171
Views
0
CrossRef citations to date
0
Altmetric
Articles

Chromatographic analysis of chemical compositions of coals and changes in them during technological processing

&
Pages 701-755 | Published online: 27 Apr 2016

References

  • Given, P.H., Marzec, A., Barton, W.A., Lynch, L.J., and Gerstein, B.C. (1986). The concept of a mobile or molecular phase within the macromolecular network of coals: A debate. Fuel, 65(2), 155–163.
  • Derbyshire, F., Marzec, A., Schulten, H.-R., Wilson, M.A., Davis, A., Tekely, P., Delpuech, J.-J., Jurkiewicz, A., Bronniman, C.E., Wind, R.A., Maciel, G.E., Narayan, R., Bartle, K., and Snape, C. (1989). Molecular structure of coals: A debate. Fuel, 68(9), 1091–1106.
  • Wachowska, H., and Kozłowski, M. (1996). The influence of extraction with organic solvents on coking properties of raw and reduced coals. Fuel, 75(4), 517–522.
  • Ouchi, K., Itoh, S., Makabe, M., and Itoh H. (1989). Pyridine extractable material from bituminous coal, its donor properties and its effect on plastic properties. Fuel, 68(6), 735–740.
  • Chang, C.-M., Whang, T.-J., Huang, D.-S., Wang, D.-H., Tsai, S.-T., and Hung, M.-T. (2014). Thermoplasticity and strength improvement of coking coal by addition of coal extracts. Fuel A, 117, 364–371.
  • Kidena, K., Hiro, M., Murata, S., and Nomura, M. (2005). Considerations on coal plasticity by referring to the distribution and structural properties of skeletal and volatile fractions from two different coals in both open and closed heat-treating systems. Energy Fuels, 19, 224–229.
  • Zubkova, V. (2011) Chromatographic methods and techniques used in studies on coals, their progenitors and coal-derived materials. Analytical and Bioanalytical Chemistry, 399(9), 3193–3209.
  • Chang, H.-C.K., Nishioka, M., Bartle, K.D., Wise, S.A., Bayona, J.M., Markides, K.E., and Lee, M.L. (1988). Identification and comparison of low-molecular-weight neutral constituents in two different coal extracts. Fuel, 67(1), 45–57.
  • Dariva, C., de Olivera, J.V., Vale, M.G.R., and Caramao, E.B. (1997). Supercritical fluid extraction of a high-ash Brazilian coal: Extraction with pure ethanol and isopropanol and their aqueous solutions. Fuel, 76(7), 585–591.
  • da Rocha, S.R.P., de Oliveira, J.V., d'Ávila, S.G., Pereira, D.M., and Lancas, F.M. (1997). The effects of temperature and density on the characteristics of the extracts from SCFE of a high-ash Brazilian coal. Fuel, 76(1), 93–96.
  • Stefanova M., Simoneit, B.R.T., Stojanova, G., Nosyrev, I.E., and Goranova, M. (1995). Composition of the extract from a Carboniferous bituminous coal: 1. Bulk and molecular constitution. Fuel, 74(5), 768–778.
  • Zong, Y., Zong, Z.-M., Ding, M.-J., Zhou, L., Huang, Y.-G., Zheng, Y.-X., Jin, X., Ma, Y.-M., and Wei, X.-Y. (2009). Separation and analysis of organic compounds in an Erdos coal. Fuel, 88(3), 469–479.
  • Stefanova, M. (2000). Head-to-head linked isoprenoids in Miocene coal lithotypes, Fuel, 79(7), 755–758.
  • Liu, Z.-W., Zong, Z.-W., Li, J.-N., Chen, C.-F., Jiang, H., Peng, Y.-L., Xue, J.-Q., Yang, X.-L., Zheng, Y.-X., Zhou, X., Xie, R.-L., and Wei, X.-Y. (2009). Isolation and Identification of Two Bis(2-ethylheptyl) Benzenedicarboxylates from Lingwu Coal. Energy Fuels, 23(1), 588–590.
  • George, A., Morgan, T.J., Alvarez, P., Millan, M., Herod, A.A., and Kandiyoti, R. (2010). Fractionation of a coal tar pitch by ultra-filtration, and characterization by size exclusion chromatography, UV-fluorescence and laser desorption-mass spectroscopy. Fuel, 89,(10) 2953–2970.
  • Ćmiel, S.R., and Fabiańska, M.J. (2004). Geochemical and petrographic properties of some Spitsbergen coals and dispersed organic matter. Int. J. Coal Geol., 57(2), 77–97.
  • Wei, X.-Y., Wang, X.-H., Zong, Z.-M., Ni, Z.-H., Zhang, L.-F., Ji, Y.-F., Xie, K.-C., Lee, C.W., Liu, Z.-X., Chu, N.-B., and Cui, J.-Y.(2004). Identification of organochlorines and organobromines in coals. Fuel, 83(17–18), 2435–2438.
  • Wei, X.-Y., Xiao-Hua Wang, X.-H., and Zong, Z.-M. (2009). Extraction of organonitrogen compounds from five Chinese coals with methanol. Energy Fuels, 23(10), 4848–4851.
  • Liu, Z.-W., Wei, X.-Y., Zong, Z.-M., Li, J.-N., Xue, J.-Q., Chen, X.-F., and Chen, F.-J. (2010). Isolation and identification of methyl alkanoates from Lingwu Coal. Energy Fuels, 24(4), 2784–2786.
  • Kerst, M., and Andersson, J.T. (2001). Microwave-assisted extraction of polycyclic aromatic compounds from coal. Fresenius' J. Anal. Chem., 370(7), 970–972.
  • Aktaş, Z., and Olcay, A. (1996). Supercritical toluene extraction of a reduced Turkish lignite. Fuel Process. Technol., 48(1), 61–72.
  • Fabiańska, M.J. (2004). GC–MS investigation of distribution of fatty acids in selected Polish brown coals. Chemomet. Intell. Lab. Syst., 72(2), 241–244.
  • Noskova, L.P. (2010). Gas-chromatographic analysis of the aliphatic fraction of brown coal wax. Solid Fuel Chem., 44(5), 319–323.
  • Fang, P.H., and Wong, R. (1997). Evidence for fullerene in a coal of Yunnan, Southwestern China. Mater. Res. Innovations, 1(2), 130–132.
  • Jehlička, J., Svatoš, A., Frank, O., and Uhlík, F. (2003). Evidence for fullerenes in solid bitumen from pillow lavas of Proterozoic age from Mítov (Bohemian Massif, Czech Republic). Geochimika et Cosmochimica Acta, 67(8), 1495–1506.
  • Bonnett, R. (1996). Porphyrins in coal. Int. J. Coal Geol., 42(1–4), 137–149.
  • Herod, A.A., Bartle, K.D., Morgam, T.J., and Kandiyoti, R. (2012), Analytical methods for characterizing high-mass complex polydisperse hydrocarbon mixtures: An overview. Chem. Rev., 112, 3892–3923.
  • Granda, M., Blanco, C., Alvarez P., Patrick J.W., and Menedez R. (2014), Chemicals from coal coking. Chem. Rev., 114(3), 1608–1636.
  • Larsen, J.W., and Wei, Y.C. (1988). Macromolecular chemistry of coalification. Molecular weight distribution of pyridine extracts. Energy Fuels, 2(3), 344–350.
  • Murata, S., Kawakami, E., and Nomura, M. (1996). Structural studies on Illinois No. 6 coal through quinoline extraction. Energy Fuels, 10(1), 220–224.
  • Miura, K., Shimada, M., Mae, K., and Sock, H.Y. (2001). Extraction of coal below 350°C in flowing non-polar solvent. Fuel, 80(11), 1573–1582.
  • Herod, A.A., Lazaro, M.-J., Domin, M., Islas, C.A., and Kandiyoti, R. (2000). Molecular mass distributions and structural characterisation of coal derived liquids. Fuel, 79(3–4), 323–337.
  • García, D., Cegarra, J., and Abad, M. (1996). A comparison between alkaline and decomplexing reagents to extract humic acids from low rank coals. Fuel Process. Technol., 48(1), 51–60.
  • Ralph, J.P., and Catcheside, D.E.A. (1996). Size-exclusion chromatography of solubilised low-rank coal. J. Chromatogr. A, 724(1–2), 97–105.
  • Czechowski, F., Stolarski, M., and Simoneit, B.R.T. (2002). Supercritical fluid extracts from brown coal lithotypes and their group components-molecular composition of non-polar compounds. Fuel, 81(15), 1933–1944.
  • Henning, K., Steffes, H.-J., and Fakoussa, R.M. (1997). Effects on the molecular weight distribution of coal-derived humic acids studied by ultrafiltration. Fuel Process. Technol., 52(1–3), 225–237.
  • Li, W., Lazar, I.M., Wan, Y.J., Butala, S.J., Shen, Y., Malik, A., and Lee, M.L. (1997). Determination of volatile hydrocarbons in coals and shales using supercritical fluid extraction and chromatography. Energy Fuels, 11(5), 945–950.
  • Shariff, S.M., Robson, M.M., Myers, P., Bartle, K.D., and Clifford, A.A. (1998). Hydrocarbon group-type separations for high aromatic fuels by supercritical fluid chromatography on packed capillary columns. Fuel, 77(9–10), 927–931.
  • Vayısoğlu-Giray, E.S., Johnson, B.R., Frere, B., Gizir, A.M., Bartle, K.D., and Clifford, A.A. (1998). Retention behaviour of polycyclic aromatic hydrocarbons during supercritical fluid chromatography with 1,1,1,2-tetrafluoroethane. Fuel, 77(14), 1533–1537.
  • Ergin, M., Gaines, A., Galletti, G.C., Chiavari, G., Fabbri, D., and Yücesoy-Eryilmaz, F. (1996). Early diagenesis of organic matter in recent Black Sea sediments: Characterization and source assessment. Appl. Geochem., 11(5), 711–720.
  • Yang, Q., Wu, S., Lou, R., and Lv, G. (2010). Analysis of wheat straw lignin by thermogravimetry and pyrolysis–gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis, 87(1), 65–69.
  • Shu, X., Xu, J., Xu, J., Ge, L., and Chen, D. (1996). Study of spontaneous combustion coals by GC and GC-MS. Fresenius' J. Anal. Chem., 355(3–4), 390–392.
  • Murti, S.D.S., Sakanishi, K., Okuma, O., Korai, Y., and Mochida, I. (2002). Detailed characterization of heteroatom-containing molecules in light distillates derived from Tanito Harum coal and its hydrotreated oil. Fuel, 81(17), 2241–2248.
  • Ochsenkuhn-Petropoulou, M., Lampropoulou, A., Becker, H., and Spyra, W. (2001). Polycyclic aromatic hydrocarbons in wooden railway beams impregnated with coal tar: Extraction and quantification by GC-MS. Mikrochimica Acta 136(3–4), 185–191.
  • Mastalerz, M., Stankiewicz, A.B., Salmon, G., Kvale, E.P., and Millard, C.L. (1997). Organic geochemical study of sequences overlying coal seams; example from the Mansfield Formation (Lower Pennsylvanian), Indiana. Int. J. Coal Geol., 33(4), 275–279.
  • Stefanova, M., and Simoneit, B.R.T. (2008). Polar aromatic biomarkers of Miocene-aged Chukurovo resinite and correlation with a progenitor macrofossil. Int. J. Coal Geol., 75(3), 166–174.
  • Fleck, S., Michels, R., Izart, A., Elie, M., and Landais, P. (2001). Palaeoenvironmental assessment of Westphalian fluvio-lacustrine deposits of Lorraine (France) using a combination of organic geochemistry and sedimentology. Int. J. Coal Geol., 48(1–2), 65–88.
  • Fabiańska, M.J., and Kruszewska, K.K.J. (2003). Relationship between petrographic and geochemical characterisation of selected South African coals. Int. J. Coal Geol., 54(1–2), 95–114.
  • Baruah, M.K., and Gogoi, P.C. (1998). A new form of sulphur in coal: the discovery of an iron-sulphur coordination compound. Fuel, 77(9–10), 979–985.
  • Damsté, J.S.S., White, C.M., Green, J.B., and de Leeuw, J.W. (1999). Organosulfur compounds in Sulfur-Rich Raša Coal. Energy Fuels, 13(3), 728–738.
  • Noskova, L.P. (2008). Component composition of deresined brown coal wax. Solid Fuel Chem., 42(5), 320–324.
  • Ding, M.-J., Zong, Z.-M., Zong, Y., Ou-Yang, X.-D., Huang, Y.-G., Zhou, L., Wang, F., Cao, J.-P., and Wei, X.-Y. (2008). Isolation and identification of fatty acid amides from shengli coal. Energy Fuels, 22(4), 2419–2421.
  • Iglesias, M.J., Carlos del Río, J., Laggoun-Défarge, F., Cuesta, M.J., and Suárez-Ruiz, I. (2002). Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation. J. Anal. Appl. Pyrolysis, 62(1), 1–34.
  • Gryglewicz, G., Rutkowski, P., and Yperman, J. (2002). Characterization of sulfur compounds in supercritical coal extracts by gas chromatography-mass spectrometry. Fuel Process. Technol., 77–78, 167–172.
  • García-Labiano, F., Hampartsoumian, E., and Williams, A. (1995). Determination of sulfur release and its kinetics in rapid pyrolysis of coal. Fuel, 74(7), 1072–1079.
  • van Krevelen, D.W. (1993). Coal: Typology- physics-chemistry-constitution (3rd ed.). Elsevier: Amsterdam - New York.
  • Iglesias, M.J., Cuesta, M.J., Laggoun-Défarge, F., and Suárez-Ruiz, I. (2006). 1D-NMR and 2D-NMR analysis of the thermal degradation products from vitrinites in relation to their natural hydrogen enrichment. J. Anal. Appl. Pyrolysis, 77(1), 83–93.
  • Bechtel, A., Reischenbacher, D., Sachsenhofer, R.F., Gratzer, R., Lücke, A., and Püttmann, W. (2007). Relations of petrographical and geochemical parameters in the middle Miocene Lavanttal lignite (Austria). Int. J. Coal Geol., 70(4), 325–349.
  • Mukhopadhyay, P.K., Goodarzi, F., Kruge, M.A., and Alimi, M.H. (1997). Comparison of source rock geochemistry of selected rocks from the Schei Point group and Ringnes formation, Sverdrup basin, arctic Canada. Int. J. Coal Geol., 34(3–4), 225–260.
  • Kruge, M.A. (2000). Determination of thermal maturity and organic matter type by principal components analysis of the distributions of polycyclic aromatic compounds. Int. J. Coal Geol., 43(1–4), 27–51.
  • Alsaab, D., Suarez-Ruiz, I., Elie, M., Izart, A., and Martinez, L. (2007). Comparison of generative capacities for bitumen and gas between Carboniferous coals from Donets Basin (Ukraine) and a Cretaceous coal from Sabinas–Piedras Negras Basin (Mexico) during artificial maturation in confined pyrolysis system. Int. J. Coal Geol., 71(1), 85–102.
  • Misz, M., Fabiańska, M., and Ćmiel, S. (2007). Organic components in thermally altered coal waste: Preliminary petrographic and geochemical investigations. Int. J. Coal Geol., 71(4), 405–424.
  • Misz-Kennan, M., and Fabiańska, M. (2010). Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). Int. J. Coal Geol., 81(4), 343–358.
  • Bechtel, A., Sachsenhofer, R.F., Kolcon, I., Gratzer, R., Otto, A., and Püttmann, W. (2002). Organic geochemistry of the Lower Miocene Oberdorf lignite (Styrian Basin, Austria): Its relation to petrography, palynology and the palaeoenvironment. Int. J. Coal Geol., 51(1), 31–57.
  • Li, Y., Michels, R., Mansuy, L., Fleck, S., and Faure P. (2002). Comparison of pressurized liquid extraction with classical solvent extraction and microwave-assisted extraction–application to the investigation of the artificial maturation of Mahakam coal. Fuel, 81(6), 747–755.
  • Avramidis, P., and Zelilidis, A. (2007). Potential source rocks, organic geochemistry and thermal maturation in the southern depocenter (Kipourio–Grevena) of the Mesohellenic Basin, central Greece. Int. J. Coal Geol., 71(4), 554–567.
  • Bechtel, A., Hámor-Vidó, M., Sachsenhofer, R.F., Reischenbacher, D., Gratzer, R., and Püttmann, W. (2007). The middle Eocene Márkushegy subbituminous coal (Hungary): Paleoenvironmental implications from petrographical and geochemical studies. Int. J. Coal Geol., 72(1), 33–52.
  • Životić, D., Jovančićević, B., Schwarzbauer, J., Cvetković, O., Gržetić, I., Ercegovac, M., Stojanović, K., and Šajnović, A. (2010). The petrographical and organic geochemical composition of coal from the East field, Bogovina Basin (Serbia). Int. J. Coal Geol., 81(4), 227–241.
  • Shen, J.-C., and Huang, W.-L. (2007). Biomarker distributions as maturity indicators in Coals, Coaly Shales, and Shales from Taiwan. Terr. Atmospherig Ocean Sci., 18(4), 739–755.
  • Vayisoglu, E.S., Bartle, K.D., Erbatur, N.G., Frere, B., Snape, C.E., and Erbatur, O. (1997). Chemical composition of SCG extracts obtained from coal and maceral concentrates. Fuel Process. Technol., 46(2), 99–115.
  • Begon, V., Suelves, I., Li, W., Lazaro, M.-J., Herod, A.A., and Kandiyoti, R. (2002). Catalytic hydrocracking of primary maceral concentrate extracts prepared in a flowing solvent reactor. Fuel, 81(2), 185–202.
  • Izart, A., Sachsenhofer, R.F., Privalov, V.A., Elie, M., Panova, E.A., Antsiferov, V.A., Alsaab, D., Rainer, T., Sotirov, A., Zdravkov, A., and Zhykalyak, M.V. (2006). Stratigraphic distribution of macerals and biomarkers in the Donets basin: Implications for paleoecology, paleoclimatology and eustacy. Int. J. Coal Geol., 66(1–2), 69–107.
  • Životić, D., Wehner, H., Cvetković, O., Jovančićević, B., Gržetić, I., Scheeder, G., Vidal, A., Šajnović, A., Ercegovac, M., and Simić, V. (2008). Petrological, organic geochemical and geochemical characteristics of coal from the Soko mine, Serbia. Int. J. Coal Geol., 73(3–4), 285–306.
  • Razvigorova, M., Goranova, M., Minkova, V., and Russyanova, N. (1995). Comparative analysis of extractables and steam pyrolysis products from high-volatile bituminous coal. Fuel, 74(9), 1333–1342.
  • Papanicolaou, C., Dehmer, J., and Fowler, M. (2000). Petrological and organic geochemical characteristics of coal samples from Florina, Lava, Moschopotamos and Kalavryta coal fields, Greece. Int. J. Coal Geol., 44(3–4), 267–292.
  • Zubrik, A., Šaman, D., Vašíčková, S., Simoneit, B.R.T., Turčániová, L., Lovás, M., and Cvačka, J. (2009). Phyllocladane in brown coal from Handlová, Slovakia: Isolation and structural characterization. Org. Geochem., 40(1), 126–134.
  • Bechtel, A., Reischenbacher, D., Sachsenhofer, R.F., Gratzer, R., and Lücke, A. (2007). Paleogeography and paleoecology of the upper Miocene Zillingdorf lignite deposit (Austria). Int. J. Coal Geol., 69(3), 119–143.
  • Ekinci, E., Yardim, F., Razvigorova, M., Minkova, V., Goranova, M., Petrov, N., and Budinova, T. (2002). Characterization of liquid products from pyrolysis of subbituminous coals. Fuel Process. Technol., 77–78, 309–315.
  • Nytoft, H.P. (2011). Novel side chain methylated and hexacyclic hopanes: Identification by synthesis, distribution in a worldwide set of coals and crude oils and use as markers for oxic depositional environments. Org. Geochem., 42(5), 520–539.
  • Shaw, P.M., Brassell, S.C., Assinder, D.J., and Eglinton G. (1988). Stepwise chemical degradations of a UK bituminous coal. Fuel, 67(4), 557–564.
  • Butala, S.J.M., Medina, J.C., Hulse, R.J., Bartholomew, C.H., and Lee M.L. (2000). Pressurized fluid extraction of coal. Fuel, 79(13), 1657–1712.
  • Peters, K.E., Walters, C.C., and Moldovan, J.M. (2003). The biomarker guide. biomarkers in petroleum systems and earth history (2nd ed.). Cambridge: Cambridge University Press.
  • Landais, P., and Gerard, L. (1996). Coalification stages from confined pyrolysis of an immature humic coal. Int. J. Coal Geol., 30(4), 285–301.
  • Hazai, I., Alexander, G., Székely, T., Essiger, B., and Radek, D. (1986). Investigation of hydrocarbon constituents of a young sub-bituminous coal by gas chromatography-mass spectrometry. J. Chromatogr. A, 367(1), 117–133.
  • Dick, C., Ediger, V., Fabbri, D., Gaines, A.F., Love, G.D., McGinn, A., McRae, C., Murray, I.P., Nicol, B.J., and Snape C.E. (2002). Eastern Mediterranean sapropels: Chemical structure, deposition and relation to oil-shales. Fuel, 81(4), 431–448.
  • Sun, Y., Püttmann, W., Kalkreuth, W., and Horsfield, B. (2002). Petrologic and geochemical characteristics of Seam 9–3 and Seam 2, Xingtai Coalfield, Northern China. Int. J. Coal Geol., 49(4), 251–262.
  • Hatcher, P.G., Faulon, J.L., Wenzel, K.A., and Cody, G.D. (1992). A structural model for lignin-derived vitrinite from high-volatile bituminous coal (coalified wood). Energy Fuels, 6(6), 813–820.
  • Bechtel, A., Butuzova, L., Turchanina, O. (2002). Thermochemical and geochemical characteristics of sulphur coals. Fuel Process. Technol., 77–78, 45 D.–52.
  • Fabiańska, M.J., Lewińska-Preis, L., and Galimska-Stypa, R. (2003). Microbial alteration of organic matter of humic coal during biological desulphurisation. Fuel, 82(2), 165–179.
  • Snape, C.E., Sun, Ch.-G., McRae, C., Fallick, A.E., and Fabbri, D. (2001). Use of compound specific stable isotope measurements to probe anthropogenic PAH formation in environmental samples. Fuel Chem. Div. Preprint of 221st ACS Natl. Meet., 46(1), 211–214.
  • Kidder, M.K., Britt, Ph.F., and Buchanan, III A.C.(2001). Flash vacuum pyrolysis of plant steroids: the impact of steroids of the formation of polycyclic aromatic hydrocarbons. Fuel Chem. Div. Preprint of 221st ACS Natl. Meet., 46(1), 257–2263.
  • Owens, C.V., Britt, Ph.F., and Buchanan, III A.C. (2001). Mechanistic investigation into formation of polycyclic aromatic hydrocarbons from the pyrolysis of stigmasterol. Fuel Chem. Div. Preprint of 221st ACS Natl. Meet., 46(1), 264–267.
  • Butuzova, L., Turchanina, O., Shakir, S., Butuzov, G., Bechtel, A., and Castelbranco, A. (2013). Possibility of the implementation of the principle of sustainable development in the sphere of coal processing. China-USA Bus. Rev., 12(11), 1033–1243.
  • Butuzova, L., Bechtel, A., Shakir, Sh., and Butuzov, G. (2011). Characteristics of extracts and coking ability of Donetsk coals. Proceedings of Donetsk National Technical University: 90 years of Engineering Education in Donbass. (2), 9–19.
  • van Krevelen, D.W. (1963). Hydrogen distribution in coal. Fuel, 42(2), 427–430.
  • Mazumdar, B.K., Chakrabartty, S.K., and Lahiri, A. (1962). Some aspects of the constitution of coal. Fuel, 41(1), 129–139.
  • Zhao, X.-Y., Zong, Z.-M., Cao, J.-P., Ma,Y.-M., Han, L., Liu,G.-F., Wei Zhao, Li, W.-Y, Xie, K.-C., Bai, X.-F., and Wei, X.-Y. (2008). Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals. Fuel, 87(4–5), 565–575.
  • Hackley, P.C., Warwick, P.D., Hook, R.W., Alimi, H., Mastalerz, M., and Swanson, S.M. (2012). Organic geochemistry and petrology of subsurface Paleocene–Eocene Wilcox and Claiborne Group coal beds, Zavala County, Maverick Basin, Texas, USA. Org. Geochem., 46, 137–153.
  • Morgan, T.J., and Kandiyoti, R. (2014). Pyrolysis of coals and biomass: Analysis of thermal breakdown and its products. Chem. Rev., 114(3), 1547–1607.
  • Greenwood, P.F., George, S.C., Pickel, W., YZhu, Y., and Zhong, N. (2001). In situ analytical pyrolysis of coal macerals and solid bitumens by laser micropyrolysis GC–MS. J. Anal. Appl. Pyrolysis, 58–59, 237–253.
  • Brown, S.D., Chiavari, G., Ediger, V., Fabbri, D., Gaines, A.F., Galletti, G., Karayigit, A.I., Love, G.D., Snape, C.E., Sirkecioglu, O., and Toprak, S. (2000). Black Sea sapropels: Relationship to kerogens and fossil fuel precursors. Fuel, 79(14), 1725–1742.
  • Han, Z., and Kruge, M.A. (1999). Chemistry of maceral and groundmass density fractions of torbanite and cannel coal. Org. Geochem., 30(11), 1381–1401.
  • Han, Z., and Kruge, M.A. (1999). Classification of torbanite and cannel coal: II. Insights from pyrolysis-GC/MS and multivariate statistical analysis. Int. J. Coal Geol., 38(3–4), 201–218.
  • Nip, M., De Leeuw, J.W., and Crelling, J.C. (1992). Chemical structure of bituminous coal and its constituting maceral fractions as revealed by flash pyrolysis. Energy Fuels, 6(2), 125–136.
  • Xie, K.-C., Lin, J.-Y., Li, W.-Y., Chang, L.-P., Feng, J., and Zhao, W.A. (2005). Formation of HCN and NH3 during coal macerals pyrolysis and gasification with CO2. Fuel, 84(2–3), 271–277.
  • Iglesias, M.J., Cuesta, M.J., and Suárez-Ruiz, I. (2001). Structure of tars derived from low-temperature pyrolysis of pure vitrinites: Influence of rank and composition of vitrinites. J. Anal. Appl. Pyrolysis, 58–59, 255–284.
  • Das, T.K. (2001). Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals. Fuel, 80(4), 489–500.
  • Cappiello, A., Mangani, F., Bruner, F., Bonfanti, L. (1996). New approach to the characterization of pyrolysis coal products by gas chromatography-mass spectrometry. J. Chromatogr. A, 736(1–2), 185–194.
  • Christiansen, J.V., Feldthus, A., and Carlsen, L. (1995). Flash pyrolysis of coals. Temperature-dependent product distribution. J. Anal. Appl. Pyrolysis, 32(1), 51–63.
  • van Lieshout, M.P.M., Janssen, H.-G., Cramers, C.A., and van den Bos, G.A. (1997). Programmed-temperature vaporiser injector as a new analytical tool for combined thermal desorption-pyrolysis of solid samples Application to geochemical analysis. J. Chromatogr. A, 764(1), 73–84.
  • Jackson, W.R., Bongers, G.D., Redlich, P.J., Favas, G., Fei, Y., Patti, A.F., and Johns, R.B. (1996). Characterisation of brown coal humic acids and modified humic acids using pyrolysis GCMS and other techniques. Int. J. Coal Geol., 32(1–4), 229–240.
  • Bonfanti, L., Comellas, L., Lliberia, J.L., Vallhonrat-Matalonga, R., Pich-Santacana, M., and López-Piñol, D. (1997). Pyrolysis gas chromatography of some coals by nitrogen and phosphorus, flame ionisation and mass spectrometer detectors. J. Anal. Appl. Pyrolysis, 44(1), 101–119.
  • Fabbri, D., Vassura, I., and Snape, C.E. (2002). Simple off-line flash pyrolysis procedure with in situ silylation for the analysis of hydroxybenzenes in humic acids and coals. J. Chromatogr. A, 967(2), 235–242.
  • Čejka, J., Holý, L., Kříbek, B., and Sedláček, V. (1996). Gas chromatographic and mass spectrometric characterization of pyrolysis products of fossil organic matter from localities of the Czech Republic. Collect. Czechoslovak Chem. Commun., 61(8), 1158–1166.
  • Janitschke, W., Möller, U., Uherek, E., and Kleinermanns, K. (2000). Investigations of coals by on-line coupled laser desorption/gas chromatography/mass spectrometry (LD/GC/MS). J. Anal. Appl. Pyrolysis, 56(1), 99–111.
  • Greenwood, P.F., George, S.C., Wilson, M.A., and Hall, K.J. (1996). A new apparatus for laser micropyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis, 38(1–2), 101–118.
  • Van Niekerk, D., Pugmire, R.J., Solum, M.S., Painter, P.C., and Mathews, J.P. (2008). Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals. Int. J. Coal Geol., 76(4), 290–300.
  • Zubkova, V., and Czaplicka, M. (2012). Changes in the structure of plasticized coals caused by extraction with dichloromethane. Fuel, 96, 298–305.
  • Zubkova, V., Grigoreva, E., Strojwas, A., Czaplicka, M., Prezhdo, V., and Pruszkowska, J. (2013). Some aspects of catalytic activity of pyrolyzed coals. Thermochim. Acta, 569, 78–84.
  • Safin, V., Butuzova, L., Marinov, S., and Yaneva, N. (2009). Bituminous coals thermodestruction by the thermofiltration method. Geolines, 22, 58–61.
  • Jiménez, A., Iglesias, M.J., Laggoun-Defarge, F., and Suárez-Ruiz, I. (1999). Effect of the increase in temperature on the evolution of the physical and chemical structure of vitrinite. J. Anal. Appl. Pyrolysis, 50(2), 117–148.
  • Herod, A.A., Bartle, K.D., and Kandiyoti, R. (2007). Characterization of heavy hydrocarbons by chromatographic and mass spectrometric methods:  An overview. Energy Fuels, 21(4), 2176–2203.
  • Herod, A.A., George, A., Islas, C.A., Suelves, I., and Kandiyoti, R. (2003). Trace-element partitioning between fractions of coal liquids during column chromatography and solvent separation. Energy Fuels, 17(4), 862–873.
  • Islas, C.A., Suelves, I., Li, W., Morgan, T.J., Herod, A.A., and Kandiyoti, R. (2003). The unusual properties of high mass materials from coal-derived liquids. Fuel, 82(14), 1813–1823.
  • Karaca, F., Millan-Agorio, M., Morgan, T.J., Bull, I.D., Herod, A.A., and Kandiyoti, R. (2008). The pentane- and toluene-soluble fractions of a petroleum residue and three coal tars by size exclusion chromatography and UV-fluorescence spectroscopy. Oil Gas Sci. Technol., 63(1), 129–137.
  • Masuda, K., Okuma, O., Kanaji, M., and Matsumara, T. (1996). Chromatographic characterization of preasphaltenes in liquefied products from Victorian brown coal. Fuel, 75(9), 1065–1070.
  • Yu, L.E., Hildemann, L.M., and Niksa, S. (1998). Trends in aromatic ring number distributions of coal tars during secondary pyrolysis. Energy Fuels, 12(3), 450–456.
  • Johnson, B.R., Bartle, K.D., Domin, M., Herod, A.A., and Kandiyoti, R. (1998). Absolute calibration of size exclusion chromatography for coal derivatives through MALDI-M.S. Fuel, 77(9–10), 933–945.
  • Morgan, T.J., George, A., Alvarez, P., Herod, A.A., Millan, M., and Kandiyoti, R. (2009). Isolation of size exclusion chromatography elution-fractions of coal and petroleum-derived samples and analysis by laser desorption mass spectrometry. Energy Fuels, 23(12), 6003–6014.
  • Islas, C.A., Suelves, I., Millan, M., Apicella, B., Lazaro, M.-J., Herod A.A., and Kandiyoti, R. (2003). Matching average masses of pitch fractions of narrow polydispersity, derived from matrix-assisted laser desorption ionisation time-of-flight mass spectrometry, with the polystyrene calibration of SEC. J. Sep. Sci., 26(15–16), 1422–1428.
  • Johnson, B.R., Bartle, K.D., Ross, A.B., Herod, A.A., Kandiyoti, R., and Larsen, J.W. (1999). [252Cf plasma desorption and laser desorption mass spectrometry for the determination of molecular weight distribution of coal derivatives. Fuel, 78(14), 1659–1664.
  • Lazaro, M.-J., Herod, A.A., and Kandiyoti, R. (1999). Comparison of the fractionation of a coal tar pitch by solvent solubility and by planar chromatography. Fuel, 78(7), 795–801.
  • Deelchand, J.-P., Naqvi, Z., Dubau, C., Shearman, J., Lazaro, M.-J., Herod, A.A., Read, H., and Kandiyoti, R. (1999). Planar chromatographic separation of petroleum residues and coal-derived liquids. J. Chromatogr. A, 830(2), 397–414.
  • Herod, A.A., and Kandiyoti, R. (1995). Fractionation by planar chromatography of a coal tar pitch for characterisation by size-exclusion chromatography, UV fluorescence and direct-probe mass spectrometry. J. Chromatogr. A, 708(1), 143–160.
  • Zhang, M., Chen, B., Shen, S., and Chen, S. (1997). Compositional studies of high-temperature coal tar by G.C.-FT-I.R. analysis of middle oil fractions. Fuel, 76(5), 415–423.
  • Janoš, P., and Tokarová, V. (2002). Characterization of coal-derived humic substances with the aid of low-pressure gel permeation chromatography. Fuel, 81(8), 1025–1031.
  • Machnikowski, J., Kaczmarska, H., Leszczyńska, A., Rutkowski, P., Díez, M.A., Álvarez, R., and García, R. (2001). Hydrogen-transfer ability of extrographic fractions of coal-tar pitch. Fuel Process. Technol., 69(2), 107–126.
  • Machnikowski, J., Machnikowska, H., Di ´ez, M.A., Alvarez, R., and Bermejo, J. (1997). Characterization of coal-derived pitches as precursors for advanced carbon materials by chromatographic and related techniques. J. Chromatogr. A, 778(1–2), 403–413.
  • Bermejo, J., Menéndez, R., Figueiras, A., and Granda M. (1995). The role of low-molecular-weight components in the pyrolysis of pitches. Fuel, 74(12), 1792–1799.
  • Sun, M., Ma, X.-X., Yao, Q.-X., Wang, R.-S., Yan-Xing Ma, Y.-X., Feng, G., Shang, J.-X., Xu, L., and Yang, Y.-H. (2011). GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar. Energy Fuels, 25(3), 1140–1145.
  • Pindoria, R.V., Megaritis, A., Chatzakis, I.N., Vasanthakumar, L.S., Zhang, S.-F., Lazaro, M.-J., Herod, A.A., Garcia, X.A., Gordon, A.L., and Kandiyoti, R. (1997). Structural characterization of tar from a coal gasification plant: Comparison with a coke oven tar and a crude oil flash-column residue. Fuel, 76(2), 101–113.
  • Lai, W.-C., and Song, C. (1995). Temperature-programmed retention indices for G.C. and G.C.-M.S. analysis of coal- and petroleum-derived liquid fuels. Fuel, 74(10), 1436–1451.
  • Domínguez, A., Alvarez, R., Blanco, C.G., and Díez, M.A. (1996). Chromatographic evaluation of some selected polycyclic aromatic hydrocarbons of coal tars produced under different coking conditions and pitches derived from them. J. Chromatogr. A, 719(1), 181–194.
  • Matuszewska, A., John, A., and Jasieńko, S. (1997). Properties and structure of hard coals from a borehole Niedobczyce IG-1 in the Rybnik Coal District, Upper Silesian Coal Basin, their petrographic and group constituents 3. Changes in the chemical structure of primary tars with increase in coalification degree of the parent coals. Fuel Process. Technol., 50(2–3), 117–130.
  • Guillén, M.D., Domínguez, A., Iglesias, M.-J., and Blanco, C.G. (1995). Semiquantitative gas chromatographic analysis of the volatile fraction in several extracts obtained by treatment of coal tar pitches with different organic solvents. Fuel, 74(2), 233–240.
  • Burgess, C.E., Redlich, P.J., Sakurovs, R.J., Jackson, W.R., and Marshall, M. (1998). Structural characterization of some North American coals. Energy Fuels, 12(3), 570–573.
  • Morgan, T.J., George, A., Álvarez, P., Millan, M., Herod, A.A., and Kandiyoti, R. (2008). Characterization of molecular mass ranges of two coal tar distillate fractions (Creosote and Anthracene Oils) and aromatic standards by LD-MS, GC-MS, Probe-MS and size-exclusion chromatography. Energy Fuels, 22(5), 3275–3292.
  • Paul-Dauphin, S., Karaca, F., Morgan, T.J., Millan-Agorio, M., Herod A.A., and Kandiyoti, R. (2007). Probing size exclusion mechanisms of complex hydrocarbon mixtures: The effect of altering eluent compositions. Energy Fuels, 21(6), 3484–3489.
  • Karaca, F., Islas, C.A., Millan, M., Behrouzi, M., Morgan, T.J., Herod, A.A., and Kandiyoti, R. (2004). The calibration of size exclusion chromatography columns:  Molecular mass distributions of heavy hydrocarbon liquids. Energy Fuels, 18(3), 778–788.
  • Domin, M., Moreea, R., Lazaro, M.-J., Herod, A.A., and Kandiyoti, R.(1997). Choice of extraction voltage and matrix in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of coal tar pitch—Pyridine insolubles. Rapid Commun. Mass Spectrom., 11(6), 638–645.
  • Johnson, B.R., Bartle, K.D., Herod, A.A., and Kandiyoti, R. (1997). N-methyl-2-pyrrolidinone as a mobile phase in the size-exclusion chromatography of coal derivatives. J. Chromatogr. A, 758(1), 65–74.
  • Oh, S.-M., and Park, Y.-D. (1999). Comparative studies of the modification of coal-tar pitch. Fuel, 78(15), 1859–1865.
  • Fetzer, J.C., and Kershaw, J.R. (1995). Identification of large polycyclic aromatic hydrocarbons in a coal tar pitch. Fuel, 74(10), 1533–1536.
  • Islas, C.A., Suelves, I., Carter, J.F., Herod, A.A., and Kandiyoti, R. (2000). Pyrolysis-gas chromatography/mass spectrometry of a coal extract and its fractions separated by planar chromatography: Correlation of structural features with molecular mass. Rapid Commun. Mass Spectrom., 14(17), 1766–1782.
  • Islas, C.A., Suelves, I., Carter, J.F., Li, W., Morgan, T.J., Herod, A.A., and Kandiyoti, R. (2002). Pyrolysis-gas chromatography/mass spectrometry of fractions separated from a low-temperature coal tar: An attempt to develop a general method for characterising structures and compositions of heavy hydrocarbon liquids. Rapid Commun. Mass Spectrom., 16(8), 774–784.
  • Islas, C.A., Suelves, I., Carter, J.F., Herod, A.A., and Kandiyoti, R. (2002). Pyrolysis-gas chromatography/mass spectrometry of pitch fractions recovered from preparative size exclusion chromatography: Structural differences with increasing molecular size. Rapid Commun. Mass Spectrom. 16(6), 481–495.
  • Yu, L.E., Hildemann, L.M., Dadamio, J., and Niksa, S. (1998). Characterization of coal tar organics via gravity flow column chromatography. Fuel, 77(5), 437–445.
  • Guillén, M.D., Domínguez, A., Iglesias, M.-J., Fuente, E., and Blanco, C.G. (1996). Analysis of coal tar pitch: Relations between thermal behaviour and composition. Fuel, 75(9), 1101–1107.
  • Menéndez, R., Blanco, C., Santamaría, R., Bermejo, J., Suelves, I., Herod, A.A., and Kandiyoti, R. (2001). On the chemical composition of thermally treated coal-tar pitches. Energy Fuels, 15(1), 214–223.
  • Li, C.-Z., and Nelson, P.F. (1996). Fate of aromatic ring systems during thermal cracking of tars in a fluidized-bed reactor. Energy Fuels, 10(5), 1083–1090.
  • Zhang, C., Zhang, X., Yang, J., and Liu, Z. (2007). Analysis of polynuclear aromatic hydrocarbons in heavy products derived from coal and petroleum by high performance liquid chromatography. J. Chromatogr. A, 1167(2), 171–177.
  • Domínguez, A., Blanco, C.G., Barriocanal, C., Alvarez, R., and Díez, M.A. (2001). Gas chromatographic study of the volatile products from co-pyrolysis of coal and polyethylene wastes J. Chromatogr. A, 918(1), 135–144.
  • Diez, M.A., Domínguez, A., Barriocanal, C., Alvarez, R., Blanco, C.G., Casal, M.D., and Canga, C.S. (1998). Gas chromatographic study for the evaluation of the suitability of bituminous waste material as an additive for coke production. J. Chromatogr. A, 823(1–2), 527–536.
  • Sharypov, V.I., Beregovtsova, N.G., Kuznetsov, B.N., Cebolla, V.L., Collura, S., Finqueneisel, G., Zimny, T., and Weber, J.V. (2007). Influence of reaction parameters on brown coal-polyolefinic plastic co-pyrolysis behavior. J. Anal. Appl. Pyrolysis, 78(2), 257–264.
  • Liu, K., and Meuzelaar, H.L.C. (1996). Catalytic reactions in waste plastics, HDPE and coal studied by high-pressure thermogravimetry with on-line GC/MS. Fuel Process. Technol., 49(1–3), 1–15.
  • Oriňák, A., Halás, L. I., Amar, I., Andersson, J.T., and Ádámová, M. (2006). Co-pyrolysis of polymethyl methacrylate with brown coal and effect on monomer production. Fuel, 85(1), 12–18.
  • Mastral, A.M., Murillo, R., Callén, M.S., and García, T. (1999). Application of coal conversion technology to tire processing. Fuel Process. Technol., 60(3), 231–242.
  • Mastral, A.M., Callén, S., García, T., and Navarro, M.V. Aromatization of oils from coal–tyre cothermolysis: II. PAH content study as a function of the process variables. Fuel Process. Technol., 68(1), 45–55.
  • Ahmaruzzaman, M., and Sharma, D.K. (2008). Characterization of liquid products obtained from co-cracking of petroleum vacuum residue with coal and biomass. J. Anal. Appl. Pyrolysis, 81(1), 37–44.
  • Pérez, M., Granda, M., Santamaría, R., Morgan, T., and Menéndez, R. (2004). A thermoanalytical study of the co-pyrolysis of coal-tar pitch and petroleum pitch. Fuel, 83(9), 1257–1265.
  • Díez, M.A., Álvarez, R., Gayo, F., Barriocanal, C., and Moinelo, S.R. (2002). Study of the composition of tars produced from blends of coal and polyethylene wastes using high-performance liquid chromatography. J. Chromatogr. A, 945(1–2), 161–172.
  • Sınag, A., Sungur, M., and Canel, M. (2006). Effect of experimental conditions on the yields during the copyrolysis of Mustafa Kemal Paşa (MKP) Lignite (Turkey) with low-density polyethylene. Energy Fuels, 20(4), 1609–1613.
  • Ahmaruzzaman, M., and Sharma, D.K. (2008). Characterization of liquid products from the co-cracking of ternary and quaternary mixture of petroleum vacuum residue, polypropylene, Samla coal and Calotropis Procera. Fuel, 87(10–11), 1967–1973.
  • Mastral, A.M., Murillo, R., Palacios, J.M., Mayoral, M.C., and Callén, M. (1997). Iron-catalyzed coal-tire coprocessing. Influence on conversion products distribution. Energy Fuels, 11(4), 813–818.
  • Callén, M., Hall, S., Mastral, A.M., Garcia, T., Ross, A., and Bartle, K.D. (2000). PAH presence in oils and tars from coal-tyre coprocessing. Fuel Process. Technol., 62(1), 53–62.
  • Giray, E.S., and Sönmez, Ö. (2004). Supercritical extraction of scrap tire with different solvents and the effect of tire oil on the supercritical extraction of coal. Fuel Process. Technol., 85(4), 251–265.
  • Jones, J.M., Kubacki, M., Kubica, K, Ross, A.B., and Williams, A. (2005). Devolatilisation characteristics of coal and biomass blends. J. Anal. Appl. Pyrolysis, 74(1–2), 502–511.
  • Onay, Ö., Bayram, E., and Koçkar, Ö.M. (2007). Copyrolysis of Seyitömer−Lignite and Safflower Seed: Influence of the blending ratio and pyrolysis temperature on product yields and oil characterization. Energy Fuels, 21(5), 3049–3056.
  • Suelves, I., Moliner, R., and Lázaro, M.J. (2000). Synergetic effects in the co-pyrolysis of coal and petroleum residues: influences of coal mineral matter and petroleum residue mass ratio. J. Anal. Appl. Pyrolysis 55, (1), 29–41.
  • Moliner, R., Suelves, I., and Lázaro, M.J. (1998). Synergetic effects in the copyrolysis of coal/petroleum residue mixtures by pyrolysis/gas chromatography: Influence of temperature, pressure, and coal nature. Energy Fuels, 12(5), 953–968.
  • Fernández, A.M., Barriocanal, C., Díez, M.A., and Alvarez, R. (2009). Influence of additives of various origins on thermoplastic properties of coal. Fuel, 88(12), 2365–2372.
  • Lazaro, M.-J., Moliner, R., Suelves, I., Herod, A.A., and Kandiyoti, R. (2001). Characterisation of tars from the co-pyrolysis of waste lubricating oils with coal. Fuel, 80(2), 179–194.
  • Sun, M., Ma, X.-x., Cao, W., Du, P.-p., Yang, Y.-h., and Xu, L. (2012). Effect of polymerization with paraformaldehyde on thermal reactivity of >300°C fraction from low temperature coal tar. Thermochim. Acta, 538, 48–54.
  • Méndez, A., Santamaría, R., Granda, M., Morgan, T., Herod, A.A., Kandiyoti, R., and Menéndez, R. (2003). Influence of granular carbons on pitch properties. Fuel, 82(10), 1241–1250.
  • Szuba J., and Mchalik, L. (1983) Carbochemistry: Outline development. Silesia, Katowice, (ISBN 83–216–0347–5) ( Pol).
  • Thomas, S., Ledesma, E.B., and Wornat, M.J. (2007). The effects of oxygen on the yields of the thermal decomposition products of catechol under pyrolysis and fuel-rich oxidation conditions. Fuel, 86(16), 2581–2595.
  • Thomas, S., and Wornat, M.J. (2008). The effects of oxygen on the yields of polycyclic aromatic hydrocarbons formed during the pyrolysis and fuel-rich oxidation of catechol. Fuel, 87(6), 768–781.
  • Hu, Y.Q., Nikzat, H., Nawata, M., Kobayashi, N., and Hasatani, M. (2001). The characteristics of coal-char oxidation under high partial pressure of oxygen. Fuel 89(4), 2111–2116.
  • Deng, J., Li, S.-r., Zhang Y.-n., Mu, Y., and Zhamg, Y. (2011). Experimental study on performance that carbon dioxide inhibits coal oxidation and spontaneous combustion. J. Coal Sci. Eng. (China), 17(3), 326–330.
  • Zhou, H., Jin, B., Xiao, R., Zhong, Z., and Huang, Y. (2009). Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed. Energy Fuels, 23(4), 2031–2034.
  • García-García, A., Illán-Gómez, M.J., Linares-Solano, A., and de Lecea, C.S.-M. (1999). NOx reduction by potassium-containing coal briquettes. Effect of NO2 concentration. Energy Fuels, 13(2), 499–505.
  • García-García, A., Illán-Gómez, M.J., Linares-Solano, A., and de Lecea, C.S.-M. (2002). NOx reduction by potassium-containing coal briquettes. Effect of preparation procedure and potassium content. Energy Fuels, 16(3), 560–574.
  • Ledesma, E.B., Kalish, M.A., Wornat, M.J., Nelson, P.F., and Mackie, J.C. (1999). Observation of cyclopenta-fused and ethynyl-substituted PAH during the fuel-rich combustion of primary tar from a bituminous coal. Energy Fuels, 13(6), 1167–1172.
  • Ledesma, E.B., Kalish, M.A., Nelson, P.F., Wornat, M.J., and Mackie, J.C. (2000). Formation and fate of PAH during the pyrolysis and fuel-rich combustion of coal primary tar. Fuel, 79(14), 1801–1814.
  • Mokoena, K., Van der Walt, T.J., Morgan, T.J., Herod, A.A., and Kandiyoti, R. (2008). Heat treatment of medium-temperature Sasol–Lurgi gasifier coal-tar pitch for polymerizing to higher value products. Fuel, 87(6), 751–760.
  • Stock, L.M., and Obeng, M. (1997). Oxidation and decarboxylation. A reaction sequence for the study of aromatic structural elements in Pocahontas No. 3 Coal. Energy Fuels, 11(5), 987–997.
  • Alvarez, R., Callén, M.S., Clemente, C., Gómez-Limón, D., López, J.M., Mastral, A.M., and Murillo, R. (2004). Soil, water, and air environmental impact from tire rubber/coal fluidized-bed cocombustion. Energy Fuels, 18(6), 1633–1639.
  • Stefanova, M., Marinov, S.P., Mastral, A.M., Callén, M.S., and Garcí, T. (2002). Emission of oxygen, sulphur and nitrogen containing heterocyclic polyaromatic compounds from lignite combustion. Fuel Process. Technol., 77–78, 89–94.
  • Liu, Z.-X., Liu, Z.-C., Zong Z.-M., Wei, X.-Y., Wang, J., and Lee, C.W. (2003). GC/MS analysis of water-soluble products from the mild oxidation of Longkou brown coal with H2O2. Energy Fuels, 17(2), 424–426.
  • Fitzpatrick, E.M., Bartle, K.D., Kubacki, M.L., Jones, J.M., Pourkashanian, M., Ross, A.B., Williams, A., and Kubica, K. (2009). The mechanism of the formation of soot and other pollutants during the co-firing of coal and pine wood in a fixed bed combustor. Fuel, 88(12), 2409–2417.
  • Wang, H., and Shooter, D. (2004). Low molecular weight dicarboxylic acids in PM10 in a city with intensive solid fuel burning. Chemosphere, 56(8), 725–733.
  • Taubman, J. (2011). Coal and alternative energy sources, Warsaw ( Pol): PWN.
  • De Micco, G., Nasjleti, A., and Bohé, A.E. (2012). Kinetics of the gasification of a Rio Turbio coal under different pyrolysis temperatures. Fuel, 95, 537–543.
  • Park, D.-C., Day, S.J., and Nelson, P.F. (2008). Formation of N-containing gas-phase species from char gasification in steam. Fuel, 87(6), 807–814.
  • Qiu, J., He, X., Sun, T., Zhao, Z., Zhou, Y., Guo, S., Zhang, J., and Ma, T. (2004). Coal gasification in steam and air medium under plasma conditions: A preliminary study. Fuel Process. Technol., 85(8–10), 969–982.
  • Song, H.-J., Lee, J., Gaur, A., Park, J.-J., and Park J.-W. (2010). Production of gaseous fuel from refuse plastic fuel via co-pyrolysis using low-quality coal and catalytic steam gasification. J. Mater. Cycles Waste Manage., 12(4), 295–301.
  • Long, H., Shi, Q., Pan, N., Yahe Zhang, Y., Cui, D., Chung, K.H., Zhao, S., and Xu, C. (2012). Characterization of middle-temperature gasification coal tar. Part 2: Neutral fraction by extrography followed by gas chromatography–mass spectrometry and electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels, 26(6), 3424–3431.
  • Zeng, X., Wang, Y., Yu, J., Wu, S., Han, J., Xu, S., and Xu, G. (2011). Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer. Energy and Fuels, 25(11), 5242–5249.
  • Nomura, M., Muratani, T., Tajima, Y., and Murata, S. (1995). Liquefaction of Japanese bituminous Akabira coal catalyzed by molten salts under D2 atmosphere. Fuel Process. Technol., 43(3), 213–225.
  • Begon, V., Megaritis, A., Lazaro, M.-J., Herod, A.A., Dugwell, D.R., and Kandiyoti R. (1998). Changes in sample reactivity and catalyst deactivation during early stages of the hydrocracking of a coal extract. Fuel, 77(12), 1261–1272.
  • Begon, V., Suelves, I., Herod, A.A., Dugwell, D.R., and Kandiyoti, R. (2000). Structural effects of sample ageing in hydrocracked coal liquefaction extracts. Fuel, 79(12), 1423–1429.
  • Wang, T.-X., Zong, Z.-M., Zhang, J.-W., Wei, Y.-B., Zhao,W., Li, B.-M., and Wei, X.-Y. (2008). Microwave-assisted hydroconversions of demineralized coal liquefaction residues from Shenfu and Shengli coals. Fuel, 87(4–5), 498–507.
  • Teo, K.C., and Watkinson, A.P. (1990). Product distributions from catalytic hydrotreating of a coal tar middle distillate. Fuel, 69(10), 1211–1218.
  • Zhang, S.-F., Herod, A.A., and Kandiyoti, R. (1997). Effectiveness of dispersed catalysts in hydrocracking a coal liquefaction extract: A screening study. Fuel, 76(1), 39–49.
  • Zhang, S.-F., Xu, B., Herod, A.A., Kimber, G.M., Dugwell, D.R., and Kandiyoti, R. (1996). Effect of coal rank on hydrocracking reactivities of primary coal extracts prepared in a flowing-solvent reactor: The Argonne premium coal sample set. Fuel, 75(13), 1557–1567.
  • Chen, H.-K., Li, B.-G., Yang, J.-I., and Zhang, B.-J. (1998). Transformation of sulfur during pyrolysis and hydropyrolysis of coal. Fuel, 77(6), 487–493.
  • Butuzova, L., Razvigorova, M., Krzton, A., and Minkova, V. (1998). The effect of water on the yield and structure of the products of brown coal pyrolysis and hydrogenation. Fuel, 77(6), 639–643.
  • Aida, T.M., Sato, T., Sekiguchi, G., Adschiri, T., and Arai, K. (2002). Extraction of Taiheiyo coal with supercritical water–phenol mixtures. Fuel, 81(11–12), 1453–1461.
  • Methakhup, S., Ngamprasertsith, S., and Prasassarakich, P. (2007). Improvement of oil yield and its distribution from coal extraction using sulfide catalysts. Fuel, 86(15), 2485–2490.
  • Stihle, J., Uzio, D., Lorentz, C., Charon, N., Ponthus, J., and Geantet, C. (2012). Detailed characterization of coal-derived liquids from direct coal liquefaction on supported catalysts. Fuel, 95(1), 79–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.