1,366
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Iron-based magnetic nanomaterials and their environmental applications

, , &
Pages 783-826 | Published online: 20 Apr 2016

References

  • Luo, X., Morrin, A., Killard, A. J., and Smyth, M. R. (2006). Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 18, 319–326.
  • Andreescu, S., Njagi, J., Ispas, C., and Ravalli, M. T. (2009). JEM spotlight: Applications of advanced nanomaterials for environmental monitoring. J. Environ. Monit., 11, 27–40.
  • Zhou, Q., Huang, Y., and Xie, G. (2012). Investigation of the applicability of highly ordered TiO2 nanotube array for enrichment and determination of polychlorinated biphenyls at trace level in environmental water samples. J. Chromatogr. A, 1237, 24–29.
  • Fang, Z., and Zhou, Q. (2012). Research advances of TiO2 nanotube array in environmental field. Acta Chim. Sinica, 70, 1767–1774.
  • Mauter, M. S., and Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42, 5843–5859.
  • Daniel, M. C., and Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104, 293–346.
  • Ge, J., Zhang, Q., Zhang, T., and Yin, Y. (2008). Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed., 120, 9056–9060.
  • Pyrzynska, K. (2013). Use of nanomaterials in sample preparation. TrAC, Trends Anal. Chem., 43, 100–108.
  • Wu, F., Li, Q., Zhang, X., Liu, L., Wu, S., Sun, D., Li, F., and Jiang, W. (2012). Fabrication and characterization of thermo-sensitive magnetic polymer composite nanoparticles. J. Magn. Magn. Mater., 324, 1326–1330.
  • Liu, W. T. (2006). Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng., 102, 1–7.
  • Philippova, O., Barabanova, A., Molchanov, V., and Khokhlov, A. (2011). Magnetic polymer beads: Recent trends and developments in synthetic design and applications. Eur. Polym. J., 47, 542–559.
  • Wei, S., Wang, Q., Zhu, J., Sun, L., Lin, H., and Guo, Z. (2011). Multifunctional composite core–shell nanoparticles. Nanoscale, 3, 4474–4502.
  • Lu, A. H., Salabas, E. L., and Schuth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 46, 1222–1244.
  • Faraji, M., Yamini, Y., and Rezaee, M. (2010). Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc., 7, 1–37.
  • Reddy, L. H., Arias, J. L., Nicolas, J., and Couvreur, P.(2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev., 112, 5818–5878.
  • Gao, J., Gu, H., and Xu, B. (2009). Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res., 42, 1097–1107.
  • Nowack, B., and Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut., 150, 5–22.
  • Ngomsik, A. F., Bee, A., Draye, M., Cote, G., and Cabuil, V. (2005). Magnetic nano- and microparticles for metal removal and environmental applications: a review. C. R. Chim, 8, 963–970.
  • Aitken, R., Creely, K., and Tran, C. (2004). Nanoparticles: An occupational hygiene review. London, England HSE Books.
  • Ito, A., Shinkai, M., Honda, H., and Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 100, 1–11.
  • Tanaka, K., Ito, A., Kobayashi, T., Kawamura, T., Shimada, S., Matsumoto, K., Saida, T., and Honda, H. (2005). Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J. Biosci. Bioeng., 100, 112–115.
  • Jang, J. H., and Lim, H. B. (2010). Characterization and analytical application of surface modified magnetic nanoparticles. Microchem. J., 94, 148–158.
  • Thurm, S., and Odenbach, S. (2002). Magnetic separation of ferrofluids. J. Magn. Magn. Mater., 252, 247–249.
  • de Vicente, I., Merino-Martos, A., Cruz-Pizarro, L., and de Vicente, J. (2010). On the use of magnetic nano and microparticles for lake restoration. J. Hazard. Mater., 181, 375–381.
  • Zhao, G., Song, S., Wang, C., Wu, Q., and Wang, Z. (2011). Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Anal. Chim. Acta, 708, 155–159.
  • Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., and Rao, L. (2001). Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem. Mater., 13, 479–486.
  • Kohara, K., Yamamoto, S., Seinberg, L., Murakami, T., Tsujimoto, M., Ogawa, T., Kurata, H., Kageyama, H., and Takano, M. (2013). Carboxylated SiO2-coated α-Fe nanoparticles: toward a versatile platform for biomedical applications. Chem. Commun., 49, 2563–2565.
  • Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1, 482–501.
  • Lu, Y., Yin, Y., Mayers, B. T., and Xia, Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett., 2, 183–186.
  • Hu, J., Lo, I., and Chen, G. (2004). Removal of Cr (VI) by magnetite nanoparticle. Water Sci. Technol., 50, 139–146.
  • Hu, J., Chen, G., and Lo, I. (2005). Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res., 39, 4528–4536.
  • Wei, X., and Viadero, R. C. Jr. (2007). Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering. Colloids Surf., A, 294, 280–286.
  • Xiao, S., Shen, M., Guo, R., Wang, S., and Shi, X. (2009). Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J. Phys. Chem. C, 113, 18062–18068.
  • Tosco, T., Petrangeli Papini, M., Cruz Viggi, C., and Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: a review. J. Cleaner Prod., 77, 10–21.
  • Elliott, D. W., and Zhang, W.-X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol., 35, 4922–4926.
  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., and Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol., 41, 284–290.
  • Kohara, K., Yamamoto, S., Seinberg, L., Murakami, T., Tsujimoto, M., Ogawa, T., Kurata, H., Kageyama, H., and Takano, M. (2013). Carboxylated SiO2-coated α-Fe nanoparticles: toward a versatile platform for biomedical applications. Chem. Commun., 49, 2563–2565.
  • He, F., and Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol., 39, 3314–3320.
  • Huang, Q., Shi, X., Pinto, R. A., and Petersen, E. J., and Weber, W. J., Jr. (2008). Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications. Environ. Sci. Technol., 42, 8884–8889.
  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res., 5, 323–332.
  • Moeser, G. D., Roach, K. A., Green, W. H., Laibinis, P. E., and Hatton, T. A. (2002). Water-based magnetic fluids as extractants for synthetic organic compounds. Ind. Eng. Chem. Res., 41, 4739–4749.
  • Du, B., Mei, A., Tao, P., Zhao, B., Cao, Z., Nie, J., Xu, J., and Fan, Z. (2009). Poly [N-isopropylacrylamide-co-3-(trimethoxysilyl)-propylmethacrylate] coated aqueous dispersed thermosensitive Fe3O4 Nanoparticles. J. Phys. Chem. C, 113, 10090–10096.
  • Isojima, T., Lattuada, M., Vander Sande, J. B., and Hatton, T. A. (2008). Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles. ACS Nano, 2, 1799–1806.
  • Wang, Y., Wang, S., Niu, H., Ma, Y., Zeng, T., Cai, Y., and Meng, Z. (2013). Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A, 1283, 20–26.
  • Lim, J., Yeap, S. P., and Low, S. C. (2014). Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purif. Technol., 123, 171–174.
  • Jung, J. H., Lee, J. H., and Shinkai, S. (2011). Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem. Soc. Rev., 40, 4464–4474.
  • Yamamoto, S., Ruwan, G., Tamada, Y., Kohara, K., Kusano, Y., Sasano, T., Ohno, K., Tsujii, Y., Kageyama, H., Ono, T., and Takano, M. (2011). Transformation of nano- to mesosized iron oxide cores to α-Fe within organic shells preserved intact. Chem. Mater., 23, 1564–1569.
  • Sadeghi, S., Azhdari, H., Arabi, H., and Moghaddam, A. Z. (2012). Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J. Hazard. Mater., 215–216, 208–216.
  • Feng, J. T., and Zhao, Y. P. (2008). Influence of different amount of Au on the wetting behavior of PDMS membrane. Biomed. Microdevices, 10, 65–72.
  • Mefford, O. T., Vadala, M. L., Goff, J. D., Carroll, M. R., Mejia-Ariza, R., Caba, B. L., St. Pierre, T. G., Woodward, R. C., Davis, R. M., and Riffle, J. (2008). Stability of polydimethylsiloxane-magnetite nanoparticle dispersions against flocculation: interparticle interactions of polydisperse materials. Langmuir, 24, 5060–5069.
  • Dong, J., Xu, Z., and Kuznicki, S. M. (2009). Magnetic multi-functional nano composites for environmental applications. Adv. Funct. Mater., 19, 1268–1275.
  • Deng, D., Yu, L., Chen, X., Wang, G., Jin, L., Pan, X., Deng, J., Sun, G., and Bao, X. (2013). Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed., 52, 371–375.
  • Sun, H., Zhou, G., Liu, S., Ang, H. M., Tadé, M. O., and Wang, S. (2012). Nano-Fe0 encapsulated in microcarbon spheres: synthesis, characterization, and environmental applications. ACS Appl. Mater. Interfaces, 4, 6235–6241.
  • Wu, Q., Zhao, G., Feng, C., Wang, C., and Wang, Z. (2011). Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J. Chromatogr. A, 1218, 7936–7942.
  • Bai, S., and Shen, X. (2012). Graphene–inorganic nanocomposites. RSC Adv., 2, 64–98.
  • Shi, C., Meng, J., and Deng, C. (2012). Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem. Commun., 48, 2418–2420.
  • Li, D., Mueller, M. B., Gilje, S., Kaner, R. B., and Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3, 101–105.
  • Martín, A., and Escarpa, A. (2014). Graphene: The cutting–edge interaction between chemistry and electrochemistry. TrAC, Trends Anal. Chem., 56, 13–26.
  • Hong, G., Wu, Q. H., Ren, J., Wang, C., Zhang, W., and Lee, S. T. (2013). Recent progress in organic molecule/graphene interfaces. Nano Today, 8, 388–402.
  • Wang, Z., Han, Q., Xia, J., Xia, L., Ding, M., and Tang, J. (2013). Graphene-based solid-phase extraction disk for fast separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. J. Sep. Sci., 36, 1834–1842.
  • Cao, X., Chen, J., Ye, X., Zhang, F., Shen, L., and Mo, W. (2013). Ultrasound-assisted magnetic SPE based on Fe3O4-grafted graphene for the determination of polychlorinated biphenyls in water samples. J. Sep. Sci., 36, 3579–3585.
  • Joshi, M. K., Pant, H. R., Kim, H. J., Kim, J. H., and Kim, C. S. (2014). One-pot synthesis of Ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment. Colloids Surf. A, 446, 102–108.
  • Sitko, R., Zawisza, B., and Malicka, E. (2013). Graphene as a new sorbent in analytical chemistry. TrAC, Trends Anal. Chem., 51, 33–43.
  • Han, Q., Wang, Z., Xia, J., Chen, S., Zhang, X., and Ding, M. (2012). Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta, 101, 388–395.
  • Karamani, A. A., Douvalis, A. P., and Stalikas, C. D. (2013). Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography mass spectrometry. J. Chromatogr. A, 1271, 1–9.
  • Zhao, X., Shi, Y., Cai, Y., and Mou, S. (2008). Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environ. Sci. Technol., 42, 1201–1206.
  • Zhao, X., Shi, Y., Wang, T., Cai, Y., and Jiang, G. (2008). Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J. Chromatogr. A, 1188, 140–147.
  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., and Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 108, 2064–2110.
  • Wang, W., Jin, Z. H., Li, T. L., Zhang, H., and Gao, S. (2006). Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere, 65, 1396–1404.
  • Sun, Y. P., Li, X. Q., Zhang, W. X., and Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf., A, 308, 60–66.
  • Mashhadizadeh, M. H., and Karami, Z. (2011). Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1, 3, 4-thiadiazole and their determination by ICP-OES. J. Hazard. Mater., 190, 1023–1029.
  • Sarkar, B., Megharaj, M., Xi, Y., Krishnamurti, G. S. R., and Naidu, R. (2010). Sorption of quaternary ammonium compounds in soils: Implications to the soil microbial activities. J. Hazard. Mater., 184, 448–456.
  • Dmochowska, B., Piosik, J., Woziwodzka, A., Sikora, K., Wiśniewski, A., and Węgrzyn, G. (2011). Mutagenicity of quaternary ammonium salts containing carbohydrate moieties. J. Hazard. Mater., 193, 272–278.
  • Yuan, G. (2008). Environmental materials research: opportunities and challenges in China. Int. J. Sustain. Dev. World Ecol., 15, 1S–10S.
  • Kerkez, D. V., Tomašević, D. D., Kozma, G., Bečelić-Tomin, M. R., Prica, M. D., Rončević, S. D., Kukovecz, Á., Dalmacija, B. D., and Kónya, Z. (2014). Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: A comparative study. J. Taiwan Inst. Chem. Eng., 45, 2451–2461.
  • Gu, Z. Y., Yang, C. X., Chang, N., and Yan, X. P. (2012). Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc. Chem. Res., 45, 734–745.
  • Chen, X., Ding, N., Zang, H., Yeung, H., Zhao, R.-S., Cheng, C., Liu, J., and Chan, T. W. D. (2013). Fe3O4@MOF core–shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J. Chromatogr. A, 1304, 241–245.
  • Jin, N., Zhang, H., Jin, S., Dadmun, M. D., and Zhao, B. (2012). Shifting sol–gel phase diagram of a doubly thermosensitive hydrophilic diblock copolymer poly(methoxytri(ethylene glycol) acrylate-co-acrylic acid)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) in aqueous solution. Macromolecules, 45, 4790–4800.
  • Shamim, N., Hong, L., Hidajat, K., and Uddin, M. S. (2006). Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of bovine serum albumin. J. Colloid Interface Sci., 304, 1–8.
  • Balasubramaniam, S., Pothayee, N., Lin, Y., House, M., Woodward, R. C., St. Pierre, T. G., Davis, R. M., and Riffle, J. S. (2011). Poly(N-isopropylacrylamide)-coated superparamagnetic iron oxide nanoparticles: relaxometric and fluorescence behavior correlate to temperature-dependent aggregation. Chem. Mater., 23, 3348–3356.
  • Zhu, H., Tao, J., Wang, W., Zhou, Y., Li, P., Li, Z., Yan, K., Wu, S., Yeung, K. W., Xu, Z., Xu, H., and Chu, P. K. (2013). Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly(St-NIPAM) core-shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials, 34, 2296–2306.
  • Dionigi, C., Piñeiro, Y., Riminucci, A., Bañobre, M., Rivas, J., and Dediu, V. (2014). Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Appl. Phys. A, 114, 585–590.
  • Woo, E., Ponvel, K. M., Ahn, I. S., and Lee, C. H. (2010). Synthesis of magnetic/silica nanoparticles with a core of magnetic clusters and their application for the immobilization of His-tagged enzymes. J. Mater. Chem., 20, 1511–1515.
  • Wang, R., Yang, Y. L., Qin, M., Wang, L. K., Yu, L., Shao, B., Qiao, M.-Q., Wang, C., and Feng, X. Z. (2007). Biocompatible hydrophilic modifications of poly(dimethylsiloxane) using self-assembled hydrophobins. Chem. Mater., 19, 3227–3231.
  • Korotych, O., Samchenko, Y., Boldeskul, I., Ulberg, Z., Zholobak, N., and Sukhodub, L. (2013). N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique. Mater. Sci. Eng., C, 33, 892–900.
  • Ge, D., and Lee, H. K. (2011). Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A, 1218, 8490–8495.
  • Sikder, M. T., Mihara, Y., Islam, M. S., Saito, T., Tanaka, S., and Kurasaki, M. (2014). Preparation and characterization of chitosan–caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem. Eng. J., 236, 378–387.
  • Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., and Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol., 39, 1338–1345.
  • Dickinson, M., and Scott, T. B. (2010). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J. Hazard. Mater., 178, 171–179.
  • Riba, O., Scott, T. B., Vala Ragnarsdottir, K., and Allen, G. C. (2008). Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim. Cosmochim. Acta, 72, 4047–4057.
  • Kanel, S. R., Manning, B., Charlet, L., and Choi, H. (2005). Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol., 39, 1291–1298.
  • Wang, C.-B., and Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol., 31, 2154–2156.
  • An, Y., Li, T., Jin, Z., Dong, M., Xia, H., and Wang, X. (2010). Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresour. Technol., 101, 9825–9828.
  • Xiaomin, N., Xiaobo, S., Huagui, Z., Dongen, Z., Dandan, Y., and Qingbiao, Z. (2005). Studies on the one-step preparation of iron nanoparticles in solution. J. Cryst. Growth, 275, 548–553.
  • Peng, S., Wang, C., Xie, J., and Sun, S. (2006). Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc., 128, 10676–10677.
  • Mukherjee, R., Sinha, A., Lama, Y., and Kumar, V. (2015). Utilization of zero valent iron (ZVI) particles produced from steel industry waste for in-situ remediation of ground water contaminated with organo-chlorine pesticide heptachlor. Int. J. Environ. Res., 9, 19–26.
  • Machado, S., Pinto, S. L., Grosso, J. P., Nouws, H. P. A., Albergaria, J. T., and Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total Environ., 445–446, 1–8.
  • Zhang, S., Niu, H., Hu, Z., Cai, Y., and Shi, Y. (2010). Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A, 1217, 4757–4764.
  • Wang, J., Munir, A., Zhu, Z., and Zhou, H. S. (2010). Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules. Anal. Chem., 2010, 82, 6782–6789.
  • Xia, X., Lai, E. P. C., and Ormeci, B. (2012). Ultrasonication-assisted synthesis of molecularly imprinted polymer-encapsulated magnetic nanoparticles for rapid and selective removal of 17β-estradiol from aqueous environment. Polym. Eng. Sci., 52, 1775–1783.
  • Liu, Z. L., Liu, Y. J., Yao, K. L., Ding, Z. H., Tao, J., and Wang, X. (2002). Synthesis and magnetic properties of Fe3O4 nanoparticles. J. Mater. Synth. Process., 10, 83–87.
  • Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. Mater., 17, 1247–1248.
  • Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., and Li, Y. (2005). Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed., 44, 2782–2785.
  • Lu, T., Wang, J., Yin, J., Wang, A., Wang, X., and Zhang, T. (2013). Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloids Surf., A, 436, 675–683.
  • Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126, 273–279.
  • Ding, H. L., Zhang, Y. X., Wang, S., Xu, J. M., Xu, S. C., and Li, G. H. (2012). Fe3O4@SiO2 Core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem. Mater., 24, 4572–4580.
  • Cai, Y., Shen, Y., Xie, A., Li, S., and Wang, X. (2010). Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater., 322, 2938–2943.
  • Sun, Y. K., Ma, M., Zhang, Y., and Gu, N. (2004). Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf., A, 245, 15–19.
  • Hu, J., Chen, G., and Lo, I. (2006). Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng., 132, 709–715.
  • Varanda, L. C., Jafelicci, M., Tartaj, P., O' Grady, K., González-Carreño, T., Morales, M. P., Muñoz, T., and Serna, C. J. (2002). Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere. J. Appl. Phys., 92, 2079–2085.
  • Lefebure, S., Dubois, E., Cabuil, V., Neveu, S., and Massart, R. (1998). Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J. Mater. Res., 13, 2975–2981.
  • Huang, C., and Hu, B. (2008). Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim. Acta, Part B, 63, 437–444.
  • Zhang, X., Wang, J., Li, R., Dai, Q., Gao, R., Liu, Q., and Zhang, M. (2013). Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Ind. Eng. Chem. Res., 52, 10152–10159.
  • Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang, J., and Chen, S. (2014). Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J. Hazard. Mater., 268, 124–131.
  • Thakur, S., and Karak, N. (2014). One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Mater. Chem. Phys., 144, 425–432.
  • Zhou, W. H., Lu, C. H., Guo, X. C., Chen, F.-R., Yang, H.-H., and Wang, X.-R. (2010). Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J. Mater. Chem., 2010, 20, 880–883.
  • Liu, J. F., Zhao, Z. S., and Jiang, G. B. (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol., 42, 6949–6954.
  • Xin, T., Ma, M., Zhang, H., Gu, J., Wang, S., Liu, M., and Zhang, Q. (2014). A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core shell nanocomposites as highly recyclable photocatalysts. Appl. Surf. Sci., 288, 51–59.
  • Luo, Y. B., Yu, Q. W., Yuan, B. F., and Feng, Y. Q. (2012). Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes. Talanta, 2012, 90, 123–131.
  • Niu, H., Wang, Y., Zhang, X., Meng, Z., and Cai, Y. (2012). Easy synthesis of surface-tunable carbon-encapsulated magnetic nanoparticles: adsorbents for selective isolation and preconcentration of organic pollutants. ACS Appl. Mater. Interfaces, 4, 286–295.
  • Luo, Y. B., Shi, Z. G., Gao, Q., and Feng, Y.-Q. (2011). Magnetic retrieval of graphene: extraction of sulfonamide antibiotics from environmental water samples. J. Chromatogr. A, 1218, 1353–1358.
  • Wang, W., Ma, R., Wu, Q., Wang, C., and Wang, Z. (2013). Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography fluorescence analysis. J. Chromatogr. A, 1293, 20–27.
  • Pinto, G. M. F., and Jardim, I. C. S. (2000). Use of solid-phase extraction and high-performance liquid chromatography for the determination of triazine residues in water: validation of the method. J. Chromatogr. A, 869, 463–469.
  • Karamani, A. A., Douvalis, A. P., and Stalikas, C. D. (2013). Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography mass spectrometry. J. Chromatogr. A, 1271, 1–9.
  • Nagaraju, D., and Huang, S. D. (2007). Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. J. Chromatogr. A, 1161, 89–97.
  • Ma, Y. R., Zhang, X. L., Zeng, T., Cao, D., Zhou, Z., Li, W.-H., Niu, H., and Cai, Y.-Q. (2013). Polydopamine-coated magnetic nanoparticles for enrichment and direct detection of small molecule pollutants coupled with MALDI-TOF-MS. ACS Appl. Mater. Interfaces, 5, 1024–1030.
  • Liu, X., Lu, X., Huang, Y., Liu, C., and Zhao, S. (2014). Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Talanta, 119, 341–347.
  • Zhang, S., Niu, H., Cai, Y., and Shi, Y. (2010). Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Anal. Chim. Acta, 665, 167–175.
  • Tavallali, H., Deilamy-Rad, G., and Peykarimah, P. (2013). Preconcentration and speciation of Cr(III) and Cr(VI) in water and soil samples by spectrometric detection via use of nanosized alumina-coated magnetite solid phase. Environ. Monit. Assess., 185, 7723–7738.
  • Park, M., Seo, S., Lee, I. S., and Jung, J. H. (2010). Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe3O4@SiO2 core/shell magnetic nanoparticles. Chem. Commun., 46, 4478–4480.
  • United States Environmental Protection Agency, 2007. Nanotechnology White Paper, http://nepis.epa.gov/Exe/ZyPDF.cgi/60000EHU.PDF?Dockey=60000EHU.PDF.
  • Gupta, V. K., Atar, N., Yola, M. L., Üstündağ, Z., and Uzun, L. (2014). A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res., 48, 210–217.
  • Ponder, S. M., Darab, J. G., and Mallouk, T. E. (2000). Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol., 34, 2564–2569.
  • Singh, V. K., and Tiwari, P. N. (1997). Removal and recovery of chromium (VI) from industrial waste water. J. Chem. Technol. Biotechnol., 69, 376–382.
  • Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J., and Bylaska, E. J. (2004). Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environ. Sci. Technol., 38, 139–147.
  • Johnson, D., Hilal, N., and Bowen, W. R. (2009). Atomic force microscopy in process engineering. Oxford, England. Butterworth-Heinemann.
  • Shindo, D., and Oikawa, T. (2002). Analytical electron microscopy for materials science. Tokyo, Japan: Springer.
  • Liu, Y., Choi, H., Dionysiou, D., and Lowry, G. V. (2005). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chem. Mater., 17, 5315–5322.
  • Chang, M. C., Shu, H. Y., Hsieh, W. P., and Wang, M. C. (2005). Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. J. Air Waste Manage. Assoc., 55, 1200–1207.
  • Sun, Z., Zheng, S., Ayoko, G. A., Frost, R. L., and Xi, Y. (2013). Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials. J. Hazard. Mater., 263, 768–777.
  • Lin, H. Y., Hou, S. G., Xie, G. H., Yao, Z. W., and Zhou, Q. X. (2012). Degradation of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea by nanoscale zerovalent iron under aerobic and anaerobic conditions. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 47, 2270–2276.
  • Zhou, Q. X., and Lin, H. Y. (2013). Influence of surfactants on degradation of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea by nanoscale zerovalent iron. Clean-Soil Air Water, 41, 128–133.
  • Fan, J., Guo, Y., Wang, J., and Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater., 166, 904–910.
  • Shih, Y. H., Tso, C. P., and Tung, L. Y. (2010). Rapid degradation of methyl orange with nanoscale zerovalent iron particles. Nanotechnology, 7, 16–17.
  • Luo, S., Qin, P., Shao, J., Peng, L., Zeng, Q., and Gu, J.-D. (2013). Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for Orange II removal. Chem. Eng. J., 223, 1–7.
  • Niu, H., Zhang, D., Zhang, S., Zhang, X., Meng, Z., and Cai, Y. (2011). Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. Hazard. Mater., 190, 559–565.
  • Zhang, Y. R., Shen, S. L., Wang, S. Q., Huang, J., Su, P., Wang, Q. R., and Zhao, B.-X. (2014). A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution. Chem. Eng. J., 239, 250–256.
  • Tian, B., Wang, T., Dong, R., Bao, S., Yang, F., and Zhang, J. (2014). Core–shell structured γ-Fe2O3@SiO2@AgBr:Ag composite with high magnetic separation efficiency and excellent visible light activity for acid orange 7 degradation. Appl. Catal., B, 147, 22–28.
  • Leng, Y., Guo, W., Shi, X., Li, Y., Wang, A., Hao, F., and Xing, L. (2014). Degradation of Rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle. Chem. Eng. J., 240, 338–343.
  • Mittal, H., and Mishra, S. B. (2014). Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr. Polym., 101, 1255–1264.
  • Wang, W., Liu, Y., Li, T., and Zhou, M. (2014). Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chem. Eng. J., 242, 1–9.
  • Zhang, L., Wang, W., Sun, S., Sun, Y., Gao, E., and Zhang, Z. (2014). Elimination of BPA endocrine disruptor by magnetic BiOBr@SiO2@Fe3O4 photocatalyst. Appl. Catal., B, 148–149, 164–169.
  • Zhang, Y., Cheng, Y., Chen, N., Zhou, Y., Li, B., Gu, W., Shi, X., and Xian, Y. (2014). Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: adsorption and desorption. J. Colloid Inter. Sci., 421, 85–92.
  • Yin, L., Lin, Y., and Jia, L. (2014). Graphene oxide functionalized magnetic nanoparticles as adsorbents for removal of phthalate esters. Microchim. Acta, 181, 957–965.
  • Lakshmanan, R., Sanchez-Dominguez, M., Matutes-Aquino, J. A., Wennmalm, S., and Kuttuva Rajarao, G. (2014). Removal of total organic carbon from sewage wastewater using poly(ethylenimine)-functionalized magnetic nanoparticles. Langmuir, 30, 1036–1044.
  • Hwang, Y. H., Kim, D. G., and Shin, H. S. (2011). Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater., 185, 1513–1521.
  • Kanel, S. R., Greneche, J. M., and Choi, H. (2006). Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol., 40, 2045–2050.
  • Almeelbi, T., and Bezbaruah, A. (2012). Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res., 14, 1–14.
  • Smedley, P., and Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., 17, 517–568.
  • Boparai, H. K., Joseph, M., and O'Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater., 186, 458–465.
  • Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zbořil, R., and Karakassides, M. A. (2013). Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. J. Hazard. Mater., 261, 295–306.
  • Li, X., Zhang, M., Liu, Y., Li, X., Liu, Y., Hua, R., and He, C. (2013). Removal of U(VI) in aqueous solution by nanoscale zero-valent iron (nZVI). Water Qual., Expo. Health, 5, 31–40.
  • Shan, C., Ma, Z., and Tong, M. (2014). Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. J. Hazard. Mater., 268, 229–236.
  • Feitoza, N. C., Gonçalves, T. D., Mesquita, J. J., Menegucci, J. S., Santos, M.-K. M. S., Chaker, J. A., Cunha, R. B., Medeiros, A. M. M., Rubim, J. C., and Sousa, M. H. (2014). Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. J. Hazard. Mater., 264, 153–160.
  • Beker, U., Cumbal, L., Duranoglu, D., Kucuk, I., and Sengupta, A. K. (2010). Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal. Environ. Geochem. Health, 32, 291–296.
  • Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.-C., and Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4, 3979–3986.
  • Huang, S. H., and Chen, D. H. (2009). Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater., 163, 174–179.
  • Chen, J., Hao, Y., and Chen, M. (2014). Rapid and efficient removal of Ni2+ from aqueous solution by the one-pot synthesized EDTA-modified magnetic nanoparticles. Environ. Sci. Pollut. Res., 21, 1671–1679.
  • Zhao, X., Wang, J., Wu, F., Wang, T., Cai, Y., Shi, Y., and Jiang, G. (2010). Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J. Hazard. Mater., 173, 102–109.
  • Lakshmanan, R., Okoli, C., Boutonnet, M., Järås, S., and Rajarao, G. K. (2014). Microemulsion prepared magnetic nanoparticles for phosphate removal: Time efficient studies. J. Environ. Chem. Eng., 2, 185–189.
  • Zhao, X., Cai, Y., Wu, F., Pan, Y., Liao, H., and Xu, B. (2011). Determination of perfluorinated compounds in environmental water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry using surfactant-coated Fe3O4 magnetic nanoparticles as adsorbents. Microchem. J., 98, 207–214.
  • Bystrzejewska-Piotrowska, G., Golimowski, J., and Urban, P. L. (2009). Nanoparticles: their potential toxicity, waste and environmental management. Waste Manage. (Oxford) 29, 2587–2595.
  • Handy, R. D., von der Kammer, F., Lead, J. R., Hassellov, M., Owen, R., and Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 287–314.
  • Derfus, A. M., Chan, W. C. W., and Bhatia, S. N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 4, 11.
  • Oberdorster, G., Ferin, J., Gelein, R., Soderholm, S. C., and Finkelstein, J. (1992). Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ. Health Perspect., 97, 193–199.
  • Kharisov, B. I., Rasika Dias, H. V., Kharissova, O. V., Manuel Jimenez-Perez, V., Olvera Perez, B., and Munoz Flores, B. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv., 2, 9325–9358.
  • Marsalek, B., Jancula, D., Marsalkova, E., Mashlan, M., Safarova, K., Tucek, J., and Zboril, R. (2012). Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ. Sci. Technol., 46, 2316–2323.
  • Chen, P. J., Su, C. H., Tseng, C. Y., Tan, S. W., and Cheng, C. H. (2011). Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar. Pollut. Bull., 63, 339–346.
  • Marchan, R., Reif, R., and Hengstler, J. G. (2012). Toxicology of magnetic nanoparticles: disturbed body iron homeostasis? Arch. Toxicol., 86, 683–684.
  • El-Temsah, Y. S., and Joner, E. J. (2012). Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere, 89, 76–82.
  • Phenrat, T., Long, T. C., Lowry, G. V., and Veronesi, B. (2009). Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol., 43, 195–200.
  • Hu, X., Cook, S., Wang, P., and Hwang, H.m. (2009). In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci. Total Environ., 407, 3070–3072.
  • Kirschling, T. L., Gregory, K. B., Minkley, J. E. G., Lowry, G. V., and Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ. Sci. Technol., 44, 3474–3480.
  • El-Temsah, Y. S., and Joner, E. J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol., 27, 42–49.
  • Wu, X., Tan, Y., Mao, H., and Zhang, M. (2010). Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int. J. Nanomed., 5, 385–399.
  • Zhu, M. T., Wang, B., Wang, Y., Yuan, L., Wang, H. J., Wang, M., Ouyang, H., Chai, Z. F., Feng, W. Y., and Zhao, Y. L. (2011). Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol. Lett., 203, 162–171.
  • Shapira, P., and Youtie, J. (2015). The economic contributions of nanotechnology to green and sustainable growth. In V. A. Basiuk and E. V. Basiuk (Eds.), Green Processes for Nanotechnology (pp. 409–434). New York, NY: Springer International.
  • Cook, S. (2009). Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. Retrieved from http://www.clu-in.org/download/techdrct/cook_%20zvi_aug2009.pdf
  • Gavaskar, A., Tatar, L., Condit, W., Gavaskar, A., Tatar, L., and Condit, W. (2005). Cost and performance report nanoscale zero-valent iron technologies for source remediation. Naval Facilities Engineering Command. Contract report CR-05-007-ENV.
  • Fang, Z., Qiu, X., Chen, J., and Qiu, X. (2011). Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination, 267, 34–41.
  • Nasrollahzadeh, M., Mohammad Sajadi, S., Rostami-Vartooni, A., and Khalaj, M. (2015). Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J. Mol. Catal. A: Chem., 396, 31–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.