3,807
Views
17
CrossRef citations to date
0
Altmetric
Articles

Nonoxidative removal of organics in the activated sludge process

, , &
Pages 635-672 | Published online: 08 Apr 2016

References

  • Akanyeti, I., Temmink, H., Remy, M., and Zwijnenburg, A. (2010). Feasibility of bioflocculation in a high-loaded membrane bioreactor for improved energy recovery from sewage. Water Science & Technology, 61, 1433–1439.
  • Albuquerque, M. G. E., Carvalho, G., Kragelund, C., Silva, A. F., Crespo, M. T. B., Reis, M. A. M., and Nielsen, P. H. (2013). Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community. ISME Journal, 7, 1–12.
  • Albuquerque, M. G. E., Concas, S., Bengtsson, S., and Reis, M. A. M. (2010a). Mixed culture polyhydroxyalkanoates production from sugar molasses: The use of a 2-stage CSTR system for culture selection. Bioresource Technology, 101, 7112–7122.
  • Albuquerque, M. G., Torres, C. A., and Reis, M. A. (2010b). Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Research, 44(11), 3419–3433.
  • Alexander, W. V., Ekama, G. A., and Marais, G. v. R. (1980). The activated sludge process part 2. Application of the general kinetic model to the contact stabilization process. Water Research, 14, 1737–1747.
  • Alvarez, H. M., Mayer, F., Fabritius, D., and Steinbüchel, A. (1996). Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Archives of Microbiology, 165, 377–386.
  • Alvarez, H. M., and Steinbüchel, A. (2002). Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology, 60, 367–376.
  • Andreadakis, A. D. (1993). Physical and chemical properties of activated sludge flocs. Water Research, 27, 1707–1714.
  • Arden, E., and Lockett, W. T. (1914). Experiments on the oxidation of sewage without the aid of filters. Journal of the Society of Chemical Industry, 33, 523–539.
  • Arslan-Alaton, I., Olmez-Hanci, T., Dulekgurgen, E., and Orhon, D. (2009). Assessment of organic carbon removal by particle size distribution analysis. Environmental Engineering Science, 26, 1239–1248.
  • Banerji, S. K., Ewing, B. B., Engelbrecht, R. S., and Speece, R. E. (1968). Mechanism of starch removal in the activated sludge process. Journal Water Pollution Control Federation, 40, 16–29.
  • Barbusinski, K., and Koscielniak, H. (1995). Influence of substrate loading intensity on floc size in activated sludge process. Water Research, 29, 1703–1710.
  • Batstone, D. J., and Virdis, B. (2014). The role of anaerobic digestion in the emerging energy economy. Current Opinion Biotechnology, 27, 142–149.
  • Bengtsson, S., Werker, A., Christensson, M., and Welander, T. (2008). Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresource Technology, 99, 509–516.
  • Beun, J. J., Dircks, K., Van Loosdrech, M. C. M., and Heijnen, J. J. (2002). Poly-B-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 36, 1167–1180.
  • Beun, J. J., Paletta, F., Van Loosdrech, M. C. M., and Heijnen, J. J. (2000). Stoichiometry and kinetics of poly-B-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures. Biotechnology and Bioengineering, 67, 379–389.
  • Biggs, C. A., and Lant, P. (2000). Activated sludge flocculation: On-line determination of floc size and the effect of shear. Water Research, 34, 2542–2550.
  • Boehnke, B., Diering, B., and Zuckut, S. W. (1997a). Cost-effective wastewater treatment process for removal of organics and nutrient. Water Engineering & Management, 144, 30–35.
  • Boehnke, B., Diering, B., and Zuckut, S. W. (1997b). Cost-effective wastewater treatment process for removal of organics and nutrients. Water Engineering & Management, 144, 18–21.
  • Boehnke, B., Schulze-Rettmer, R., and Zuckut, S. W. (1998). Cost-effective reduction of high-strength wastewater by adsorption-based activated sludge technology. Water Engineering & Management, 145, 31–34.
  • Boltz, J. P., La Motta, E. J., and Madrigal, J. A. (2006). The role of bioflocculation on suspended solids and particulate COD removal in the trickling filter process. Journal of Environmental Engineering, 132, 506–513.
  • Boltz, J. P., and Motta, E. J. L. (2007). Kinetics of particulate organic matter removal as a response to bioflocculation in aerobic biofilm reactors. Water Environment Research, 79, 725–735.
  • Bruus, J. H., Nielsen, P. H., and Keiding, K. (1992). On the stability of activated sludge flocs with implications to dewatering. Water Research, 26, 1597–1604.
  • Bunch, B., and Griffin Jr., D. M. (1987). Rapid removal of colloidal substrate from domestic wastewaters. Journal Water Pollution Control Federation, 59, 957–963.
  • Bunch, B. W., and Griffin Jr., D. M. (1992). Rapid removal of colloidal organics from domestic wastewater. Water Science & Technology, 26, 2433–2436.
  • Carta, F., Beun, J. J., Van Loosdrech, M. C. M., and Heijnen, J. J. (2001). Simultaneous storage and degradation of PHB and glycogen in activated sludge cultures. Water Research, 35, 2693–2701.
  • Carvalheira, M., Oehmen, A., Carvalho, G., and Reis, M. A. (2014). The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Water Research, 64, 149–159.
  • Chakravarty, P., Mhaisalkar, V., and Chakrabarti, T. (2010). Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresource Technology, 101, 2896–2899.
  • Chua, H., and Yu, P. H. F. (1999). Production of biodegradable plastics from chemical wastewater—A novel method to reduce excess activated sludge generated from industrial wastewater treatment. Water Science & Technology, 39, 273–280.
  • Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., and McDonald, A. G. (2007). Synthesis of polyhydroxyalkanoates in municipal wastewater treatment. Water Environment Research, 79, 2396–2403.
  • Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., and McDonald, A. G. (2008). Production of natural fiber reinforced thermoplastic composites through the use of polyhydroxybutyrate-rich biomass. Bioresource Technology, 99, 2680–2686.
  • Coats, E. R., VandeVoort, K. E., Darby, J. L., and Loge, F. J. (2011). Toward polyhydroxyalkanoate production concurrent with municipal wastewater treatment in a sequencing batch reactor system. Journal of Environmental Engineering-Asce, 137, 46–54.
  • Constantine, T., Houweling, D., and Kraemer, J. T. (2012). “Doing the two-step”—Reduced energy consumption sparks renewed interest in multistage biological treatment WEFTEC 2012. Proceedings of the Water Environment Federation, pp. 5771–5783.
  • Coombs, J. A. (1922). Improvements in or Connected with the Treatment of Sewage and Other Impure Liquids. Patent Application Number: GB19210019140 19210715, Publication Number:187315 (A), IPC:C02F 03/12. 16 Oct. 1922.
  • Crombie-Quilty, M. B., and McLoughlin, A. J. (1983). The adsorption of bovine serum albumin by activated sludge. Water Research, 17, 39–45.
  • De Clippeleir, H., Vlaeminck, S. E., De Wilde, F., Daeninck, K., Mosquera, M., Boeckx, P., Verstraete, W., and Boon, N. (2013). One-stage partial nitritation/anammox at 15 degrees C on pretreated sewage: Feasibility demonstration at lab-scale. Applied Microbiology and Biotechnology, 97, 10199–10210.
  • Deinema, M. H. (1972). Bacterial flocculation and production of poly-B-hydroxybutyrate. Applied and Environmental Microbiology, 24, 857–858.
  • Diamantis, V., Eftaxias, A., Bundervoet, B., and Verstraete, W. (2014). Performance of the biosorptive activated sludge (BAS) as pre-treatment to UF for decentralized wastewater reuse. Bioresource Technology, 156, 314–321.
  • Dignac, M. F., Ginestet, P., Rybacki, D., Bruchet, A., Urbain, V., and Scribe, P. (2000). Fate of wastewater organic pollution during activated sludge treatment: Nature of residual organic matter. Water Research, 34, 4185–4194.
  • Dionisi, D., Carucci, G., Papini, M. P., Riccardi, C., Majone, M., and Carrasco, F. (2005). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39, 2076–2084.
  • Dionisi, D., Majone, M., Papa, V., and Beccari, M. (2004). Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnology and Bioengineering, 85, 569–579.
  • Dircks, K., Beun, J. J., Van Loosdrech, M. C. M., Heijnen, J. J., and Henze, M. (2001). Glycogen metabolism in aerobic mixed cultures. Biotechnology and Bioengineering, 73, 85–94.
  • Dogruel, S., Cokgor, E. U., Ince, O., Sozen, S., and Orhon, D. (2013). Potential of ultrafiltration for organic matter removal in the polymer industry effluent based on particle size distribution analysis. Environmental Science and Pollution Research, 20, 340–350.
  • Dogruel, S., Dulekgurgen, E., and Orhon, D. (2006). Effect of ozonation on chemical oxygen demand fractionation and color profile of textile wastewaters. Journal of Chemical Technology & Biotechnology, 81, 426–432.
  • Dufreche, S., Hernandez, R., French, T., Sparks, D., Zappi, M., and Alley, E. (2007). Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. Journal of the American Oil Chemists' Society, 84, 181–187.
  • Dulekgurgen, E., Dogruel, S., Karahan, O., and Orhon, D. (2006). Size distribution of wastewater COD fractions as an index for biodegradability. Water Research, 40, 273–282.
  • Duque, A. F., Oliveira, C. S., Carmo, I. T., Gouveia, A. R., Pardelha, F., Ramos, A. M., and Reis, M. A. (2014). Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: Impact on polymer composition. N Biotechnology, 31, 276–288.
  • Elimelech, M., Gregory, J., Jia, X., and Williams, R. A. (1995). Particle deposition & aggregation: Measurement, modelling and simulation. Oxford: Butterworth-Heinemann.
  • Erickson, H. P. (2009). Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online, 11, 32–51.
  • Esparza-Soto, M., and Westerhoff, P. (2003). Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 37, 2301–2310.
  • Faust, L., Temmink, H., Zwijnenburg, A., Kemperman, A. J., and Rijnaarts, H. H. (2014a). Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs. Water Research, 66, 199–207.
  • Faust, L., Temmink, H., Zwijnenburg, A., Kemperman, A. J., and Rijnaarts, H. H. (2014b). High loaded MBRs for organic matter recovery from sewage: Effect of solids retention time on bioflocculation and on the role of extracellular polymers. Water Research, 56, 258–266.
  • Fixter, L. M., and Fewson, C. (1974). The accumulation of waxes by Acinetobacter calcoaceticus N.C.I.B. 8250. Biochemical Society Transactions, 2, 944–945.
  • Frølund, B., Palmgren, R., Keiding, K., and Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30, 1749–1758.
  • Garcia-Olivares, A., and Becares, E. (1995). Calibration of a model for a A+B activated sludge pilot plant treating industrial wastewater. Water Research, 29, 2673–2680.
  • Ge, H., Batstone, D. J., and Keller, J. (2013). Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion. Water Research, 47, 6546–6557.
  • Gorini, D., Choubert, J.-M., Pimpec, P.l., and Heduit, A. (2011). Concentrations and fate of sugars, proteins and lipids during domestic and agro-industrial aerobic treatment. Water Science & Technology, 63, 1669–1677.
  • Grasso, D., Subramanian, K., Butkus, M., Strevett, K., and Bergendahl, J. (2002). A review of non-DLVO interactions in environmental colloidal systems. Re/Views in Environmental Science & Bio/Technology, 1, 17–38.
  • Gregory, J. (1989). Fundamentals of flocculation. Critical Reviews in Environmental Control, 19, 185–230.
  • Guellil, A., Thomas, F., Block, J.-C., Bersillon, J.-L., and Ginestet, P. (2001). Transfer of organic matter between wastewater and activated sludge flocs. Water Research, 35, 143–150.
  • Gujer, W., and Jenkins, D. (1975). The contact stabilization activated sludge process - oxygen utilization, sludge production and efficiency. Water Research, 9, 553–560.
  • Gumel, A. M., Annuar, M. S. M., and Chisti, Y. (2013). Recent advances in the production, recovery and applications of polyhydroxyalkanoates. Journal of Polymers and the Environment, 21, 580–605.
  • Gustavsson, D. J. I., and Tumlin, S. (2013). Carbon footprint of Scandinavian wastewater treatment plants. Water Science & Technology, 68, 887–893.
  • Hai, F. I., Yamamoto, K., and Lee, C.-H. (2014). Membrane biological reactors: Theory, modeling, design, management and applications to wastewater reuse. London, UK: IWA Publishing.
  • Haider, S., Svardal, K., Vanrolleghem, P. A., and Kroiss, H. (2003). The effect of low sludge age on wastewater fractionation (Ss, Si). Water Science & Technology, 47, 203–209.
  • Hall, J., Hetrick, M., French, T., Hernandez, R., Donaldson, J., Mondala, A., and Holmes, W. (2011). Oil production by a consortium of oleaginous microorganisms grown on primary effluent wastewater. Journal of Chemical Technology & Biotechnology, 86, 54–60.
  • Heidrich, E. S., Curtis, T. P., and Dolfing, J. (2011). Determination of the internal chemical energy of wastewater. Environmental Science & Technology, 45, 827–832.
  • Heijnen, J. J., van Loosdrecht, M. C. M., and Tijhuis, L. (1992). A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation. Biotechnology and Bioengineering, 40, 1139–1154.
  • Heimersson, S., Morgan-Sagastume, F., Peters, G. M., Werker, A., and Svanstrom, M. (2014). Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. N Biotechnol, 31, 383–393.
  • Henze, M., Grady, C. P. L., Gujer, W., Marais, G.v.R., and Matsuo, T. (1987). A general model for single-sludge wastewater treatment systems. Water Research, 21, 505–515.
  • Henze, M., Gujer, W., Mino, T., and van Loosdrech, M. C. M. (2000). Activated sludge model ASM1, ASM2, ASM2d, and ASM3. London, UK: IWA Publishing.
  • Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces B: Biointerfaces, 14, 105–119.
  • Hernandez Leal, L., Temmink, H., Zeeman, G., and Buisman, C. J. (2010). Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts. Bioresour Technol, 101, 9065–9070.
  • Higgins, M. J., and Novak, J. T. (1997). The effect of cations on the settling and dewatering of activated sludges: Laboratory results. Water Environment Research, 69, 215–224.
  • Hu, Z., Chandran, K., Smets, B. F., and Grasso, D. (2002). Evaluation of a rapid physical-chemical method for the determination of extant soluble COD. Water Research, 36, 617–624.
  • Huang, J. C., and Li, L. (2000). Enhanced primary wastewater treatment by sludge recycling. Journal of Environmental Science and Health A35, 123–145.
  • Huang, M.-H., Li, Y.-M., and Gu, G.-W. (2010). Chemical composition of organic matter in domestic wastewater. Desalination, 262, 36–42.
  • Hunter, K. A., and Liss, P. S. (1982). Organic matter and the surface charge of suspended particles in estuarine waters. Limnology and Oceanography, 27, 322–335.
  • Huynh, L. H., Do, Q. D., Kasim, N. S., and Ju, Y. H. (2011). Isolation and analysis of wax esters from activated sludge. Bioresource Technology, 102, 9518–9523.
  • Imhoff, K. (1951). Two-stage operation of activated sludge plants. Sewage and Industrial Wastes, 27, 431–433.
  • IPCC (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. New York, USA: C. U. Press.
  • Jacquel, N., Lo, C. W., Wei, Y. H., Wu, H. S., and Wang, S. S. (2008). Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochemical Engineering Journal, 39, 15–27.
  • Jimenez, J. A., La Motta, E. J., and Parker, D. S. (2005). Kinetics of removal of particulate chemical oxygen demand in the activated sludge process. Water Environment Research, 77, 437–446.
  • Jimenez, J., Miller, M., Bott, C., Murthy, S., De Clippeleir, H., and Wett, B. (2015). High-rate activated sludge system for carbon management – Evaluation of crucial process mechanisms and design parameters. Water Research, 87, 476–482.
  • Jorand, F., Block, J.-C., Palmgren, R., Nielsen, P. H., Urbain, V., and Manem, J. (1995). Biosorption of wastewater organics by activated sludge. In: J. Boudrant et al. (eds.) Recent progres en genie des procedes, Technique et Documentation-Lavoisier, France.
  • Karahan, O., Dogruel, S., Dulekgurgen, E., and Orhon, D. (2008). COD fractionation of tannery wastewaters–particle size distribution, biodegradability and modeling. Water Research, 42, 1083–1092.
  • Kargbo, D. M. (2010). Biodiesel production from municipal sewage sludges. Energy & Fuels, 24, 2791–2794.
  • Keiding, K., and Nielsen, P. H. (1997). Description of organic macromolecules from activated sludge: Effect of ionic composition. Water Research, 31, 1665–1672.
  • Koller, M., Gasser, I., Schmid, F., and Berg, G. (2011). Linking ecology with economy: Insights into polyhydroxyalkanoate-producing microorganisms. Engineering in Life Sciences, 11, 222–237.
  • La Motta, E. J., Jimenez, J. A., Josse, J. C., and Manrique, A. (2004). Role of bioflocculation on chemical oxygen demand removal in solids contact chamber of trickling filter/solids contact process. Journal of Environmental Engineering, 130, 726–735.
  • La Motta, E. J., McCorquodale, J. A., and Rojas, J. A. (2007a). Using the kinetics of biological flocculation and the limiting flux theory for the preliminary design of activated sludge. I: Model development. Journal of Environmental Engineering, 133, 104–110.
  • La Motta, E. J., Rojas, J. A., and McCorquodale, J. A. (2007b). Using the kinetics of biological flocculation and the limiting flux theory for the preliminary design of activated sludge systems. II: Experimental verification. Journal of Environmental Engineering, 133, 111–116.
  • Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., and van Loosdrecht, M. C. (2014). Full-scale partial nitritation/anammox experiences—An application survey. Water Research, 55, 292–303.
  • Lattner, D., Flemming, H.-C., and Mayer, C. (2003). 13C-NMR study of the interaction of bacterial alginate with bivalent cations. International Journal of Biological Macromolecules, 33, 81–88.
  • Lee, S. Y. (1996). Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 49, 1–14.
  • Lemos, P. C., Levantesi, C., Serafim, L. S., Rossetti, S., Reis, M. A. M., and Tandoi, V. (2008). Microbial characterisation of polyhydroxyalkanoates storing populations selected under different operating conditions using a cell-sorting RT-PCR approach. Applied Microbiology & Biotechnology, 78, 351–360.
  • Lemos, P. C., Serafim, L. S., and Reis, M. A. M. (2006). Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. Journal of Biotechnology, 122, 226–238.
  • Lenz, R. W., and Marchessault, R. H. (2005). Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. BioMacromolecules, 6, 1–8.
  • Leu, S.-Y., Chan, L., and Stenstrom, M. K. (2012). Toward long solids retention time of activated sludge processes: Benefits in energy saving, effluent quality, and stability. Water Environment Research, 84, 42–53.
  • Levine, A. D., Tchobanoglous, G., and Asano, T. (1991). Size distribution of particulate contaminants in wastewater and their impact on treatability. Water Research, 25, 911–922.
  • Li, D.-H., and Ganczaczyk, J. J. (1990). Structure of activated sludge flocs. Biotechnology and Bioengineering, 35, 57–65.
  • Li, H., Wen, Y., Cao, A., Huang, J., Zhou, Q., and Somasundaran, P. (2012). The influence of additives (Ca2+, Al3+, and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of activated sludge and their flocculation mechanisms. Bioresource Technology, 114, 188–194.
  • Lim, C.-P., Zhang, S., Zhou, Y., and Ng, W. J. (2015). Enhanced carbon capture biosorption through process manipulation. Biochemical Engineering Journal, 93, 128–136.
  • Liu, S. G., Ni, B. J., Li, W. W., Sheng, G. P., Tang, Y., and Yu, H. Q. (2011). Modeling of the contact–adsorption–regeneration (CAR) activated sludge process. Bioresource Technology, 102, 2199–2205.
  • Lotti, T., Kleerebezem, R., Hu, Z., Kartal, B., Jetten, M. S., and van Loosdrecht, M. C. (2014). Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Research, 66C, 111–121.
  • Madison, L. L., and Huisman, G. W. (1999). Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiology and Molecular Biology Reviews, 63, 21–53.
  • Majone, M., Dircks, K., and Beun, J. J. (1999). Aerobic storage under dynamic conditions in activated sludge processes. The state of the art. Water Science & Technology, 39, 61–73.
  • Majone, M., Massanisso, P., Carucci, A., Lindrea, K., and Tandoi, V. (1996). Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Science & Technology, 34, 223–232.
  • Mamais, D., Jenkins, D., and Pitt, P. (1993). A rapid physical–chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Research, 27(1), 195–197.
  • Matsché, N., and Moser, D. (1993). Operation of a two-stage activated sludge package plant for high efficiency treatment. Water Science & Technology, 28, 299–307.
  • McCarty, P. L., Bae, J., and Kim, J. (2011). Domestic wastewater treatment as a net energy producer—Can this be achieved? Environmental Science & Technology, 45, 7100–7106.
  • Mengmeng, C., Hong, C., Qingliang, Z., Shirley, S. N., and Jie, R. (2009). Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresource Technology, 100, 1399–1405.
  • Mikkelsen, L. H., and Keiding, K. (1999). Equilibrium aspects of the effects of shear and solids content on aggregate deflocculation. Advances in Colloid and Interface Science, 80, 151–182.
  • Mino, T., Liu, W.-T., Kurisu, F., and Matsuo, T. (1995). Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphorous removal processes. Water Science & Technology, 31, 25–34.
  • Mino, T., van Loosdrech, M. C. M., and Heijnen, J. J. (1998). Microbiology and biochemistry of the enhanced biological phosphorous removal process. Water Research, 32, 3193–3207.
  • Modin, O., Saheb Alam, S., Persson, F., and Wilén, B.-M. (2015). Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater. PLoS One, 10, e0119371.
  • Mondala, A., Hernandez, R., Holmes, W., French, T., McFarland, L., Sparks, D., and Haque, M. (2013). Enhanced microbial oil production by activated sludge microorganisms via co-fermentation of glucose and xylose. AIChE Journal, 59, 4036–4044.
  • Mondala, A., Liang, K., Toghiani, H., Hernandez, R., and French, T. (2009). Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource Technology, 100, 1203–1210.
  • Mondala, A. H., Hernandez, R., French, T., McFarland, L., Santo Domingo, J. W., Meckes, M., Ryu, H., and Iker, B. (2012). Enhanced lipid and biodiesel production from glucose-fed activated sludge: Kinetics and microbial community analysis. AIChE Journal, 58, 1279–1290.
  • Morgan-Sagastume, F., Karlsson, A., Johansson, P., Pratt, S., Boon, N., Lant, P., and Werker, A. (2010). Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Water Research, 44, 5196–5211.
  • Morgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., Johansson, P., Karlsson, A., Magnusson, P., Alexandersson, T., Bengtsson, S., Majone, M., and Werker, A. (2014). Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Science & Technology, 69, 177–184.
  • Muller, E. E. L., Sheik, A. R., and Wilmes, P. (2014). Lipid-based biofuel production from wastewater. Current Opinion in Biotechnology, 30, 9–16.
  • Müller-Rechberger, H., Wandl, G., Winkler, S., Svardal, K., and Matsché, N. (2001). Comparison of different operation modes of a two-stage activated sludge pilot plant for the extension of the Vienna STP. Water Science & Technology, 44, 137–144.
  • Narkis, N., Henefeld-Fourrier, S., and Rebhun, M. (1980). Volatile organic acids in raw wastewater and in physico-chemical treatment. Water Research, 14, 1215–1223.
  • Neu, T. R., and Marshall, K. C. (1990). Bacterial polymers: Physicochemical aspects of their interactions at interfaces. Journal of Biomaterials Applications, 5, 107–133.
  • Ng, H. Y., and Hermanowicz, S. W. (2005). Membrane bioreactor operation at short solids retention times: Performance and biomass characteristics. Water Research, 39, 981–992.
  • Ni, B.-J., and Yu, H.-Q. (2012). Microbial products of activated sludge in biological wastewater treatment systems: A critical review. Critical Reviews in Environmental Science and Technology, 42, 187–223.
  • Ni, B.-J., Yu, H.-Q., and Zeng, R. J. (2015). Understanding the microbial internal storage turnover in wastewater treatment: Retrospect, prospect, and challenge. Critical Reviews in Environmental Science and Technology, 45, 591–612.
  • Nielsen, P. H., Raunkjaer, K., Norsker, N. H., Aagaard Jensen, N., and Hvitved-Jacobsen, T. (1992). Transformation of wastewater in sewer systems—A review. Water Science & Technology, 25, 17–31.
  • Nir, S. (1976). Van der Waals interactions between surfaces of biological interest. Progress in Surface Science, 8, 1–58.
  • Nogaj, T., Randall, A., Jimenez, J., Takacs, I., Bott, C., Miller, M., Murthy, S., and Wett, B. (2015). Modeling of organic substrate transformation in the high-rate activated sludge process. Water Science and Technology, 71, 971–979.
  • Obst, M., and Steinbüchel, A. (2006). Cyanophycin - An ideal bacterial nitrogen storage material with unique chemical properties. In: J. M. Shively (ed.) Inclusion in Prokaryotes (Microbiology Monographs, 167–194). Berlin Heidelberg: Springer.
  • Odegaard, H. (1998). Optimised particle separation in the primary step of wastewater treatment. Water Science & Technology, 37, 43–53.
  • Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L. L., and Reis, M. A. (2007). Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, 41, 2271–2300.
  • Olofsson, A.-C., Zita, A., and Hermansson, M. (1998). Floc stability and adhesion of green-fluorscent-protein-marked bacteria to flocs in activated sludge. Microbiology, 519–528.
  • Preiss, J., and Romeo, T. (1989). Physiology, biochemistry and genetics of bacterial glycogen synthesis. Advances in Microbial Physiology, 30, 183–238.
  • Pujol, R., and Canler, J. P. (1992). Biosorption and dynamics of bacterial populations in activated sludge. Water Research, 26, 209–212.
  • Raunkjaer, K., Hvitved-Jacobsen, T., and Nielsen, P. H. (1994). Measurements of pools of protein, carbohydrate and lipid in domestic wastewater. Water Research, 28, 251–262.
  • Rensink, J. H., and Donker, H. J. G. W. (1991). The effect of contact tank operation on bulking sludge and biosorption processes. Water Science & Technology, 23, 857–866.
  • Revellame, E., Hernandez, R., French, W., Holmes, W., and Alley, E. (2010). Biodiesel from activated sludge throughin situtransesterification. Journal of Chemical Technology & Biotechnology, 85, 614–620.
  • Revellame, E., Hernandez, R., French, W., Holmes, W., Alley, E., and Callahan Ii, R. (2011). Production of biodiesel from wet activated sludge. Journal of Chemical Technology & Biotechnology, 86, 61–68.
  • Revellame, E. D., Hernandez, R., French, W., Holmes, W. E., Benson, T. J., Pham, P. J., Forks, A., and Callahan II, R. (2012). Lipid storage compounds in raw activated sludge microorganisms for biofuels and oleochemicals production. RSC Advances, 2, 2015–2031.
  • Revellame, E. D., Hernandez, R., French, W. T., Holmes, W. E., Forks, A., and Callahan, R., 2nd (2013). Lipid-enhancement of activated sludges obtained from conventional activated sludge and oxidation ditch processes. Bioresource Technology, 148, 487–493.
  • Rickert, D. A., and Hunter, J. V. (1971). General nature of soluble and particulate organics in sewage and secondary effluent. Water Research, 5, 421–436.
  • Riffat, R., and Dague, R. R. (1995). Laboratory studies on the anaerobic biosorption process. Water Environment Research, 67, 1104–1110.
  • Rijnaarts, H. H. M., Norde, W., Bouwer, E. J., Lyklema, J., and Zehnder, A. J. B. (1995). Reversibility and mechanism of bacterial adhesion. Colloids and Surfaces B: Biointerfaces, 4, 5–22.
  • Rittmann, B. E., and McCarty, P. L. (2001). Environmental biotechnology: Principles and applications. New York: McGraw-Hill.
  • Ross, R. D., and Crawford, G. V. (1985). The influent of waste activated sludge on primary clarifier operation. Journal Water Pollution Control Federation, 57, 1022–1026.
  • Salehizadeh, H., and Shojaosadati, S. A. (2001). Extracellular biopolymeric flocculants. Recent trends and biotechnological importance. Biotechnology Advances, 19, 371–385.
  • Salehizadeh, H., and van Loosdrecht, M. C. M. (2004). Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance. Biotechnology Advances, 22, 261–279.
  • Sarioglu, M., Orhon, D., Görgun, E., and Artan, N. (2003). Design procedure for carbon removal in contact stabilization activated sludge process. Water Science & Technology, 48, 285–292.
  • Sarria, N. V., Victoria, J. R., Lozada, P. T., and Parra, C. M. (2011). Performance of a contact-stabilization process for domestic wastewater treatment of Cali, Colombia. Dyna, 7, 98–107.
  • Serafim, L. S., Lemos, P. C., Albuquerque, M. G. E., and Reis, M. A. M. (2008). Strategies for PHA production by mixed cultures and renewable waste materials. Applied Microbiology and Biotechnology, 81, 615–628.
  • Serafim, L. S., Lemos, P. C., Oliveira, R., and Reis, M. A. (2004). Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 87, 145–160.
  • Seviour, R. J., Mino, T., and Onuki, M. (2003). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev, 27, 99–127.
  • Sheng, G. P., and Yu, H. Q. (2006). Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 40, 1233–1239.
  • Shizas, I., and Bagley, D. M. (2004). Experimental determination of energy content of unknown organics in municipal wastewater streams. Journal of Energy Engineering, 130, 45–53.
  • Sin, G., Guisasola, A., De Pauw, D. J., Baeza, J. A., Carrera, J., and Vanrolleghem, P. A. (2005). A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions. Biotechnology and Bioengineering, 92, 600–613.
  • Sobeck, D. C., and Higgins, M. J. (2002). Examination of three theories for mechanisms of cation-induced bioflocculation. Water Research, 36, 527–538.
  • Sophonsiri, C., and Morgenroth, E. (2004). Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere, 55, 691–703.
  • Takabatake, H., Satoh, H., Mino, T., and Matsuo, T. (2002). PHA (polyhydroxyalkanoate) production potential of activated sludge treating wastewater. Water Science & Technology, 45, 119–126.
  • Takii, S. (1977). Accumulation of reserve polysaccharide in activated sludge treating carbohydrate wastes. Water Research, 11, 79–83.
  • Tan, K. N., and Chua, H. (1997). COD adsorption capacity of the activated sludge - Its determination and application in the activated sludge process. Environmental Monitoring and Assessment, 44, 211–217.
  • Tanaka, S., Ichikawa, T., and Matsuo, T. (1991). Removal of organic constituents in municipal sewage using anaerobic fluidized sludge blanket and anaerobic filter. Water Science & Technology, 23, 130–1310.
  • Tchobanoglous, G., Burton, F. L., Stensel, H. D., and Metcalf & Eddy Inc. (2004). Wastewater engineering, treatment and reuse, 4th ed. New York, USA: McGraw-Hill.
  • Third, K. A., Newland, M., and Cord-Ruwisch, R. (2003). The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnology and Bioengineering, 82, 238–250.
  • Tielen, P., Kuhn, H., Jaeger, K.-E., Flemming, H.-C., and Wingender, J. (2013). Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa. BMC Microbiology, 13, 159.
  • Torrijos, M., Cerro, R. M., Capdeville, B., Zeghal, S., Payraudeau, M., and Lesouef, A. (1994). Sequencing batch reactor: A tool for wastewater characterization for the IAWPRC model. Water Science & Technology, 29, 81–90.
  • Tsezos, M., and Wang, X. (1991). Study on the kinetics of hazardous pollutants adsorption and desorption by biomass: Mechanistic considerations. Journal of Chemical Technology & Biotechnology, 50, 507–521.
  • Ullrich, A. H., and Smith, M. W. (1951). The biosorption process of sewage and waste treatment. Sewage and Industrial Wastes, 23, 1248–1253.
  • Wallen, L. L., and Rohwedder, W. K. (1974). Poly-B-hydroxyalkanoate from activated sludge. Environmental Science & Technology, 8, 576–579.
  • Waltermann, M., and Steinbuchel, A. (2005). Neutral lipid bodies in prokaryotes: Recent insights into structure, formation, and relationship to eukaryotic lipid depots. Journal of Bacteriology, 187, 3607–3619.
  • van Loosdrech, M. C. M., Hooijmans, C. M., Brdjanovic, D., and Heijnen, J. J. (1997). Biological phosphate removal processes. Applied Microbiology and Biotechnology, 48, 289–296.
  • van Loosdrecht, M. C. M., Norde, W., and Zehnder, A. J. B. (1990). Physical chemical description of bacterial adhesion. Journal of Biomaterials Applications, 5, 91–106.
  • van Loosdrecht, M. C. M., Pot, M. A., and Heijnen, J. J. (1997). Importance of bacterial storage polymers in bioprocesses. Water Science & Technology, 35, 41–47.
  • van Nieuwenhuijsen, A. F., van der Graaf, J. H. J. M., Kampschreur, M. J., and Mels, A. R. (2004). Particle-related fractionation and characterization of municipal wastewater. Water Science & Technology, 50, 125–132.
  • Wandl, G., Müller-Rechberger, H., Matsché, N., Svardal, K., and Winkler, S. (2002). Two stage activated sludge plants—Influence of different operational modes on sludge bulking and nitrification. Water Science & Technology, 46, 479–486.
  • Wang, L. L., Wang, L. F., Ye, X. D., and Yu, H. Q. (2013). Hydration interactions and stability of soluble microbial products in aqueous solutions. Water Research, 47, 5921–5929.
  • Wang, S. Y., Wang, Z., Liu, M. M., Xu, Y., Zhang, X. J., and Chen, G. Q. (2010). Properties of a new gasoline oxygenate blend component: 3-Hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass & Bioenergy, 34, 1216–1222.
  • Wang, Z., Hessler, C. M., Xue, Z., and Seo, Y. (2012). The role of extracellular polymeric substances on the sorption of natural organic matter. Water Research, 46, 1052–1060.
  • Vanrolleghem, P. A., Spanjers, H., Petersen, B., Ginestet, P., and Takacs, I. (1999). Estimating (combinations of) activated sludge model no. 1 parameters and components by respirometry. Water Science and Technology, 39(1), 195–214.
  • Versprille, A., Zuurveen, B., and Stein, T. (1985). The A-B process: A novel wastewater treatment system. Water Science & Technology, 17, 235–246.
  • Verstraete, W., Van de Caveye, P., and Diamantis, V. (2009). Maximum use of resources present in domestic “used water.” Bioresource Technology, 100, 5537–5545.
  • Wilén, B.-M., and Balmér, P. (1999). The effect of dissolved oxygen concentration on the structure, size, and size distribution of activated sludge flocs. Water Research, 33, 391–400.
  • Wilén, B.-M., Jin, B., and Lant, P. (2003). The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Research, 37, 2127–2139.
  • Wilén, B.-M., Lund Nielsen, J., Keiding, K., and Nielsen, P. H. (2000). Influence of microbial activity on the stability of activated sludge flocs. Colloids and Surfaces B: Biointerfaces, 18, 145–156.
  • Winkler, S., Müller-Rechberger, H., Nowak, O., Svardal, K., and Wandl, G. (2000). A new approach towards modelling of the carbon degradation cycle at two-stage activated sludge plants. Water Science & Technology, 43, 19–27.
  • von Stockar, U., Maskow, T., Liu, J., Marison, I. W., and Patino, R. (2006). Thermodynamics of microbial growth and metabolism: An analysis of the current situation. Journal of Biotechnology, 121, 517–533.
  • Yamamoto, K., Hiasa, M., Mahmood, T., and Matsuo, T. (1989). Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Science & Technology, 21, 43–54.
  • Yetis, U., and Tarlan, E. (2002). Improvement of primary settling performance with activated sludge. Environmental Technology, 23, 363–372.
  • Zamalloa, C., Boon, N., and Verstraete, W. (2013). Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresource Technology, 130, 152–160.
  • Zeng, R. J., Yuan, Z. G., and Keller, J. (2003). Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnology and Bioengineering, 81, 397–404.
  • Zhang, X., Luo, R., Wang, Z., Deng, Y., and Chen G-Q. (2009). Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules, 10, 707–711.
  • Zhao, W., Ting, Y. P., Chen, J. P., Xing, C. H., and Shi, S. Q. (2000). Advanced primary treatment of waste water using a bio-flocculation-adsorption sedimentation process. Acta Biotechnologica, 1, 53–64.
  • Zita, A., and Hermansson, M. (1994). Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system. Applied and Environmental Microbiology, 60, 3041–3048.
  • Zita, A., and Hermansson, M. (1997a). Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiology Letters, 152, 299–306.
  • Zita, A., and Hermansson, M. (1997b). Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Applied and Environmental Microbiology, 63, 1168–1170.