946
Views
64
CrossRef citations to date
0
Altmetric
Articles

Toward operational methods for the assessment of intrinsic groundwater vulnerability: A review

, , , , , , , , & show all
Pages 827-884 | Published online: 04 May 2016

References

  • Aguilera, P. A, Frenich, A. G, and Torres, J. A (2001). Application of the Kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality. Water Research, 35, 4053–4062.
  • Albinet, M., and Margat, J. (1970). Cartographie de la vulnérabilité à la pollution des nappes d'eau souterraine Orleans, France. Bull BRGM 2ème série, 4, 13–22.
  • Aldwell, B. (1994). Examples of groundwater vulnerability definitions. The GSI Groundwater Newsletter, 25, 9.
  • Aller, L., Bennett, T., Lehr, J. H, Petty, R. J, and Hackett, G. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. NWWA/EPA Series, EPA-600/2-87-035.
  • Al-Zabet, T. A (2002). Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environ. Geol., 43, 203–208.
  • Andersen, L. J, and Gosk, E. (1987). Applicability of vulnerability maps. In van Duijvenbooden, W., and van Waegeningh, H. G (Eds.), Vulnerability of soil and groundwater to pollutants, ( Chapter 38, pp. 321–332.). The Hague: TNO Committee on Hydrological Research. Proceedings and Information.
  • Andreo, B., Goldscheider, N., Vadillo, I., Vías, J. M, Neukum, C., Sinreich, M., Jimenez, P., Brechenmacher, J., Carrasco, F., Hotzl, H., Perles, M. J, and Zwahlen, F. (2006) Karst groundwater protection: First application of a pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain). Science of the Total Environment, 357(1–3), 54–73.
  • Andreo, B., Ravbar, N., and Vías, J. M (2009). Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeology Journal, 17, 749–758.
  • Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., Bour, O., Molénat, J., Ruiz, L., de Montety, V., De Ridder, J., Roques, C., and Longuevergne, L. (2012). Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface‐ and groundwaters. Science of the Total Environment, 435–436, 167–178.
  • Arthur, J. D, Wood, H. AR., Baker, A. E, Cichon, J. R, and Raines, G. L (2007). Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Nat. Resour. Res., 16, 93–107.
  • Aslan, A., and Autin, W. J (1996). Depositional and pedogenic influences on the environmental geology of Holocene Mississippi River floodplain deposits near Ferriday, Louisiana. Engineering Geology, 45, 417–432.
  • Bachmat, Y., and Collin, M. (1987). Mapping to assess groundwater vulnerability to pollution. In Duijvenbooden van, W., and Waegeningh van, H. G (Eds.), Vulnerability of soil and groundwater to pollutants, ( Chapter 38, pp. 297–307). The Hague: TNO Committee on Hydrological Research. Proceedings and Information.
  • Barrocu, G., and Biallo, G. (1993). Application of GIS for aquifer vulnerability application. HydroGIS 93: Proceedings of the Vienna Conference, IAHS Publ. 211, 571–580.
  • Basu, N. B, Jindal, P., Schilling, K. E, Wolter, C. F, and Takle, E.S. (2012). Evaluation of analytical and numerical approaches for the estimation of groundwater residence time distribution. J. Hydrol., 475, 65–73.
  • Beaujean, J., Lemieux, J.-M., Dassargues, A., Therrien, R., and Brouyère, S. (2014). Physically based groundwater vulnerability assessment using sensitivity analysis methods. Groundwater, 52, 864–874.
  • Bedessem, M. E, Casey, B., Frederic, K., and Nibbelink, N. (2005). Aquifer priorization for ambient ground water monitoring. Ground Water Monitoring & Remediation, 25(1), 150–158.
  • Belitz, K., and Bredehoeft, J. D (1990). Role of confining layers in controlling large-scale regional ground-water flow. In P. S Neuman, and I. Neretnieks (Eds.), Hydrogeology of low permeability environments, (pp. 7–17.) Hannover, Federal Republic of Germany: Verlag Heinz Heise.
  • Belnap, N. (1993). On rigorous definitions. Philos. Stud.: An Int. J. Philosophy in the Analytic Tradition, 72, 115–146.
  • Berkhoff, K. (2008). Spatially explicit groundwater vulnerability assessment to support the implementation of the Water Framework Directive – A practical approach with stakeholders. Hydrol. Earth Syst. Sci., 12, 111–122.
  • Bierkens, M. FP. (1996). Modeling hydraulic conductivity of a complex confining layer at various spatial scales. Water Resour. Res., 32, 2369–2382.
  • Birkel, C., Soulsby, C., Tetzlaff, D., Dunn, S., and Spezia, L. (2012). High-frequency storm event isotope sampling reveals time-variant residence time distributions and influence of diurnal cycles. Hydrol. Processes, 26(2), 308–316.
  • Bohlke, J. K (2002). Groundwater recharge and agricultural contamination. Hydrogeol. J., 10, 153–179.
  • Bolin, B., and Rodhe, H. (1973). A note on the concepts of age distribution and residence time in natural reservoirs. Tellus, 25, 58–62.
  • Botter, G., Bertuzzo, E., and Rinaldo, A. (2011). Catchment residence and residence time distributions: The master equation. Geophys. Res. Lett., 38, 6.
  • Bottero, M. (2011). Indicators Assessment Systems. In C. Cassatella, and A. Peano (Eds.), Landscape Indicators. Accessing and Monitoring Landscape Quality, (pp. 15–29.), Springer Science & Business Media, Springer: Netherlands.
  • Boy-Roura, M., Nolan, B. T, Menció, A., and Mas-Pla, J. (2013). Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J. Hydrol., 505, 150–162.
  • Brewster, M. L, Annan, A. P, Greenhouse, J. P, Kueper, B. H, Olhoeft, G. R, Redman, J. D, and Sander, K. A (1995). Observed migration of a controlled DNAPL release by geophysical methods. Ground Water, 33(6), 977–987.
  • BRGM (1979). Maps of ground water vulnerability to contamination 1:50 000, 31 sheets, BRGM, Orlèans, France (in French).
  • Brockman, C. S, and Szabo J. P (2000). Fractures and their distribution in the tills of Ohio. Ohio Journal of Science, 100, 39–55.
  • Broers, H. P, and van der Grift, B. (2004). Regional monitoring of temporal changes in groundwater quality. J. Hydrol., 296, 192–220.
  • Brooks, R. H, and Corey, A. T (1966). Properties of porous media affecting fluid flow. J. Irrig. Drainage Div, ASCE Proc., 72(IR2), 61–88.
  • Brosig, K., Geyer, T., Subah, A., and Sauter, M. (2008). Residence time based approach for the assessment of vulnerability of karst groundwater: The Residence Time Method. Environ. Geol., 54, 905–911.
  • Brouyère, S., Jeannin, P.-J., Dassargues, A., Goldscheider, N., Popescu, I. C, Sauter, M., Vadillo, I., and Zwahlen, F. (2001). Evaluation and validation of vulnerability concepts using a physical based approach. 7th Conference on Limestone Hydrology and Fissured Media, Besançon, Sci. Tech. Envir. Mèm. H. S., 13, 67–72.
  • Butscher, C., and Huggenberger, P. (2008). Intrinsic vulnerability assessment in karst areas: A numerical modeling approach. Water Resour. Res., 44, W03408.
  • Butscher, C., and Huggenberger, P. (2009). Enhanced vulnerability assessment in karst areas by combining mapping with modeling approaches. Science of the Total Environment, 407, 1153–1163.
  • CEC (1982). Groundwater resources of the European community. Synthetical report. Commission of the European Communities, Directorate-general for the environment, consumer protection and nuclear safety. Th. Schäfer GmbH Hannover.
  • Chapman, S., and Parker, B L. (2005). Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resour. Res., 41(W12411), 1–16.
  • Chapman, S.W., Parker, B. L, Sale, T. C, and Doner, L. A (2012). Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones. J. Contam. Hydrol., 136–137, 106–116.
  • Chaves, P., and Kojiri, T. (2007). Conceptual fuzzy neural network model for water quality simulation. Hydrol. Processes, 21, 634–646.
  • Cherry, J. A, Beswick, B. T, Clister, W. E, and Lutchman, M. (1971). Flow pattern and hydrochemistry of two shallow groundwater regimes in the Lake Agassiz basin, southern Manitoba. In A. C Turnock (Ed.), Geological Association of Canada Special Paper ( Chapter 9, pp. 321–332), The Geological Association of Canada, Toronto, ON, Canada.
  • Cherry, J. A, Grisak, G. E, and Clister, W. E (1973). Hydrogeologic studies at a sub-surface radioactive-waste management site in west-central Canada. In J. Braunstein (Ed.), Underground waste management and artificial recharge. (pp. 436–467). New Orleans: Second International Symposium, AAPG-USGS.
  • Cherry, J. A, Parker, B. L, Bradbury, K. R, Eaton, T. T, Gotkowitz, M. G, Hart, D. J, and Borchardt, M. A (2004). Role of aquitards in the protection of aquifers from contamination: A “state of the science” USA: AWWA Research Foundation, Denver, CO, USA.
  • Chown, J. C, Kueper, B. H, and McWhorter, D. B (1997). The use of upward hydraulic gradients to arrest downward DNAPL migration in rock fractures. Ground Water, 35, 483–491.
  • Civita, M., and De Regibus, C. (1995). Sperimentazione di alcune metodologie per la valutazione della vulnerabilita degli aquiferi. Q. Geol. Appl. Pitagora. Bologna., 3, 63–71.
  • Civita, M. (1994). Le carte della vulnerabilita degli acquiferiall’ inquinamento. Teoria and practica. (Aquifer vulnerability maps to pollution). Bologna: Pitagora.
  • Civita, M., and De Maio M., (2004). Assessing and mapping groundwater vulnerability to contamination: The Italian “combined” approach. Geofísica Internacional, 43(4), 513–532.
  • Civita, M. (1987). La previsione e la prevenzione del rischio d'inquinamento delle acque sotterranee a livello regionale mediante le Carte di Vulnerabilità. Atti. Conv. “Inquinamento delle Acque Sotterranee: Previsione e Prevenzione”, Mantova, 9–18. In Italian.
  • Civita, M. (2010). The combined approach when assessing and mapping groundwater vulnerability to contamination. J. Water Res. Prot., 2, 14–28.
  • Civita, M., and De Maio, M. (1997). SINTACS Un sistema parametrico per la valutazione e la cartografia per la valutazione della vulnerabilità degli acquiferi all'inquinamento, Metodologia e automazione, Bologna, In Italian: Pitagora Ed.
  • Civita, M., and De Maio, M. (2000). Valutazione e cartografia automatica della vulnerabilità degli acquiferi all'inquinamento con il sistema parametrico. SINTACS R5 a new parametric system for the assessment and automatic mapping of groundwater vulnerability to contamination.Bologna Pubbl. n°2200 del GNDCI-CNR. 240 pp. In Italian: Pitagora Edit.
  • Civita, M. (1990a). La valutazione della vulnerabilità degli acquiferi. Atti 1°Conv. Naz. “Protezione e gestione delle Acque Sotterranee: Metodologie, Tecnologie e Obiettivi”, 3, Marano sul Panaro, pp. 39–86. In Italian.
  • Civita, M. (1990b). Legenda unificata per le Carte della vulnerabilità dei corpi idrici sotterranei. Unified legend for the aquifer pollution vulnerability Maps. Studi sulla Vulnerabilità degli Acquiferi, 1 (Append.), Pitagora Edit. Bologna. 13 pp. In Italian.
  • Connell, L. D, and van den Daele, G. (2003). A quantitative approach to aquifer vulnerability mapping. J. Hydrol., 276(1–4), 71–88.
  • Cook, P.G., Solomon, D.K., Plummer, L.N., Busenberg, E., and Schiff, S.L. (1995). Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour. Res., 31, 425–434.
  • Cornaton, F. (2004). Deterministic models of groundwater age, life expectancy and transit time distributions in advective-dispersive systems. Ph.D Thesis, Switzerland: Faculty of Sciences, University of Neuchatel.
  • Cornaton, F., and Perrochet, P. (2006). Groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 1. Generalized reservoir theory. Adv. Water Resour., 29, 1267–1291.
  • Daliakopoulos, I. N, Coulibaly, B., and Tsanis, I. K (2005). Groundwater level forecasting using artificial neural network. J. Hydrol., 309, 29–240.
  • Daly, D., Dassargues, A., Drew, D., Dunne, S., Goldscheider, N., Neale, S., Popescu, I. C, and Zwahlen, F. (2002). Main concepts of the “European approach” to karst – groundwater – vulnerability assessment and mapping. Hydrogeol. J., 10, 340–345.
  • Dassargues, A., Popescu, I. C, Beaujean, J., Lemieux, J. M, and Brouyère, S. (2009). Reframing groundwater vulnerability assessment for a better understanding between decision makers and hydrogeologists, In H. J, Liebscher, R., Clarke, J., Rodda, G., Schultz, A., Schumann, L., Ubertini, and G., Young, The Role of Hydrology in Water Resources Management (Proc. of IAHS - IHP2008) ( Chapter 327, pp. 278–284, Capri, 13–16 October 2008, IAHS Press.
  • Davis, A. D, Long, A. J, and Wireman, M. (2002). KARSTIC: A sensitivity method for carbonate aquifers in karst terrain. Environmental Geology, 42, 65–72.
  • De Luca, D.A, and Verga, G. (1991). Una metodologia per la valutazione della vulnerabilitá degli acquiferi. Acque Sotter., 29, 30–33.
  • De Vries, J. J, and Simmers, I. (2002). Groundwater recharge: an overview of processes and challenges. Hydrogeol. J., 10, 5–17.
  • Debernardi, L., De Luca, D. A and Lasagna, M. (2008). Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environ Geol, 55, 539–558.
  • Denny, S. C, Allen, D. M, and Journeay, J. M (2007). DRASTIC–Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol. J., 15, 483–493.
  • Dimitriou, E., and Zacharias, I. (2006). Groundwater vulnerability and risk mapping in a geologically complex area by using stable isotopes, remote sensing and GIS techniques. Environ Geol, 51, 309–323.
  • Dixon, B. (2005). Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J. Hydrol., 309, 17–38.
  • Dochartaigh, B. EÓ., Ball, D. F, MacDonald, A. M, Lilly, A., Fitzsimons, V., del Rio, M., and Auton, C. A. (2005). Mapping groundwater vulnerability in Scotland: A new approach for the Water Framework Directive. Scott. J. Geol., 41, 21–30.
  • Doerfliger, N. (1996). Advances in karst groundwater protection strategy using artificial tracer tests analysis and multi-attribute vulnerability mapping (EPIK method). (PhD thesis), Faculty of Sciences, Neuchâtel University.
  • Doerfliger, N., and Zwahlen, F. (1995). EPIK: A new method for outlining of protection areas in karst environment. In Günay, G. and Johnson, I., Proceedings 5th International symposium and field seminar on karst waters and environmental impacts. Antalya, Sep 1995, Rotterdam: Balkema, pp.117–123.
  • Doerfliger, N., and Zwahlen, F. (1997). Practical guide: Groundwater vulnerability mapping in karstic regions (EPIK). Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern, p. 56.
  • Doerfliger, N., Jeannin, P. Y. and Zwahlen, F. (1999). Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geo., 39(2), 165–176.
  • Doerfliger, N., Plagnes, V., and Kavouri, K. (2010). PaPRIKa a multicriteria vulnerability method as a tool for sustainable management of karst aquifers—Example of application on a test site in SW France. Proceedings of International Interdisciplinary Scientific Conference “Sustainability of the Karst Environment: Dinaric Karst and other karst regions”, Plitvice Lakes, Croatia, 23–26 September 2009, UNESCO Paris, 49–56.
  • Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure, Water Resour. Res., 30(2), 211–224.
  • Eakin, H., and Luers, A. L. (2006). Assessing the vulnerability of social-environmental systems. Annual review of environment and resources, Book Series: Annual Review of Environment and Resources, 31, 365–394.
  • Eaton, T. T (2002). Fracture heterogeneity and hydrogeology of the Maquoketa aquitard, southeastern Wisconsin. Ph.D diss. University of Wisconsin, Madison.
  • Eaton, T. T, and Bradbury K. R (2003). Hydraulic transience and the role of bedding fractures in a bedrock aquitard, southeastern Wisconsin, USA. Geophysical Research Letters, 30(10), art no.-1961.
  • Eberts, S. M., Boehlke, J. K., Kauffman, L. J., and Jurgens, B. C. (2012). Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination, Hydrogeol. J., 20(2), 263–282.
  • EC (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for community action in the field of water policy, OJ L 327, 22 December 2000, Luxembourg: Office for Official Publications of the European Communities.
  • EC. (2003). Common implementation strategy for the Water Framework Directive (2000/60/EC). The role of wetlands in the Water Framework Directive, Guidance document (Chapter 12), Luxembourg: Office for Official Publications of the European Communities.
  • EC. (2006). Directive 2006/118/EC of the European Parliament and of the Council on the protection of groundwater against pollution and deterioration, OJ L 372, 27 December 2006, Luxembourg: Office for Official Publications of the European Communities.
  • EC. (2010). Common implementation strategy for the Water Framework Directive. Guidance on risk assessment and the use of conceptual models for groundwater, Guidance document No. 26, Luxembourg: Office for Official Publications of the European Communities.
  • Eckardt, D. A, and Stackelberg, P. E (1995). Relation of groundwater quality to land use on Long Island, New York. Groundwater, 33, 1019–1033.
  • EddyDilek, C. A, Looney, B. B, Hoekstra, P., Harthill, N., Blohm, M., and Phillips, D. R (1997). Definition of a critical confining zone using surface geophysical methods. Ground Water, 35, 451–462.
  • Edet, A. (2014). An aquifer vulnerability assessment of the Benin Formation aquifer, Calabar, southeastern Nigeria, using DRASTIC and GIS approach. Environ. Earth. Sci., 71, 1747–1765.
  • EEA. (2003). Environmental indicators: Typology and use in reporting. European Environmental Agency (EEA), Internal. Working Paper, 20p.
  • Ehteshami, M., Peralta, R. C, Eisele, H., Deer, H. M, and Tindall, T. (1991). Assessing pesticide contamination to ground water: A rapid approach. Ground Water, 29(6), 862–868.
  • Elfeki, A. MM., Uffink, G., and Lebreton, S. (2012). Influence of temporal fluctuations and spatial heterogeneity on pollution transport in porous media. Hydrogeol. J., 20, 283–297.
  • Engel, B. A, Navulur, K. CS., Cooper, B. S, and Hahn, L. (1996). Estimating groundwater vulnerability to non-point source pollution from nitrates and pesticides on a regional scale, IAHS Publication, 235, 521–526.
  • Etcheverry, D., and Perrochet, P. (2000). Direct simulation of groundwater transit-time distributions using the reservoir theory. Hydrogeol. J., 8(2), 200–208.
  • Evans, B. M, and Myers, W. L (1990). A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. J. Soil Water Conserv., 45, 242–245.
  • Faybishenko, B., Nicholson, T., Shestopalov, V., Bohuslavksy, A., and Bublias, V. (2015). Groundwater vulnerability: Chernobyl nuclear disaster. Special Publications 69. American Geophysical Union and John Wiley & Sons, 136 pp.
  • Fenton, O., Schulte, R. PO., Jordan, P., Lalor, S. TJ., and Richards, K. G (2011). Time lag: A methodology for the estimation of vertical and horizontal residence and flushing timescales to nitrate threshold concentrations in Irish aquifers. Environ. Sci. Policy, 14, 419–431.
  • Fetter, C. W (1999). Contaminant hydrogeology. 2nd edition. Prentice Hall: New York, 500pp.
  • Fijani, E., Nadiri, A. A, Moghaddam, A. A, Tsai, F. TC., and Dixon, B. (2013). Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. J. Hydrol., 503, 89–100.
  • Flerchinger, G. N, Seyfried, M. S, and Hardegree, S. P (2006). Using soil freezing characteristics to model multi-season soil water dynamics. Vadose Zone Journal, 5, 1143–1153.
  • Focazio, M. J, Reilly, T. E, Rupert, M. G, and Helsel, D. R (2002). Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers. U. S Geological Survey Circular 1224.
  • Footprint (2006–2009). FOOTPRINT: Creating tools for pesticide risk assessment and management in Europe EU FP6 Project. http://www.eu-footprint.org Access 2013 04 01.
  • Ford, D. C, and Williams, P. W (2007). Karst hydrogeology and geomorphology, Wiley, Chichester, West Sussex.
  • Foster, S., and Hirata, R. (1988) Groundwater pollution risk assessment: A methodology using available data. WHO-PAHO/HPE-CEPIS. Technical Manual. Lima, Peru.
  • Foster, S., Hirata, R., Gomes, D., D'elia, M., and Paris, M. (2002) Groundwater quality protection. A guide for water utilities, municipal authorities and environment agencies. The World Bank Washington D. C p. 103.
  • Foster, S. SD. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. [W:] van Duijvenboden W., van Waegeningh H. G [Red.] Vulnerability of Soil and Groundwater to Pollutants. TNO Comm. on Hydro. Research. Hague, Proc. and Inform., 38, 69–86.
  • Foster, S. SD., and Skinner A. C (1995). Groundwater protection: The science and practice of land surface zoning. IAHS Publn, 225, 471–482.
  • Foster, S. S, andChilton, P. J (2003). Groundwater: The processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B. Biol. Sci, 358, 1957–1972.
  • Fried, J.(1987). Groundwater resources in the European Community, 2nd phase, Vulnerability-Quality (Synthetical Report) (unpublished).
  • Frind, E. O, Molson, J. W, and Rudolph, D. L (2006). Well vulnerability: A quantitative approach for source water protection. Ground Water, 44, 732–742.
  • Garrett, P., Williams, J. S, Rossoll, C. F, and Tolman, A. L (1989). Are ground water vulnerability classification systems workable? In: National Ground Water Association Columbus, Proceedings of the FOCUS Conference on Eastern Regional Ground-Water Issues, Kitchener, Ontario, Canada, 329–343.
  • Gemitzi, A., Petalas, C., Pisinaras, V., and Tsihrintzis, V. A (2009). Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: An application to South Rhodope aquifer (Thrace, Greece). Hydrol. Processes, 23(3), 372–383.
  • Gemitzi A., Petalas C., Tsihrintzis V. A, and Pisinaras V. (2006). Assessment of groundwater vulnerability to pollution: A combination of GIS, fuzzy logic and decision making techniques. Environ. Geol., 49, 653–673.
  • Gerke, H. H (2006). Preferential flow descriptions for structured soils. J. Plant Nutr. Soil Sci., 169(3), 382–400.
  • Gerke, H. H, Koszinski, S., Kalettka, T., and Sommer, M. (2010). Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach. J. Hydrol., 393, 123–132.
  • Ginn, T. R (1999). On the distribution of multicomponent mixtures over generalized exposure time in subsurface flow and reactive transport: Foundations, and formulations for groundwater age, chemical heterogeneity, and biodegradation. Water Resour. Res., 35, 1395–1407.
  • Göpper, N., and Goldscheider, N. (2008). Solute and colloid transport in karst conduits under low- and high-flow conditions. Groundwater, 46, 61–68.
  • Gogu, R. C, and Dassargues, A. (2000a). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol., 39(6), 549–559.
  • Gogu, R. C, and Dassargues, A., (2000b). Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeology Jour., 8, 337–345.
  • Gogu, R. C, Hallet, V., and Dassargues, A. (2003). Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ. Geol., 44, 881–892.
  • Goldscheider, N. (2005). Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeology Jour., 13(4), 555–564.
  • Goldscheider, N., Klute, M., Sturm, S., and Hötzl, H. (2000). The PI method: a GIS based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z. Angew. Geol., 463, 157–166.
  • Goldscheider, N., and Drew, D. (2007). Methods in karst hydrogeology. Taylor & Francis. International Contributions to Hydrogeology, 265p.
  • Goldscheider, N., Klute, M., Sturm, S., and Hötzl, H. (2000). The PI method—A GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Zeitschrift für angewandte Geologie, 46(3), 157–166.
  • Gorelick, S. M, and Zheng, C. (2015). Global change and the groundwater management challenge, Water Resour. Res., 51(5), 3031–3051.
  • Graham, J. P, and Polizzotto, M. L (2013). Pit latrines and their impacts on groundwater quality: A systematic review. Environ. Health Perspect., 121, 521–530.
  • Grisak, G. E, Cherry, J. A, Vonhof, J. A, and Blumele, J. P (1976). Hydrogeologic and hydrochemical properties of fractured till in the interior plains region. In Glacial Till. Proceedings of Symposium, R. F Legget (Ed.), (pp. 304–335) Ottawa: Royal Society of Canada.
  • Haitjema, H. M (1995). On the residence time distribution in idealized groundwatersheds. J. Hydrol., 172 (1–4), 127–146.
  • Hamilton, S. K (2012). Biogeochemical time lags may delay responses of streams to ecological restoration. Freshwater Biology, 57, 43–57.
  • Hanor, J. S (1993). Effective hydraulic conductivity of fractured clay beds at a hazardous waste landfill, Louisiana Gulf-Coast. Water Resour. Res., 29, 3691–3698.
  • Hayashi, M., van der Kamp, G., and Schmidt, R. (2003). Focused infiltration of snowmelt water in partially frozen soil under small depressions. J. Hydrol., 270 (3–4), 214–229.
  • Healy, R., and Cook, P. (2002). Using groundwater levels to estimate recharge. Hydrogeol. J., 10(1), 91–109.
  • Healy, R. W, and Scanlon, B. R (2010). Estimating groundwater recharge, Cambridge, UK: Cambridge University Press.
  • Heidbüchel, I., Troch, P. A, Lyon, S. W, and Weiler, M. (2012). The master transit time distribution of variable flow systems. Water Resour. Res., 48, W06520.
  • Hendry, M. J (1988). Ground water movement in clayey till in the Prairie region. Ground Water, 26(5), 607–614.
  • Hendry, M. J, Wassenaar, L. I and Kotzer. T. (2000). Chloride and chlorine isotopes (Cl-36 and delta Cl-37) as tracers of solute migration in a thick, clay-rich aquitard system. Water Resour. Res., 36(1), 285–296.
  • Herrmann, F., Berthold, G., Fritsche, J. G, Kunkel, R., Voigt, H. J, and Wendland, F. (2012) Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: the state of Hesse case study, Germany. Environ. Earth Sci., 67, 2239–2250.
  • Heuvelmans, G., and D'hont, D. (2012). A potential vulnerability index for wells based on groundwater age distribution. In: Groundwater vulnerability emerging issues and new approaches. IMVUL Conference hosted by UPMC Sisyphe, Paris, France 12 July, 2012 Les Cordeliers, Rue de l'École de Médecine, Paris: France Abstract book, pp. 61.
  • Hinkel, J. (2011). Indicators of vulnerability and adaptive capacity: Towards a clarification of the science-policy interface, Global Environmental Change-Human and Policy Dimensions, 21(1), 198–208.
  • Hinsby, K., McKay, L. D Jorgensen, P., Lenczewski, M., and Gerba, C. P (1996). Fracture aperture measurements and migration of solutes, viruses, and immiscible creosote in a column of clay-rich till. Ground Water, 34, 1065–1075.
  • Hölting, B., Haertle, T., Hohberger, K. H, Nachtigal, K. H, Villinger, E., Weinzierll, W., and Wrobel, J. P (1995). Konzept zur Ermittlung der Schutzfunktion der Grundwasseruberdeckung. Geol. Jahrbuch, Reihe C, Heft 63, Hannover.
  • Hrachowitz, M., Soulsby, C., Tetzlaff, D., and Malcolm, I. A. (2011). Sensitivity of mean transit time estimates to model conditioning and data availability. Hydrol. Processes., 25(6), 980–990.
  • Huneau, F., Jaunat, J., Kavouri, K., Plagnes, V., Rey, F., and Dörfliger, N. (2013). Intrinsic vulnerability mapping for small mountainous karst aquifers, implementation of the new PaPRIKa method to Western Pyrenees (France). Engineering Geology, 161, 81–93.
  • IMVUL. (2008-2012), IMVUL: Marie Curie initial training network “Towards improved groundwater vulnerability assessment” EU FP7 Project. http://www.see.leeds.ac.uk/imvul/index.htm.
  • Jarvis, N. (2002). The MACRO model (version 4.3) technical description. Uppsala: Swedish University of Agricultural Sciences (SLU), Department of Soil Sciences, p 37.
  • Jeannin, P.-Y., Cornaton, F., Zwahlen, F., and Perrochet, P. (2001). VULK: A tool for intrinsic vulnerability assessment and validation. 7th Conference on Limestone Hydrology and Fissured Media, Besançon, Sci. Tech. Envir. Mèm. H. S., 13, 185–190.
  • Jiménez-Madrid, A., Carrasco, F., Martinez, C., and Gogu, R. C (2013). DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Quarterly Journal of Engineering Geology and Hydrogeology, 46, 245–255.
  • Johansson, P. O, Scharp, C., Alveteg, T., and Choza, A. (1999). Framework for ground-water protection—The Managua Ground Water System as an example. Ground Water, 37 (2), 204–213.
  • Johnston, R. H (1988). Factors affecting ground-water quality. [In:] National Water Summary 1986: Hydrologic events and ground-water quality. Water-Supply Paper, 2325, 71–86.
  • Jørgensen, P. R, Broholm, K., Sonnenborg, T. O, and Arvin, E. (1998). DNAPL transport through macroporous, clayey till columns. Ground Water, 36, 651–660.
  • Jureta, I. (2011). Analyis and design of advice. Berlin Heidelberg: Springer Verlag, p. 301.
  • Kalinski, R. J, Kelly, W. E, Bogardi, I., Ehrman, R. L, and Yamamoto, P. D (1994). Correlation between DRASTIC vulnerabilities and incidents of VOC contamination of municipal well in Nebraska. Ground Water, 32 (1), 31–34.
  • Kania, J., Różański, K., Witczak, S., and Zuber, A. (2006). On conceptual and numerical modeling of flow and transport in groundwater with the aid of tracers : A case study In: Viable methods of soil and water pollution monitoring, protection and remediation: proceedings of the NATO advanced research. Dordrecht, the Netherlands: Springer; in cooperation with NATO Public Diplomacy Division, 2006. — NATO Science Series. IV, Earth and Environmental Sciences, 69, 199–208.
  • Kavouri, K., Plagnes, V., Tremoulet, J., Dörfliger, N., Reijiba, F., Marchet, P. (2011). PaPRIKA: a method for estimating karst resource and source vulnerability—Application to the Ouysse karst system (southwest France). Hydrogeol. J., 19, 339–353.
  • Kazakis, N., and Voudouris, K. (2011). Comparison of three applied methods of groundwater vulnerability mapping: A case study from the Florina basin, Northern Greece. In N. Lambrakis et al. (Eds.), (pp. 359–367) Advances in the Research of Aquatic Environment, 2. Berlin Heidelberg: Springer-Verlag.
  • Kazemi, G. A, Lehr, J. H, and Perrochet, P. (2006). Groundwater age. Hoboken, NJ: John Wiley & Sons, Inc.
  • Kim, Y. J, and Hamm, S-Y. (1999). Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea. Hydrogeol. J., 7, 227–235.
  • Kleczkowski, A. S, and Witczak, S. (1990). Critical Protection Areas (CPA) of the Major Groundwater Basins (MGWB) in Poland. (Map 1:500000). Proc. International Symp. on Methodological Suggestions for Drawing up Natural, Environmental, Potential Maps. ENVIGEO - Brno. p.92–97.
  • Kleczkowski, A. S (1991). The map of the Critical Protection Areas (CPA) of the Major Groundwater Basins (MGWB) in Poland, 1:500,000. (Explanations). 44p., Inst. of Hydrogeology and Eng. Geology AGH Krakow.
  • Kløve B., Ala-Aho P., Bertrand G., Gurdak J. J, Kupfersberger H., Kværner J., Muotka T., Mykrä H., Preda E., and Rossi P. (2014). Climate change impacts on groundwater and dependent ecosystems, J. Hydrol., 518, 250–266.
  • Knorr, B., Maloszewski, P., Krämer, F., and Stumpp, C. (in press). Diffusive mass exchange of non-reactive substances in dual-porosity porous systems—A column experiment under saturated conditions. Hydrol. Processes., doi: 10.1002/hyp.10620.
  • Konikow, L. F (2011). The secret to successful solute-transport modelling. Ground Water, 49, 144–159.
  • Kosugi, K. (1996). Lognormal distribution model for unsaturated soil hydraulic properties, Water Resour. Res., 32(9), 2697–2703.
  • Koutsi, R., and Stournaras, G. (2011). Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: The PRESK method. Advances in the Research of Aquatic Environment Environmental Earth Sciences, 335–342.
  • Kralik, M., and Keimel, T. (2003) Time-input, an innovative groundwater-vulnerability assessment scheme: Application to an alpine test site. Environ. Geol., 44, 679–686.
  • Kralisch, S., Fink, M., Flügel, W.-A., and Beckstein, C. (2003). A neural network approach for the optimization of watershed management. Environ. Model. Softw., 18(8–9), 815–823.
  • Kristensen, P. (2004). The DPSIR framework. workshop on a comprehensive/detailed assessment of the vulnerability of water resources to environmental change in Africa using river basin approach, 27–29 September, Nairobi, Kenya, UNEP Headquarters. 10p.
  • Krogulec, E. (2013). Intrinsic and specific vulnerability of groundwater in a river valley—Assessment, verification and analysis of uncertainty. J. Earth Sci. Climat. Change., 4(159), 1–12.
  • Kübeck, C., Maloszewski, P., and Benischke, R. (2013). Determination of the conduit structure in a karst aquifer based on tracer data—Lurbach system, Austria. Hydrol. Processes., 27, 225–235.
  • Kueper, B. H, and McWhorter, D. B (1991). The behavior of dense, nonaqueous phase liquids in fractured clay and rock. Ground Water, 29, 716–728.
  • Kunkel, R., and Wendland, F. (1997). WEKU—A GIS-supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. Environ. Geol., 30(1–2), 1–9.
  • Laimer, H. J (2005). Die Erfassung der Karstgrundwasser-Vulnerabilität mit der Methode „VURAAS“. Grundwasser, 10(3), 167–176.
  • Leibundgut, C., Maloszewski, P. and Külls, C. (2009). Tracers in hydrology. West Sussex, UK: Wiley & Sons Ltd., 415 pp.
  • Liggett, J. E, and Talwar, S. (2009). Groundwater vulnerability assessments and integrated water resource management. Streamline, 13(1), 18–29.
  • Lissey, A. (1962). Groundwater resources of the Regina area. Regina, Sask: Regina Engineering Department.
  • Lobo-Ferreira, J. P, and Oliveira, M. M (1997). DRASTIC groundwater vulnerability mapping of Portugal. [w:] Groundwater: An endangered resource. Proc. of the 27th Congr. of the Int. Ass. for Hydraulic Research, San Francisco, USA, pp. 132–137.
  • Lobo-Ferreira, J. P (1998). GIS and mathematical modelling for the assessment of vulnerability and geographical zoning for groundwater management and protection. In B. Paukštys, F. Fonnum, B. A Zeeb, K. J Reimer (Eds.), Environmental contamination and remediation practices at former and present military bases NATO Science Series 48, (pp. 143–170). Springer Science+Business Media Dordrecht.
  • Lynch, S. D, Reynders, A. G, and Schulze, R. E (1997). A DRASTIC approach to ground water vulnerability in South Africa. S African J. Sci., 93(2), 59–60.
  • Majandang, J., and Sarapirome, S. (2013). Groundwater vulnerability assessment and sensitivity analysis in Nong Rua, Khon Kaen, Thailand, using a GIS-based SINTACS model. Environ. Earth Sci., 68, 2025–2039.
  • Malik, P., and Svasta, J. (1999). REKS—An alternative method of karst groundwater vulnerability estimation. Hydrogeology and land use management, Proceedings of the XXIX Congress of the International Association of Hydrogeologists, Bratislava, September 1999, 79–85.
  • Maloszewski, P. and Zuber, A. (1982). Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. Models and their applicability. J. Hydrol., 57(3-4), 207–231.
  • Maloszewski, P., and Zuber, A. (1996). Lumped parameter models for the interpretation of environmental tracer data. Manual on mathematical models in isotope hydrogeology. Vienna, Austria: International Atomic Energy Agency.
  • Maloszewski, P., Maciejewski, S., Stumpp, C., Stichler, W., Trimborn, P., and Klotz, D. (2006). Modelling of water flow through typical Bavarian soils based on lysimeter experiments: 2. Environmental deuterium transport. Hydrol. Sci. J., 51(2), 298–313.
  • Marcais, J., de Dreuzy, J. R, Ginn, T. R, Rousseau-Gueutin, P., and Leray, S. (2015). Inferring transit time distributions from atmospheric tracer data: Assessment of the predictive capacities of Lumped Parameter Models on a 3D crystalline aquifer model. J. Hydrol., 525, 619–631.
  • Marcolongo, B., and Pretto, L. (1987). Aquifer vulnerability of the plain northwards of Vicenza, 1:25000 (in Italian). Pubbl. G. ND. CI. – C. NR. n. 28, 13 p.
  • Margane, A. (2003). Guideline for groundwater vulnerability mapping and risk assessment for the susceptibility of groundwater resources to contamination. Federal Institute for Geosciences and Natural Resources (BGR), Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD) Management, Protection and Sustainable Use of Groundwater and Soil Resources in the Arab Region Project Vol. 4. 177pp.
  • Margat, J. (1968). Vulnérabilité des nappes d'eau souterraine à la pollution. BRGM-Publication 68 SGL 198 HYD; Orléans, France.
  • Marín, A. I, Dörfliger, N., and Andreo, B. (2012). Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ. Earth Sci., 65, 2407–2421.
  • Marin, A. I, Andreo, B., and Mudarra, M. (2015), Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests. Sci. Total Environ., 532, 435–446.
  • Marín. A. I and Andreo, B. (2015). Vulnerability to contamination of karst aquifers. In Stevanović, Z., (Ed.), Karst aquifers – characterization and engineering, professional practice in earth sciences, (pp. 251–266.) Springer International Publishing, Switzerland.
  • Marsico, A., Giuliano, G., Pennetta, L., and Vurro, M. (2004). Intrinsic vulnerability assessment of the south-eastern Murge (Apulia, southern Italy). Nat. Hazards Earth Syst Sci., 4, 769–774.
  • Martinez-Bastida, J. J, Arauzo, M., and Valladolid, M. (2010). Intrinsic and specific vulnerability of groundwater in central Spain: The risk of nitrate pollution. Hydrogeol. J., 18, 681–698.
  • Masetti, M., Poli, S., Sterlacchini, S. (2007). The use of the weights-of-evidence modeling technique to estimate the vulnerability of groundwater to nitrate contamination. Nat. Resour. Res., 16, 109–119.
  • Masetti, M., Poli, S., Sterlacchini, S., Beretta, G. P, and Facchi, A. (2008). Spatial and statistical assessment of factors influencing nitrate contamination in groundwater. J. Environ. Manag., 86, 272–281.
  • Masetti, M., Sterlacchini, S., Ballabio, C., Sorichetta, A., and Poli, S., (2009). Influence of threshold value in the use of statistical methods for groundwater vulnerability assessment. Sci. Total Environ., 407, 3836–3846.
  • Massoudieh, A., Visser, A., Sharifi, S., and Broers, H. P (2014). A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers. Appl. Geochem., 50, 252–264.
  • Maxe L., and Johansson, P-O. (1998) Assessing groundwater vulnerability using residence time and specific surface area as indicators. Hydrogeol. J., 6, 441–449.
  • McGuire, K. J, and McDonnell, J. J (2006). A review and evaluation of catchment transit time modeling. J. Hydrol., 330(3–4), 543–563.
  • McIelwain, T. A, Jackman, D. W, and Beukman, P. (1989). Characterization and remedial assessment of DNAPL PCB oil in fractured bedrock: a case study of the Smithville, Ontario site. In Proc. of FOCUS Conference on Eastern Regional Groundwater Issues. Kitchener, ON: National Well Water Association: 303–315
  • McKay, L. D, and Fredericia, J. (1995). Distribution, origin, and hydraulic influence of fractures in a clay-rich glacial deposit. Can. Geotech. J., 32, 957–975.
  • McWhorter, D. B, and Kueper, B. H (1996). Mechanics and mathematics of the movement of dense non-aqueous phase liquids (DNAPLs) in porous media. In J. F Pankow and J. A Cherry (Eds.), Dense chlorinated solvents and other DNAPLs in groundwater; history, behavior, and remediation. (pp. 89–128). Rockwood, ON: Waterloo Press.
  • Meinardi, C. R, Beusen, A. HW., Bollen, M. JS., Klepper, O., and Willems W. J (1982). Vulnerability to diffuse pollution and average nitrate contamination of European soils and groundwater. Water Sci. Technol., 31(8), 159–165.
  • Melloul, A., and Collin, M. (1998). Proposal index for aquifer water quality assessment: the case of the Israel's Sharon Region. J. Environ. Manage., 54, 131–142.
  • Meyboom, P. (1966). Unsteady groundwater flow near a willow ring in hummocky moraine. J. Hydrol., 4, 38–62.
  • Mohammad, N. A, and Jagath, J. K (2005). Modular neural network to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Modell. Software, 20, 851–871.
  • Molson, J. W, and Frind, E. O (2012). On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection. J. Contam. Hydrol., 127, 76–87.
  • Moore, D. S, and John, S. (1990) SEEPAGE: A system for early evaluation of the pollution potential of agricultural groundwater environments, USDA. SCS, Northeast Technical Center, Geology Technical Note 5.
  • Morris, B. L, Lawrence, A. RL., Chilton, P. JC., Adams, B., Calow, R. C, and Klinck, B. A (2003). Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management. Early Warning and Assessment Report Series, RS. 03-3. Nairobi, Kenya: United Nations Environment Programme 126p.
  • Morrison, W. EM., Parker, B. L, and Cherry, J. A (1998). Hydrogeological controls in flow and fate of PCE DNAPL in a fractured and layered clayey aquitard; a Borden experiment. In: Proc. of Geological Society of America 1998 annual meeting. Boulder, CO: Geological Society of America: United States. 174.
  • Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522.
  • Napolitano, P., and Fabbri, A. G (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources, (pp. 559–566).
  • Nativ, R., and Nissim, I. (1992). Characterization of a Desert Aquitard—Hydrologic and hydrochemical considerations. Ground Water, 30,598–606.
  • Nativ, R., Dahan, O., Nissim, I., Adar, E., and Geyh, M. A (1995). Questions pertaining to isotopic and hydrochemical evidence of fracture-controlled water flow and solute transport in a chalk aquitard. International-Association-of-Hydrological-Sciences Publication ( chapter 232, pp. 317–327). Wallingford, England: IAHS.
  • Navulur, K. CS., and Engel, B. A (1996). Predicting spatial distributions of vulnerability of Indiana state aquifer systems to nitrate leaching using a GIS. Third International Conference/Workshop on Integrating GIS and Environmental Modeling. NCGIA, Santa Fe, New Mexico, USA. 12p. http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sfinfo.html
  • Neukum, C. (2013), Overview on methods and applications for the validation of vulnerability assessments. Grundwasser, 18(1), 15–24.
  • Neukum, C., and Hötzl, H. (2007). Standardization of vulnerability maps. Environ. Geol., 51, 689–694.
  • Neukum, C., Hötzl, H., and Himmelsbach, T. (2008). Validation of vulnerability mapping methods by field investigations and numerical modeling. Hydrogeology Jour. 16(4), 641–658.
  • Neukum, C., and Azzam, R. (2009). Quantitative assessment of intrinsic groundwater vulnerability to contamination using numerical simulations. Sci. Total Environ., 408(2), 245–254.
  • Neuman, S. P, and Neretnieks, I. (1990). Hydrogeology of low permeability environments. Hannover Germany: Verlag Heinz Heise.
  • Newman, B. D, Osenbruck, K., Aeschbach-Hertig, W., Solomon, D. K, Cook P., Rozanski, K., and Kipfer, R. (2010). Dating of “young” groundwaters using environmental tracers: advantages, applications, and research needs. Isot. Environ. Health Stud., 46, 259–278.
  • Nguyet, V. TM., and Goldscheider, N. (2006). A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam. Hydrogeol. J., 14, 1666–1675.
  • Nijenhuis, I., Schmidt, M., Pellegatti, E., Paramatti, E., Richnow, H. H, and Gargini, A. (2013). A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site. J. Contam. Hydrol., 153, 92–105.
  • Nimmo, J. R (2012). Preferential flow occurs in unsaturated conditions. Hydrol. Processes, 26, 786–789.
  • Nolan, B. T, Hitt, K. J, and Ruddy, B. C (2002). Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environ. Sci. Technol., 36, 2138–2145.
  • Norris, S. E (1959). Vertical leakage through till as a source of recharge to a buried-valley aquifer at Dayton, Ohio.Columbus, Ohio: Department of Natural Resources.
  • National Research Council. (1993) Groundwater vulnerability assessment, contamination potential under condition of uncertainty. Washington DC: National Academy Press.
  • Ouedraogo, I., Defourny, P. and Vanclooster, M. (2016). Mapping the groundwater vulnerability for pollution at the pan African scale. Sci. Total Environ., 544, 939–953.
  • Panagopoulos, G. P, Antonakos, A. K, and Lambrakis, N. J (2006). Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. J., 14, 894–911.
  • Pankow, J. F, and Cherry, J. A (1996). Dense chlorinated solvents and other DNAPLs in groundwater: History, behavior, and remediation. Rockwood, ON: Waterloo Press.
  • Parker, B. L (1996). Effects of molecular diffusion on the persistence of dense immiscible organic liquids in fractured porous media. Ph. D diss. Waterloo, Ontario: University of Waterloo.
  • Parker, B. L, Cherry, J. A, and Chapman, S. W (2004). Field study of TCE diffusion profiles below DNAPL to access aquitard integrity. J. Contam. Hydrol., 74, 197–230.
  • Parker, B. L, Gillham, R. W, and Cherry, J. A (1994). Diffusive disappearance of immiscible-phase organic liquids in fractured geologic media. Ground Water, 32, 805–820.
  • Pavlis, M., Cummins, E., and McDonnell, K. (2010). Groundwater vulnerability assessment of plant protection products: A review. Human and Ecological Risk Assessment, 16, 621–650.
  • Perrin, J., Pochon, A., Jeannin P.-Y., and Zwahlen F. (2004). Vulnerability assessment in karstic areas: Validation by field experiment. Environ. Geol., 46 (2), 237–245.
  • Petelet-Giraud, E., Doerfliger, N., and Crochet, P. (2000). RISKE: méthode d’évaluation multicritère de la cartographie de la vulnérabilité des aquifères karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Herault, Sud de la France) Hydrogéol. 4, 71–88.
  • Plagnes, V., Théry, S., Fontaine, L., Bakalowicz, M., and Dörfliger, N. (2005). Karst vulnerability mapping: improvement of the RISKE method. KARST 2005, Water Resources and Environmental Problems in Karst, 14–19 September 2005 Belgrade-Kotor, Serbia.
  • Plummer, R., de Loë, R, and Armitage, D. (2012). A systematic review of water vulnerability assessment tools. Water Resour. Manage., 26, 4327–4346.
  • Polemio, M., Casarano, D., and Limoni, P. P (2009). Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat. Hazard Hearth Syst. Sci., 9, 1461–1470.
  • Popescu, I. C, Gardin, N., Brouyère, S., and Dassargues, A. (2008). Groundwater vulnerability assessment using physically based modelling: From challenges to pragmatic solutions. In J. C Refsgaard, K. Kovar, E. Haarder, and E. Nygaard (Eds.), ModelCARE 2007 Proceedings, Calibration and Reliability in Groundwater Modelling, Denmark: IAHS Publication No. 320, 83–88.
  • PPG Industries. (1995). Phase 2, Draft Site Wide RCRA Facility Investigation Report submitted to U. S EPA, January 1995. (prepared by IT Corp.).
  • Priesack, E., and Durner, W. (2006). Closed-form expression for the multi-modal unsaturated conductivity function. Vadose Zone J. 5(1), 121–124.
  • Pucci, A. A (1998). Hydrogeochemical processes and facies in confining units of the Atlantic Coastal Plain in New Jersey. Ground Water, 36, 635–644.
  • Pucci, A. A (1999). Sulfate transport in a coastal plain confining unit, New Jersey, USA. Hydrogeology Journal, 7, 251–263.
  • Qamhieh, N. SA. R (2006). Assessment of groundwater vulnerability to contamination in the West Bank, Palestine (Unpublished master's thesis). An-Najah National University, Nablus, Palestine. 115p.
  • Rahman, A. (2008). A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl. Geogr., 28, 32–53.
  • Ramos Leal, J. A, Noyola Medrano, C., and Tapia Silva, F. O (2010). Aquifer vulnerability and groundwater quality in mega cities: Case of the Mexico Basin. Environ. Earth Sci., 61, 1309–1320.
  • Ravbar, N., and Goldscheider, N. (2007). Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsol, 36(3), 461–475.
  • Ravbar, N., and Goldscheider, N. (2009). Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol. J., 17, 725–733.
  • Ravbar, N. (2007). The protection of karst waters: A comprehensive Slovene approach to vulnerability and contamination risk mapping. Ljubljana: Zalożba ZRC 254 pp.
  • Ray, J. A, and O'dell, P. W (1993). DIVERSITY. A new method for evaluating sensitivity of groundwater to contamination. Environ. Geol., 22, 345–352.
  • Ray, J. A, Webb, J. S, and O'dell, P. W (1994). Groundwater sensitivity regions of Kentucky. Map 1:500000. Kentucky Dep. for Environ. Prot., Frankfort, Kentucky.
  • Refsgaard, J.Ch., Christensen, S., Sonnenborg, T. O, Seifert, D., Højberg, A. L, and Troldborg, L. (2012). Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Adv. Water Resour., 36, 36–50.
  • Remenda, V. H, van der Kamp, G., and Cherry, J. A (1996). Use of vertical profiles of delta O-18 to constrain estimates of hydraulic conductivity in a thick, unfractured aquitard. Water Resour. Res., 32, 2979–2987.
  • Richert, S. E, Young, S. E, and Johnson, C. (1992). SEEPAGE: A GIS model for Groundwater Pollution Potential, Paper No. 922592ASAE 1992, International Winter Meeting, Nashville, Tennessee, 15–18.
  • Roberts, J. R, Cherry, J. A, and Schwartz, F. W (1982). A case-study of a chemical spill—Polychlorinated-biphenyls (PCBs) 1. History, distribution, and surface translocation. Water Resour. Res., 18, 525–534.
  • Robins, N., Chilton, P. and Cobbing, J. (2007). Adapting existing experience with aquifer vulnerability and groundwater protection for Africa. J. Afr. Earth Sci., 47, 30–38.
  • Rophe, B., Berkowitz, B., Magaritz, M., and Ronen, D. (1992). Analysis of subsurface flow and formation anisotropy in a fractured aquitard using transient water level data. Water Resour. Res., 28, 199–207.
  • Rosen, L. (1994). A Study of the DRASTIC Methodology with emphasis on Swedish conditions. Ground Water, 32(2), 279–285.
  • Rozkowski, A. (1967). The origin of hydrochemical patterns in hummocky moraine. Can. J. Earth Sci., 4,1065–1092.
  • Rupert, M. G (2001). Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water, 39, 625–630.
  • Sappa, G., and Lega, S. (1998). Comparison between different vulnerability analysis methods applied to a volcanic groundwater system. In D. Moore and O. Hungr (Eds.), Proceedings, Eighth International Congress, International Association for Engineering Geology and the Environment in Vancouver, Canada: Balkema, Rotterdam, 2291–2298.
  • Scanlon, B., Healy, R., and Cook, P. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J., 10(1), 18–39.
  • Schilling, K. E., Hubbard, T., Luzier, J., and Spooner, J. (2006). Walnut Creek watershed restoration and water quality monitoring. Project: Final Report. Iowa Department of Natural Resources. Iowa City, IA: Geological Survey Bureau Technical Information Series 49 124 p.
  • Schwartz, M. O (2006). Numerical modeling of groundwater vulnerability; the example Namibia. Environmental Geol. 50, 237–249.
  • Schwartz, F. W, Cherry, J. A, and Roberts, J. R (1982). A case-study of a chemical spill—Polychlorinated-biphenyls (PCBs): 2. Hydrogeological conditions and contaminant migration. Water Resour. Res., 18, 535–545.
  • Sharma, V., Negi, S. C, Rudra, R. P, and Yang, S. (2003). Neural networks for predicting nitrate-nitrogen in drainage water. Agri. Water Manage., 63, 169–183.
  • Shaw, R. J, and Hendry, M. J (1998). Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. Can. Geotech. J., 35,1041–1052.
  • Shirazi, S. M, Imran, H. M, and Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: A review, J. Risk Res., 15, 991–1011.
  • Sililo, O. T. N. and Tellam, J. H. (2000). Fingering in Unsaturated Zone Flow: A Qualitative Review with Laboratory Experiments on Heterogeneous Systems, Groundwater, 38(6), 864–871.
  • Simpkins, W. W, Eidem, J. M, Seo, H. H, Johnson, B. L, Helmke, M. F, Weis, M. R, Parkin, T. B, Burkart, M. R, and Moorman, T. B (1996). Confining units are not created equal; Quaternary history and its control on physical and biogeochemical processes. In: Proc. of Geological Society of America 28th annual meeting. Boulder, CO: Geological Society of America.
  • Šimůnek, J., and Bradford, S. (2008). Vadose zone modeling: Introduction and importance. Vadose Zone J. 7, 581–586.
  • Šimůnek, J., and van Genuchten, M. T (2008). Modelling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J. 7(2), 782–797.
  • Šimůnek, J., van Genuchten, M. T, and Senja, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably-saturated media. Version 3, Riverside, USA: Department of Environmental Sciences University of California.
  • Sinreich, M., and Pochon, A. (2015). Standardized approach for conducting tracing tests in order to validate and refine vulnerability mapping criteria. In B. Andreo et al. (Eds.), Hydrogeological and Environmental Investigations in Karst Systems, Springer Environmental Earth Sciences 1, 131–137.
  • Sinreich, M., Flynn, R., and Zopfi, J. (2009). Use of particulate surrogates for assessing microbial mobility in subsurface ecosystems. Hydrogeol. J., 17, 49–59.
  • Sinreich, M., Cornaton, F., and Zwahlen, F. (2007). Evaluation of reactive transport parameters to assess specific vulnerability in karst systems. In A. J Witkowski, A. Kowalczyk, and J. Vrba Groundwater Vulnerability Assessment and Mapping, Selected Papers on Hydrogeology, 11, 21–32.
  • Sophocleous, M. (2012). On understanding and predicting groundwater response time. Ground Water, 50,528–540.
  • Sousa, M. R, Jones, J. P, Frind, E. O, and Rudolph, D. L (2013). A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor, J. Contam. Hydrol., 144(1), 138–151.
  • Stähli, M., Jansson, P., and Lundin, L. C (1999). Soil moisture redistribution and infiltration in frozen sandy soils. Water Resour. Res., 35, 95–103.
  • Stauffer, F., Stoll, S., Kipfer, R., and Kinzelbach, W. (2011). Analytical model for environmental tracer transport in well catchments. Water Resour. Res., 47, W03525, doi: 10.1029/2010WR009940.
  • Stigter, T. Y, Ribeiro, L., and Carvalho Dill, A. MM. (2005). Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol. J., 14, 79–99.
  • Stimson, J., Frape, S., Drimmie, R., and Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valley, Bolivia. Appl. Geoch., 16, 1097–1114.
  • Stumpp, C., and Hendry, M. J (2012). Spatial and temporal dynamics of water flow and solute transport in a heterogeneous glacial till: The application of high resolution profiles of δ18O and δ2H in pore waters. J. Hydrol., 438–439, 203–214.
  • Stumpp, C., and Maloszewski, P. (2010). Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O. J. Hydrol., 394, 407–415.
  • Stumpp, C., Engelhardt, S., Hofmann, M., and Huwe, B. (2009a). Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps. European J. Forest Res., 128, 609–620.
  • Stumpp, C., Maloszewski, P., Stichler, W., and Fank, J. (2009b). Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: Case study lysimeter station “Wagna” (Austria). J. Hydrol., 369(1–2), 198–208.
  • Stumpp, C., Maloszewski, P., Stichler, W., and Maciejewski, S. (2007). Quantification of heterogeneity of the unsaturated zone based on environmental deuterium observed in lysimeter experiments. Hydrol. Sci. J., 52, 748–762.
  • Stumpp, C., Stichler, W. and Maloszewski, P. (2009c). Application of the environmental isotope δ18O to study water flow in unsaturated soils planted with different crops: Case study of a weighable lysimeter from the research field in Neuherberg, Germany. J. Hydrol., 368(1–4), 68–78.
  • Stumpp, C., Stichler, W., Kandolf, M., and Šimůnek, J. (2012). Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: A long-term study using stable water isotopes Vadose Zone J., 11, doi:10.2136/vzj2011.0075.
  • Sudicky, E. A (1986). A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res., 22, 2069–2082.
  • Tesoriero, A. J, and Voss, F. D (1997). Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: implications for aquifer susceptibility and vulnerability. Ground Water, 35, 1029–1039.
  • Thomas, A., and Tellam, J. (2006). Modelling of recharge and pollutant fluxes to urban groundwaters. Sci. Total Environ., 360(1–3), 158–179.
  • Tilahun, K., and Merkel, B. J (2010). Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ. Earth Sci., 59, 1485–1496.
  • Tulipano, L., Sappa, G., and Vitale, S. (2002). Karstic aspects in the assessment of groundwater vulnerability of Maiella, Italy. In J. L. van Rooy, and C. A. Jermy (Eds.), Engineering Geology for Developing Countries - Proceedings of 9th Congress of the International Association for Engineering Geology and the Environment. Durban, South Africa, 1623–1632.
  • U. S Environmental Protection Agency. (1991). Wellhead Protection Strategies for Confined-Aquifer Settings. Washington, D. C: U. S Environmental Protection Agency Office of Groundwater and Drinking Water.
  • U. S Environmental Protection Agency. (1993). A review of methods for assessing aquifer sensitivity and ground water vulnerability to pesticide contamination. U. S EPA/813/R-93/002, Washington, DC:Environmental Protection Agency 196p.
  • van der Kamp, G. (2001). Methods for determining the in situ hydraulic conductivity of shallow aquitards—An overview. Hydrogeol. J., 9, 5–16.
  • van der Velde, Y., Torfs, P., van der Zee, S., and Uijlenhoet, R. (2012). Quantifying catchment-scale mixing and its effect on time-varying travel time distributions. Water Resour. Res., 48, W06536.
  • van Duijvenbooden, W., and van Waegeningh, H. G (Eds.) (1987). Vulnerability of soil and ground water pollutants, The Hague, The Netherlands: TNO Committee on Hydrological Research Proceedings and Information No. 38.
  • van Genuchten, M. T (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Society Am. J., 44, 892–898.
  • Van Stempvoort, D., Ewert, L., and Wassenaar, L. (1993). Aquifer vulnerability index: A GIS-compatible method for groundwater vulnerability mapping. Can. Water Resour. J., 18, 25–37.
  • Van Stempvoort, D., Ewert, L., and Wassenaar, L. (1992). AVI: A method for ground water protection mapping in the Prairie Provinces of Canada. Regina, Saskatchewan: Prairie Provinces Water Board.
  • Van Stempvoort, D. R, and Martin, P. (2003). Advancement of the use of the aquifer vulnerability index (AVI) in urban and rural areas. In: Proceedings, First International Workshop on Aquifer Vulnerability and Risk, May 2003, Salamanca, Mexico.
  • Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T. (2007). Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review. Vadose Zone J. 6(1), 1–28.
  • Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G, and van Genuchten, M. T (2010). Using Pedotransfer Functions to Estimate the van Genuchten-Mualem Soil Hydraulic Properties: A Review. Vadose Zone J. 9(4), 795–820.
  • Vías, J. M, Andreo B., Perles M. J, and Carrasco F. (2005). A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ. Geol., 47, 586–595.
  • Vías, J. M, Andreo, B., Perles, M. J, Carrasco, F., Vadillo, I., and Jiménez, P. (2006). Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in Southern Spain, Hydrogeol. J., 14, 912–925.
  • Vierhuff, F. (1981). Classification of groundwater resources for regional planning with regard to their vulnerability to pollution. Elsevier, Amsterdam, Studies in Env. Sci., 17, 1101–1105.
  • Villumsen, A., Jacobsen, O. S, and Sonderskov, C. (1982). Mapping the vulnerability of groundwater reservoirs with regard to surface pollution. Copenhagen: Geological Survey of Denmark, Yearbook 1982 17–38.
  • Visser, A., Broers, H. P, Purtschert, R., Sultenfuss, J., and de Jonge, M. (2013). Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (Kr-85, H-3/He-3, and Ar-39). Water Resour. Res., 49, 7778–7796.
  • Voigt, H.-J., Heinkele, T., Jahnke, C., and Wolter, R. (2004). Characterization of groundwater vulnerability to fulfil requirements of the water framework directive of the European Union, Geofísica Internacional, 43, 567–574.
  • Von Hoyer, M., and Sofner, B. (1998). Groundwater vulnerability mapping in carbonate (karst) areas of Germany, Federal institute for geosciences and natural resources, Archive no 117854, Hannover, Germany.
  • Voss, C. I (2011a). Editor's message: Groundwater modeling fantasies—Part 1, adrift in the details. Hydrogeol. J., 19, 1281–1284.
  • Voss, C. I (2011b). Editor's message: Groundwater modeling fantasies—Part 1, down to earth. Hydrogeol. J., 19, 1455–1458.
  • Voss, C. I (2005). The future of hydrogeology. Hydrogeol. J., 13, 1–6.
  • Vrba, J., and Zaporozec, A. (Eds.) (1994). Guidebook on Mapping Groundwater Vulnerability. IAH, Intern. Contrib. to Hydrogeol. 16, Heise Verlag, Hannover.
  • Weissmann, G. S, and Fogg, G. E (1999). Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J. Hydrol., 226, 48–65.
  • Williams, R. E, and Farvolden, R. N (1967). The influence of joints on the movement of groundwater through glacial till. J. Hydrol., 5, 163–170.
  • Wills, J., Howell, L., McKay, L. D, Parker, B. L, and Walter, A. (1992). Smithville C. WM. L Site: characterizations of overburden fractures and implications for DNAPL transport. In Modern trends in hydrogeology: Proceedings of the 1992 Conference of the Canadian Chapter, Hamilton: International Association of Hydrogeologists Ont IAH 501–515.
  • Witczak S., Duda R., and Zurek A. (2007). The Polish concept of groundwater vulnerability mapping. In A. J Witkowski, A. Kowalczyk, J. Vrba, (Eds.), Groundwater vulnerability assessment and mapping, Selected Papers on Hydrogeol., 11, 45–59.
  • Witczak, S. (Ed.) (2011). Groundwater vulnerability map of Poland. Ministerstwo Środowiska. Warszawa.
  • Witkowski, A. J, Rubin, K., Kowalczyk, A., Rozkowski, A., and Wróbel, J. (2003). Groundwater vulnerability map of the Chrzanów karst-fissured Triassic aquifer (Poland). Environ. Geology, 44, 59–67.
  • Worral, F., and Besien, T. (2005). The vulnerability of groundwater to pesticide contamination estimated directly from observations of presence or absence in wells. J. Hydrol., 303, 92–107.
  • Yildirim, M., and Topkaya, B. (2007). Groundwater protection: A comparative study of four vulnerability mapping methods. Clean, 35(6), 594–600.
  • Yu, C., Yao, Y., Hayes, G., Zhang, B., and Zheng, C. (2010). Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Sci. Total Environ., 408, 6108–6116.
  • Zampetti, M. (1983). Informazioni e dati relativi alla quantitá ed alla qualitá delle acque sotterranee nella Comunitá Europea. In: Proceedings of the international conference inquinamento delle Acque sotterranee da Composti organo-clorurati di Origine industriale. Milano, 197–204.
  • Ziezel, A. J, Walton, W. C, Sasman, R. T, and Prickett, T. A (1962). Ground-water resources of DuPage County, Illinois. Illinois State Water Survey and Illinois State Geological Survey.
  • Zuber, A., Różański, K., Kania, J., and Purtschert, R. (2011). On some methodological problems in the use of environmental tracers to estimate hydrogeologic parameters and to calibrate flow and transport models. Hydrogeol. J., 19, 53–69.
  • Zuber, A., Witczak, S., Różański, K., Śliwka, I., Opoka, M., Mochalski, P., Kuc, T., Karlikowska, J., Kania, J., Korczyński-Jackowicz, M., and Duliński, M. (2005). Groundwater dating with 3H and SF6 in relation to mixing patterns, transport modelling and hydrochemistry. Hydrol. Processes, 19, 2247–2275.
  • Zwahlen, F. (Ed.) (2004). Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report. COST action 620, Brussels.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.