Morimoto, M. (1996). Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering, 82(2), 194–197.
  • Valdez-Vazquez, I., and Poggi-Varaldo, H. M. H. M. (2009). Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews, 13(5), 1000–1013.
  • Valdez Vazquez, I., Riosleal, E., Esparzagarcia, F., Cecchi, F., and Poggivaraldo, H. (2005). Semi-continuous solid substrate anaerobic reactors for H production from organic waste: Mesophilic versus thermophilic regime. International Journal of Hydrogen Energy, 30(13–14), 1383–1391.
  • Van Den Heuvel, J. C., and Beeftink, H. H. (1988). Kinetic effects of simultaneous inhibition by substrate and product. Biotechnology and Bioengineering, 31(7), 718–724.
  • Van den Heuvel, J., Verschuren, P., Beeftink, H., and de Beer, D. (1992). Determination of the critical concentration of inhibitory products in a repeated fed-batch culture. Biotechnology Techniques, 6(1), 33–38.
  • Veeken, A., Kalyuzhnyi, S., Scharff, H., and Hamelers, B. A. (2000). Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering, 126(12), 1076–1081.
  • Veeken, A., and Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69(3), 249–254.
  • Wang, B., Wan, W., and Wang, J. (2008). Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. International Journal of Hydrogen Energy, 33(23), 7013–7019.
  • Wang, B., Li, Y., and Ren, N. (2013). Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time. International Journal of Hydrogen, 38(11), 4361–4367.
  • Wang, J., and Wan, W. (2008). Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. International Journal of Hydrogen Energy, 33(12), 2934–2941.
  • Wang, J., and Wan, W. (2009). Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 34(2), 799–811.
  • Wang, L., Zhou, Q., and Li, F. T. (2006). Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass and Bioenergy, 30(2), 177–182.
  • Wang, Y.-Y. Y., Ai, P., Hu, C.-X. X., and Zhang, Y.-L. L. (2011). Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose. International Journal of Hydrogen Energy, 36(1), 390–396.
  • Wu, S.-Y. Y., Hung, C.-H. H., Lin, C.-N. N., Chen, H.-W. W., Lee, A.-S. S., and Chang, J.-S. S. (2005). Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnology and Bioengineering, 93(5), 934–946.
  • Yu, H. Q., and Fang, H. H. P. (2003). Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: Influence of pH and temperature. Water Research, 37(1), 55–66.
  • Yu, H.-Q. Q., and Mu, Y. (2006). Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Biotechnology and Bioengineering, 94(5), 988–995.
  • Yu, G. H., He, P. J., Shao, L. M., and He, P. P. (2008). Towards understanding the mechanism of improving the production of volatile fatty acids from activated sludge at pH 10.0. Water Research, 42, 4637–4644.
  • Yuan, Q., Sparling, R., and Oleszkiewicz, J. A. (2011). VFA generation from waste activated sludge: Effect of temperature and mixing. Chemosphere, 82(4), 603–607.
  • Zhang, P., Chen, Y., and Zhou, Q. (2009a). Waste activated sludge hydrolysis and short chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research, 43, 3735–3742.
  • Zhang, C., Yang, H., Yang, F., and Ma, Y. (2009b). Current Progress on Butyric Acid Production by Fermentation. Current Microbiology, 59(6), 656–663.
  • Zhao, Q.-B. B., and Yu, H.-Q. Q. (2008). Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values. Bioresource Technology, 99(5), 1353–1358.
  • Zhu, H., Parker, W., Basnar, R., Proracki, A., Falletta, P., Béland, M., and Seto, P. (2008). Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. International Journal of Hydrogen Energy, 33(14), 3651–3659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.