1,494
Views
70
CrossRef citations to date
0
Altmetric
Articles

Progress and challenges of carbon nanotube membrane in water treatment

, &
Pages 999-1046 | Published online: 19 Jul 2016

References

  • http://www.dow.com/liquidseps/prod/sw30hr_380htm.”
  • Abu-Zeid, M. A.E.-R., Zhang, Y., Dong, H., Zhang, L., Chen, H.-L., and Hou, L. (2015). A comprehensive review of vacuum membrane distillation technique. Desalination, 356, 1–14.
  • Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H. (1993). Opening carbon nanotubes with oxygen and implications for filling. Nature, 362(6420), 522–525.
  • Alborzfar, M., Jonsson, G., and Gron, C. (1998). Removal of natural organic matter from two types of humic ground waters by nanofiltration. Water Res., 32(10), 2983–2994.
  • Allen, T. W., Kuyucak, S., and Chung, S. H. (1999). The effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions. J. Chem. Phys., 111(17), 7985–7999.
  • Baek, Y., Kim, C., Seo, D. K., Kim, T., Lee, J. S., Kim, Y. H., Ahn, K. H., Bae, S. S., Lee, S. C., Lim, J., Lee, K., and Yoon, J. (2014). High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci., 460, 171–177.
  • Bai, H., Zan, X., Zhang, L., and Sun, D. D. (2015a). Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Sep. Purif. Technol., 156, 922–930.
  • Bai, L. M., Liang, H., Crittenden, J., Qu, F. S., Ding, A., Ma, J., Du, X., Guo, S. D., and Li, G. B. (2015b). Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. J. Membr. Sci., 492, 400–411.
  • Baroña, G.N.B., Lim, J., Choi, M., and Jung, B. (2013). Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination, 325, 138–147.
  • Barreiro, A., Hampel, S., Rummeli, M. H., Kramberger, C., Gruneis, A., Biedermann, K., Leonhardt, A., Gemming, T., Buchner, B., Bachtold, A., and Pichler, T. (2006). Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J. Phys. Chem. B., 110(42), 20973–20977.
  • Barth, C., Goncalves, M. C., Pires, A. T. N., Roeder, J., and Wolf, B. A. (2000). Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J. Membr. Sci., 169(2), 287–299.
  • Bet-moushoul, E., Mansourpanah, Y., Farhadi, K., and Tabatabaei, M. (2016). TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J., 283, 29–46.
  • Bhushan, B., Wang, Y., and Maali, A. (2009). Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. Langmuir, 25(14), 8117–8121.
  • Bonnelye, V., Guey, L., and Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination, 222(1–3), 59–65.
  • Cai, Y. Q., Jiang, G. B., Liu, J. F., and Zhou, Q. X. (2003). Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tert-octylphenol. Anal. Chem., 75(10), 2517–2521.
  • Campinas, M., and Rosa, M. J. (2010). Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Res., 44(5), 1636–1644.
  • Cath, T. Y., Childress, A. E., and Elimelech, M. (2006). Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci., 281(1–2), 70–87.
  • Celik, E., Liu, L., and Choi, H. (2011a). Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Res., 45(16), 5287–5294.
  • Celik, E., Park, H., and Choi, H. (2011b). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res., 45(1), 274–282.
  • Chan, W. F., Chen, H. Y., Surapathi, A., Taylor, M. G., Hao, X. H., Marand, E., and Johnson, J. K. (2013). Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano, 7(6), 5308–5319.
  • Cheng, Q., Tang, J., Shinya, N., and Qin, L.-C. (2013). Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J. Power Sources, 241, 423–428.
  • Cheng, Z. L., Li, X., Liu, Y. D., and Chung, T.-S. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation. J. Membr. Sci, 506, 119–129.
  • Choi, J.-H., Jegal, J., and Kim, W.-N. (2006). Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Membr. Sci., 284(1–2), 406–415.
  • Coleman, J. N., Khan, U., Blau, W. J., and Gun'ko, Y. K. (2006). Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624–1652.
  • Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B, 112(5), 1427–1434.
  • Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci., 4(3), 751–759.
  • Cottin-Bizonne, C., Barentin, C., Charlaix, E., Bocquet, L., and Barrat, J. L. (2004). Dynamics of simple liquids at heterogeneous surfaces: Molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E., 15(4), 427–438.
  • Cottin-Bizonne, C., Jurine, S., Baudry, J., Crassous, J., Restagno, F., and Charlaix, E. (2002). Nanorheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces. Eur. Phys. J. E, 9(1), 47–53.
  • Craig, V. S., Neto, C., and Williams, D. R. (2001). Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett., 87(5), 054504–054504.
  • Dai, K., Peng, T., Ke, D., and Wei, B. (2009). Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology, 20(12), 125603, 6pp.
  • Das, R., Ali, M. E., Abd Hamid, S. B., Ramakrishna, S., and Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97–109.
  • Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833–840.
  • Davis, A. M. J., and Lauga, E. (2010). Hydrodynamic friction of fakir-like superhydrophobic surfaces. J. Fluid Mech., 661, 402–411.
  • de Lannoy, C.-F., Jassby, D., Gloe, K., Gordon, A. D., and Wiesner, M. R. (2013a). Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes. Environ. Sci. Technol., 47(6), 2760–2768.
  • de Lannoy, C.-F., Soyer, E., and Wiesner, M. R. (2013b). Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J. Membr. Sci., 447, 395–402.
  • Dokyoung Yoon, C. L., Jongju Yun, Wonjae Jeon, Bong Jun Cha, Seunghyun Baik (2012). Enhanced condensation, agglomeration, and rejection of water vapor by superhydrophobic aligned multiwalled carbon nanotube membranes. ACS Nano, 6(7), 45–55.
  • Domany, Z., Galambos, I., Vatai, G., and Bekassy-Molnar, E. (2002). Humic substances removal from drinking water by membrane filtration. Desalination, 145(1–3), 333–337.
  • Donnan, F. G. (1924). The theory of membrane equilibria. Chem. Rev., 1(1), 73–90.
  • Donnan, F. G. (1995). Theory of membrane equilibria and membrane-potentials in the presence of non-dialyzing electrolytes – A contribution to physical-chemical physiology Reprinted from zeitshrift fur electrochemie und angewandte physikalische chemie, Vol 17, PG 572, 1911). J. Membr. Sci., 100(1), 45–55.
  • Dresselhaus, M. S., Lin, Y. M., Rabin, O., Jorio, A., Souza, A. G., Pimenta, M. A., Saito, R., Samsonidze, G. G., and Dresselhaus, G. (2003). Nanowires and nanotubes. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 23(1–2), 129–140.
  • Drioli, E., Ali, A., and Macedonio, F. (2015). Membrane distillation: Recent developments and perspectives. Desalination, 356, 56–84.
  • Drioli, E., Ali, A., Simone, S., Macedonio, F., Al-Jlil, S. A., Al Shabonah, F. S., Al-Romaih, H. S., Al-Harbi, O., Figoli, A., and Criscuoli, A. (2013). Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications. Sep. Purif. Technol., 115, 27–38.
  • Duan, J. M., Wilson, F., Graham, N., and Tay, J. H. (2003). Adsorption of humic acid by powdered activated carbon in saline water conditions. Desalination, 151(1), 53–66.
  • Dumee, L., Campbell, J. L., Sears, K., Schuetz, J., Finn, N., Duke, M., and Gray, S. (2011a). The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation. Desalination, 283, 64–67.
  • Dumee, L., Germain, V., Sears, K., Schuetz, J., Finn, N., Duke, M., Cerneaux, S., Cornu, D., and Gray, S. (2011b). Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J. Membr. Sci., 376(1–2), 241–246.
  • Dumee, L., Lee, J., Sears, K., Tardy, B., Duke, M., and Gray, S. (2013). Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. J. Membr. Sci., 427, 422–430.
  • Dumee, L. F., Sears, K., Schutz, J., Finn, N., Huynh, C., Hawkins, S., Duke, M., and Gray, S. (2010). Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. J. Membr. Sci., 351(1–2), 36–43.
  • Duong, P.H.H., Chisca, S., Hong, P.-Y., Cheng, H., Nunes, S. P., and Chung, T.-S. (2015). Hydroxyl Functionalized Polytriazole-co-polyoxadiazole as Substrates for Forward Osmosis Membranes. ACS Appl. Mater. Interfaces, 7(7), 3960–3973.
  • Eijkel, J. (2007). Liquid slip in micro- and nanofluidics: recent research and its possible implications. Lab Chip, 7(3), 299–301.
  • Endo, M., Muramatsu, H., Hayashi, T., Kim, Y. A., Terrones, M., and Dresselhaus, N. S. (2005). ‘Buckypaper’ from coaxial nanotubes. Nature, 433(7025), 476–476.
  • Esfahani, M. R., Tyler, J. L., Stretz, H. A., and Wells, M.J.M. (2015). Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination, 372, 47–56.
  • Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2008). Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. U. S. A., 105(45), 17250–17255.
  • Fritzmann, C., Loewenberg, J., Wintgens, T., and Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76.
  • Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., and Golovchenko, J. A. (2010). Graphene as a subnanometre trans-electrode membrane. Nature, 467(7312), 190–U173.
  • Gergely, A., Telegdi, J., Meszaros, E., Paszti, Z., Tarkanyi, G., Karman, F. H., and Kalman, E. (2007). Modification of multi-walled carbon nanotubes by Diels-Alder and Sandmeyer reactions. J. Nanosci. Nanotechnol., 7(8), 2795–2807.
  • Gethard, K., Sae-Khow, O., and Mitra, S. (2011). Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Appl. Mater. Interfaces, 3(2), 110–114.
  • Ghosh, A. K., and Hoek, E.M.V. (2009). Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. J. Membr. Sci., 336(1–2), 140–148.
  • Goh, P. S., Ismail, A. F., and Ng, B. C. (2013). Carbon nanotubes for desalination: Performance evaluation and current hurdles. Desalination, 308, 2–14.
  • Goh, P. S., Ng, B. C., Lau, W. J., and Ismail, A. F. (2015). Inorganic Nanomaterials in Polymeric Ultrafiltration Membranes for Water Treatment. Sep. Purif. Rev., 44(3), 216–249.
  • Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., and Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Res., 43(9), 2317–2348.
  • Gryta, M. (2005). Long-term performance of membrane distillation process. J. Membr. Sci., 265(1–2), 153–159.
  • Guillen, G. R., Farrell, T. P., Kaner, R. B., and Hoek, E.M.V. (2010). Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline-polysulfone ultrafiltration membranes. J. Mater. Chem., 20(22), 4621–4628.
  • Gulotty, R., Castellino, M., Jagdale, P., Tagliaferro, A., and Balandin, A. A. (2013). Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube-Polymer Nanocomposites. ACS Nano, 7(6), 5114–5121.
  • Gupta, V. K., Moradi, O., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-Ghoshekandi, R., Makhlouf, A.S.H., Goodarzi, M., and Garshasbi, A. (2016). Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: a review. Crit. Rev. Environ. Sci. Technol., 46(2), 93–118.
  • Han, Y., Jiang, Y., and Gao, C. (2015). High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes. ACS Appl. Mater. Interfaces, 7(15), 8147–8155.
  • Hedges, J. I. (1986). Organic Geochemistry of Natural Waters: E. M. Thurman. Martinus Nijhoff/Dr. W. Junk Publishers, 1985, 497 p., $39.50. Geochimica Et Cosmochimica Acta, 50(9), 2119.
  • Heo, J., Boateng, L. K., Flora, J.R.V., Lee, H., Her, N., Park, Y. G., and Yoon, Y. (2013). Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes. J. Membr. Sci., 443, 69–82.
  • Hinds, B. J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., and Bachas, L. G. (2004). Aligned multiwalled carbon nanotube membranes. Science, 303(5654), 62–65.
  • Holt, J. K., Park, H. G., Wang, Y. M., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.
  • Huang, S. M., and Dai, L. M. (2002). Plasma etching for purification and controlled opening of aligned carbon nanotubes. J. Phys. Chem. B, 106(14), 3543–3545.
  • Hussein, L., Urban, G., and Kruger, M. (2011). Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications. Phys. Chem. Chem. Phys., 13(13), 5831–5839.
  • Hyung, H., and Kim, J.-H. (2008). Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environ. Sci. Technol., 42(12), 4416–4421.
  • Ihsanullah, Al Amer, A. M., Laoui, T., Abbas, A., Al-Aqeeli, N., Patel, F., Khraisheh, M., Atieh, M. A., and Hilal, N. (2016). Fabrication and antifouling behaviour of a carbon nanotube membrane. Mater. Design, 89, 549–558.
  • Izquierdo-Gil, M. A., Garcia-Payo, M. C., and Fernandez-Pineda, C. (1999). Air gap membrane distillation of sucrose aqueous solutions. J. Membr. Sci., 155(2), 291–307.
  • Jafari, A., Mahvi, A. H., Nasseri, S., Rashidi, A., Nabizadeh, R., and Rezaee, R. (2015). Ultrafiltration of natural organic matter from water by vertically aligned carbon nanotube membrane. J. Environ. Health Sci. Eng., 13(51), 1–9.
  • Jai, C., Cohen-Bouhacina, T., and Maali, A. (2007). Analytical description of the motion of an acoustic-driven atomic force microscope cantilever in liquid. Appl. Phys. Lett., 90(11), 113512.
  • Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P., and Walker, A. B. (2008). Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. J. Am. Chem. Soc., 130(40), 13364–13372.
  • Jeong, S. H., Nguyen, T. V., and Vigneswaran, S. (2011). Submerged membrane coagulation hybrid system as pretreatment to organic matter removal from seawater. Water Sci. Technology-Water Supply, 11(3), 352–357.
  • Joseph, P., Cottin-Bizonne, C., Benoit, J. M., Ybert, C., Journet, C., Tabeling, P., and Bocquet, L. (2006). Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett., 97(15), 156104.
  • Joseph, S., and Aluru, N. R. (2008). Why are carbon nanotubes fast transporters of water? Nano Lett., 8(2), 452–458.
  • Joseph, S., Mashl, R. J., Jakobsson, E., and Aluru, N. R. (2003). Electrolytic transport in modified carbon nanotubes. Nano Lett., 3(10), 1399–1403.
  • Kabsch-Korbutowicz, M. (2005). Application of ultrafiltration integrated with coagulation for improved NOM removal. Desalination, 174(1), 13–22.
  • Kang, S., Herzberg, M., Rodrigues, D. F., and Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413.
  • Kang, S., Pinault, M., Pfefferle, L. D., and Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 23(17), 8670–8673.
  • Khayet, M., Mengual, J. I., and Matsuura, T. (2005). Porous hydrophobic/hydrophilic composite membranes - Application in desalination using direct contact membrane distillation. J. Membr. Sci., 252(1–2), 101–113.
  • Kim, E., Hwang, G., El-Din, M. G., and Liu, Y. (2012a). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci., 394, 37–48.
  • Kim, H. J., Baek, Y., Choi, K., Kim, D. G., Kang, H., Choi, Y. S., Yoon, J., and Lee, J. C. (2014a). The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs. Rsc Adv., 4(62), 32802–32810.
  • Kim, H. J., Choi, K., Baek, Y., Kim, D.-G., Shim, J., Yoon, J., and Lee, J.-C. (2014b). High-Performance Reverse Osmosis CNT/Polyamide Nanocomposite Membrane by Controlled Interfacial Interactions. ACS Appl. Mater. Interfaces, 6(4), 2819–2829.
  • Kim, H. J., Lim, M. Y., Jung, K. H., Kim, D. G., and Lee, J. C. (2015). High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. J. Mater. Chem. A, 3(13), 6798–6809.
  • Kim, J., Cai, Z., and Benjamin, M. M. (2010). NOM fouling mechanisms in a hybrid adsorption/membrane system. J. Membr. Sci., 349(1–2), 35–43.
  • Kim, S., Fornasiero, F., Park, H. G., Bin In, J., Meshot, E., Giraldo, G., Stadermann, M., Fireman, M., Shan, J., Grigoropoulos, C. P., and Bakajin, O. (2014c). Fabrication of flexible, aligned carbon nanotube/polymer composite membranes by in-situ polymerization. J. Membr. Sci., 460, 91–98.
  • Kim, S. W., Kim, T., Kim, Y. S., Choi, H. S., Lim, H. J., Yang, S. J., and Park, C. R. (2012b). Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 50(1), 3–33.
  • Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., and Dresselhaus, M. S. (2006). Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem. Vap. Deposition, 12(6), 327–+.
  • Kim, Y. S., Kumar, K., Fisher, F. T., and Yang, E. H. (2012c). Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology, 23(1), 015301.
  • Koenig, S. P., Wang, L., Pellegrino, J., and Bunch, J. S. (2012). Selective molecular sieving through porous graphene. Nature Nanotechnol., 7(11), 728–732.
  • Konyushenko, E. N., Stejskal, J., Trchova, M., Hradil, J., Kovarova, J., Prokes, J., Cieslar, M., Hwang, J. Y., Chen, K. H., and Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47(16), 5715–5723.
  • Kumar, R., Khan, M. A., and Haq, N. (2014). Application of Carbon Nanotubes in Heavy Metals Remediation. Crit. Rev. Environ. Sci. Technol., 44(9), 1000–1035.
  • Lauga, E., and Stone, H. A. (2003). Effective slip in pressure-driven Stokes flow. J. Fluid Mech., 489, 55–77.
  • Lee, C., Choi, C. H., and Kim, C. J. (2008a). Structured surfaces for a giant liquid slip. Phys. Rev. Lett., 101(6), 12812–12818.
  • Lee, C., and Kim, C.-J.C.J. (2009). Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls. Langmuir, 25(21), 12812–12818.
  • Lee, D. H., Shin, D. O., Lee, W. J., and Kim, S. O. (2008b). Hierarchically organized carbon nanotube arrays from self-assembled block copolymer nanotemplates. Adv. Mater., 20(13), 2480–2485.
  • Lee, J., Ye, Y., Ward, A. J., Zhou, C., Chen, V., Minett, A. I., Lee, S., Liu, Z., Chae, S.-R., and Shi, J. (2016). High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Sep. Purif. Technol., 163, 109–119.
  • Lee, K. P., Arnot, T. C., and Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination-Development to date and future potential. J. Membr. Sci., 370(1–2), 1–22.
  • Lee, S. B., Mitchell, D. T., Trofin, L., Nevanen, T. K., Soderlund, H., and Martin, C. R. (2002). Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science, 296(5576), 2198–2200.
  • Lee, S. J., and Kim, J. H. (2014). Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes. Water Res., 48, 43–51.
  • Li, N., Song, H. W., Cui, H., Yang, G. W., and Wang, C. X. (2014). Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. J. Mater. Chem. A, 2(8), 2526–2537.
  • Li, Q., Yang, D., Shi, J., Xu, X., Yan, S., and Liu, Q. (2016). Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane. Desalination, 379, 164–171.
  • Li, Q. L., and Elimelech, M. (2006). Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter. J. Membr. Sci., 278(1–2), 72–82.
  • Liao, Y. Z., Yu, D. G., Wang, X., Chain, W., Li, X. G., Hoek, E.M.V., and Kaner, R. B. (2013). Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes. Nanoscale, 5(9), 3856–3862.
  • Liao, Y. Z., Zhang, C., Zhang, Y., Strong, V., Tang, J. S., Li, X. G., Kalantar-zadeh, K., Hoek, E.M.V., Wang, K. L., and Kaner, R. B. (2011). Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Lett., 11(3), 954–959.
  • Liu, J., Rinzler, A. G., Dai, H. J., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y. S., Lee, T. R., Colbert, D. T., and Smalley, R. E. (1998). Fullerene pipes. Science, 280(5367), 1253–1256.
  • Liu, L. F., Liu, J. D., Gao, B., Yang, F. L., and Chellam, S. (2012). Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole. J. Membr. Sci., 394, 202–208.
  • Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., and Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.
  • Lowe, J., and Hossain, M. M. (2008). Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination, 218(1–3), 343–354.
  • Lu, C. S., Chung, Y. L., and Chang, K. F. (2005). Adsorption of trihalomethanes from water with carbon nanotubes. Water Res., 39(6), 1183–1189.
  • Ma, P.-C., Siddiqui, N. A., Marom, G., and Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A, 41(10), 1345–1367.
  • Maali, A., and Bhushan, B. (2012). Measurement of slip length on superhydrophobic surfaces. Philos. Trans. R. Soc. London, Ser. A, 370(1967), 2304–2320.
  • Majumder, M., Chopra, N., Andrews, R., and Hinds, B. J. (2005a). Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 438(7064), 44.
  • Majumder, M., Chopra, N., and Hinds, B. J. (2005b). Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc., 127(25), 9062–9070.
  • Malaeb, L., and Ayoub, G. M. (2011). Reverse osmosis technology for water treatment: State of the art review. Desalination, 267(1), 1–8.
  • Mauter, M. S., and Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 42(16), 5843–5859.
  • McCutcheon, J. R., and Elimelech, M. (2008). Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci., 318(1–2), 458–466.
  • Mubarak, N. M., Sahu, J. N., Abdullah, E. C., and Jayakumar, N. S. (2014). Removal of Heavy Metals from Wastewater Using Carbon Nanotubes. Sep. Purif. Rev., 43(4), 311–338.
  • Myers, T. G. (2011). Why are slip lengths so large in carbon nanotubes? Microfluid. Nanofluid., 10(5), 1141–1145.
  • Nednoor, P., Gavalas, V. G., Chopra, N., Hinds, B. J., and Bachas, L. G. (2007). Carbon nanotube based biomimetic membranes: mimicking protein channels regulated by phosphorylation. J. Mater. Chem., 17(18), 1755–1757.
  • Nellore, B.P.V., Kanchanapally, R., Pedraza, F., Sinha, S. S., Pramanik, A., Hamme, A. T., Arslan, Z., Sardar, D., and Ray, P. C. (2015). Bio-Conjugated CNT-Bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces, 7(34), 19210–19218.
  • Ng, L. Y., Mohammad, A. W., Leo, C. P., and Hilal, N. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 308, 15–33.
  • Noy, A., Park, H. G., Fornasiero, F., Holt, J. K., Grigoropoulos, C. P., and Bakajin, O. (2007). Nanofluidics in carbon nanotubes. Nano Today, 2(6), 22–29.
  • Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 113(7), 823–839.
  • Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M. (1998). Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391(6662), 62–64.
  • Ou, J., Perot, B., and Rothstein, J. P. (2004). Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids, 16(12), 4635–4643.
  • Ou, J., and Rothstein, J. P. (2005). Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids, 17(10), 103606.
  • Pan, B., and Xing, B. (2008). Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol., 42(24), 9005–9013.
  • Park, M. J., Phuntsho, S., He, T., Nisola, G. M., Tijing, L. D., Li, X.-M., Chen, G., Chung, W.-J., and Shon, H. K. (2015). Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. J. Membr. Sci., 493, 496–507.
  • Park, S. M., Choi, Y. K., Lee, S., Baek, Y., Yoon, J., Seo, D. K., and Kim, Y. H. (2013). Experimental analysis of transport characteristics for vertically aligned carbon nanotube membranes. Desalin. Water Treat., 51(25–27), 5349–5354.
  • Pendergast, M. M., and Hoek, E.M.V. (2011). A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 4(6), 1946–1971.
  • Phattaranawik, J., Jiraratananon, R., and Fane, A. G. (2003). Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Membr. Sci., 212(1–2), 177–193.
  • Philip, J. R. (1972). Flows satisfying mixed no-slip and no-shear conditions. Zeitschrift Fur Angewandte Mathematik Und Physik, 23(3), 353–372.
  • Philip Wong, H. S., Akinwande, D. (2011). Carbon nanotube and graphene device physics. Cambridge University Press: United Kingdom.
  • Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., and Kizek, R. (2011). Methods for carbon nanotubes synthesis-review. J. Mater. Chem., 21(40), 15872–15884.
  • Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H., and Gao, C. (2009). Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J. Membr. Sci., 342(1–2), 165–172.
  • Qu, L. T., Chen, W., Dai, L. M., Roy, A., and Tolle, T. B. (2007). Polymer and aligned carbon nanotube nanocomposites and nanodevices. Sampe J., 43(6), 38–46.
  • Qu, X., Cao, L., and Du, F. (2015). Fabrication of ordered arrays of CNT/TiO2 nanotubes and their photocatalytic properties. Rsc Adv., 5(27), 20976–20980.
  • Quan, X., Yang, S. G., Ruan, X. L., and Zhao, H. M. (2005). Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol., 39(10), 3770–3775.
  • Rahaman, M. S., Vecitis, C. D., and Elimelech, M. (2012). Electrochemical Carbon-Nanotube Filter Performance toward Virus Removal and Inactivation in the Presence of Natural Organic Matter. Environ. Sci. Technol., 46(3), 1556–1564.
  • Rahimpour, A., Jahanshahi, M., Khalili, S., Mollahosseini, A., Zirepour, A., and Rajaeian, B. (2012). Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination, 286, 99–107.
  • Roy, S., Bhadra, M., and Mitra, S. (2014). Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation. Sep. Purif. Technol., 136, 58–65.
  • Sainz, R., Benito, A. M., Martinez, M. T., Galindo, J. F., Sotres, J., Baro, A. M., Corraze, B., Chauvet, O., Dalton, A. B., Baughman, R. H., and Maser, W. K. (2005). A soluble and highly functional polyaniline-carbon nanotube composite. Nanotechnology, 16(5), S150–S154.
  • Saleh, N. B., Pfefferle, L. D., and Elimelech, M. (2008). Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ. Sci. Technol., 42(21), 7963–7969.
  • Savage, N., Diallo, M., Duncan, J., Street, A., and Sustich, R. (2009). Nanotechnology Applications for Clean Water, William Andrew Publishing: 80.
  • Schafer, A. I., Fane, A. G., and Waite, T. D. (1998). Nanofiltration of natural organic matter: Removal, fouling and the influence of multivalent ions. Desalination, 118(1–3), 109–122.
  • Schafer, A. I., Fane, A. G., and Waite, T. D. (2000). Fouling effects on rejection in the membrane filtration of natural waters. Desalination, 131(1–3), 215–224.
  • Sears, K., Dumée, L., Schütz, J., She, M., Huynh, C., Hawkins, S., Duke, M., and Gray, S. (2010). Recent developments in carbon nanotube membranes for water purification and gas separation. Materials, 3(1), 127–149.
  • Shao, D., Chen, C., and Wang, X. (2012). Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II). Chem. Eng. J., 185, 144–150.
  • Shawky, H. A., Chae, S. R., Lin, S. H., and Wiesner, M. R. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 272(1–3), 46–50.
  • Sheikholeslami, R., and Bright, J. (2002). Silica and metals removal by pretreatment to prevent fouling of reverse osmosis membranes. Desalination, 143(3), 255–267.
  • Shen, J., Huang, W., Wu, L., Hu, Y., and Ye, M. (2007). Study on amino-functionalized multiwalled carbon nanotubes. Mater. Sci. Eng.: A, 464(1–2), 151–156.
  • Silva, T.L.S., Morales-Torres, S., Figueiredo, J. L., and Silva, A.M.T. (2015). Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation. Desalination, 357, 233–245.
  • Singh, D., and Sirkar, K. K. (2014). High temperature direct contact membrane distillation based desalination using PTFE hollow fibers. Chem. Eng. Sci., 116, 824–833.
  • Song, C., and Corry, B. (2009). Intrinsic Ion Selectivity of Narrow Hydrophobic Pores. J. Phys. Chem. B, 113(21), 7642–7649.
  • Song, X. J., Wang, L., Tang, C. Y., Wang, Z. N., and Gao, C. J. (2015). Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination, 369, 1–9.
  • Steinberger, A., Cottin-Bizonne, C., Kleimann, P., and Charlaix, E. (2007). High friction on a bubble mattress. Nature Mater., 6(9), 665–668.
  • Steinberger, A., Cottin-Bizonne, C., Kleimann, P., and Charlaix, E. (2008). Nanoscale flow on a bubble mattress: Effect of surface elasticity. Phys. Rev. Lett., 100(13), 134501.
  • Summers, R. S., and Roberts, P. V. (1988). Activated carbon adsorption of humic substances. 2. Size exclusion and electrostatic interactions. J. Colloid Interface Sci., 122(2), 382–397.
  • Sun, X., Wu, J., Chen, Z., Su, X., and Hinds, B. J. (2013). Fouling characteristics and electrochemical recovery of carbon nanotube membranes. Adv. Funct. Mater., 23(12), 1500–1506.
  • Tachikawa, T., and Majima, T. (2009). Exploring the spatial distribution and transport behavior of charge carriers in a single titania nanowire. J. Am. Chem. Soc., 131(24), 8485–8495.
  • Tansakul, C., Laborie, S., and Cabassud, C. (2011). Adsorption combined with ultrafiltration to remove organic matter from seawater. Water Res., 45(19), 6362–6370.
  • Terrones, M. (2003). Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res., 33, 419–501.
  • Tijing, L. D., Woo, Y. C., Choi, J.-S., Lee, S., Kim, S.-H., and Shon, H. K. (2015). Fouling and its control in membrane distillation-A review. J. Membr. Sci., 475, 215–244.
  • Tijing, L. D., Woo, Y. C., Shim, W.-G., He, T., Choi, J.-S., Kim, S.-H., and Shon, H. K. (2016). Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J. Membr. Sci., 502, 158–170.
  • Tomaszewska, M., and Mozia, S. (2002). Removal of organic matter from water by PAC/UF system. Water Res., 36(16), 4137–4143.
  • Tsang, S. C., Harris, P.J.F., and Green, M.L.H. (1993). Thinining and opening of carbon nanotubes by oxidation using carbon-dioxide. Nature, 362(6420), 520–522.
  • Upadhyayula, V.K.K., Deng, S., Mitchell, M. C., and Smith, G. B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ., 408(1), 1–13.
  • Vatanpour, V., Esmaeili, M., and Farahani, M. (2014). Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J. Membr. Sci., 466, 70–81.
  • Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., and Astinchap, B. (2011). Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci., 375(1–2), 284–294.
  • Vecitis, C. D., Schnoor, M. H., Rahaman, M. S., Schiffman, J. D., and Elimelech, M. (2011). Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol., 45(8), 3672–3679.
  • Voronov, R. S., Papavassiliou, D. V., and Lee, L. L. (2007). Slip length and contact angle over hydrophobic surfaces. Chem. Phys. Lett., 441(4–6), 273–276.
  • Voutchkov, N. (2010). Considerations for selection of seawater filtration pretreatment system. Desalination, 261(3), 354–364.
  • Wang, C. F., Guo, S. J., Pan, X. L., Chen, W., and Bao, X. H. (2008). Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. J. Mater. Chem., 18(47), 5782–5786.
  • Wang, S., Liang, S., Liang, P., Zhang, X., Sun, J., Wu, S., and Huang, X. (2015). In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance. J. Membr. Sci., 491, 37–44.
  • Wang, X. L., Tao, S., and Xing, B. S. (2009). Sorption and Competition of Aromatic Compounds and Humic Acid on Multiwalled Carbon Nanotubes. Environ. Sci. Technol., 43(16), 6214–6219.
  • Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M., and Koratkar, N. (2007). Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Letters, 7(3), 697–702.
  • Wei, G., Chen, S., Fan, X., Quan, X., and Yu, H. (2015). Carbon nanotube hollow fiber membranes: High-throughput fabrication, structural control and electrochemically improved selectivity. J. Membr. Sci., 493, 97–105.
  • Wei, J., Qiu, C., Tang, C. Y., Wang, R., and Fane, A. G. (2011). Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J. Membr. Sci., 372(1–2), 292–302.
  • Wei, Q., Yang, D., Fan, M., and Harris, H. G. (2013). Applications of Nanomaterial-Based Membranes in Pollution Control. Crit. Rev. Environ. Sci. Technol., 43(22), 2389–2438.
  • Wildgoose, G. G., Banks, C. E., Leventis, H. C., and Compton, R. G. (2006). Chemically modified carbon nanotubes for use in electroanalysis. Microchim. Acta, 152(3–4), 187–214.
  • Wildöer, J.W.G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C. (1998). Electronic structure of atomically resolved carbon nanotubes. Nature, 391(6662), 59–62.
  • Wu, H., Tang, B., and Wu, P. (2010a). MWNTs/Polyester Thin Film Nanocomposite Membrane: An Approach To Overcome the Trade-Off Effect between Permeability and Selectivity. J. Phys. Chem. C, 114(39), 16395–16407.
  • Wu, H. Q., Tang, B. B., and Wu, P. Y. (2010b). Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J. Membr. Sci., 362(1–2), 374–383.
  • Xie, X. L., Mai, Y. W., and Zhou, X. P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R-Rep., 49(4), 89–112.
  • Yamada, T., Namai, T., Hata, K., Futaba, D. N., Mizuno, K., Fan, J., Yudasaka, M., Yumura, M., and Iijima, S. (2006). Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nature Nanotechnol., 1(2), 131–136.
  • Yang, H. Y., Han, Z. J., Yu, S. F., Pey, K. L., Ostrikov, K., and Karnik, R. (2013a). Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun., 4, 2220–2220.
  • Yang, K., Wang, X., Zhu, L., and Xing, B. (2006a). Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ. Sci. Technol., 40(18), 5804–5810.
  • Yang, K., Zhu, L. Z., and Xing, B. S. (2006b). Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol., 40(6), 1855–1861.
  • Yang, M.-Q., Zhang, N., and Xu, Y.-J. (2013b). Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: A comparative study. ACS Appl. Mater. Interfaces, 5(3), 1156–1164.
  • Yang, X., Lee, J., Yuan, L., Chae, S.-R., Peterson, V. K., Minett, A. I., Yin, Y., and Harris, A. T. (2013c). Removal of natural organic matter in water using functionalised carbon nanotube buckypaper. Carbon, 59, 160–166.
  • Yang, X., Yuan, L., Peterson, V. K., Minett, A. I., Yin, Y., and Harris, A. T. (2012). Facile preparation of free-standing carbon nanotube arrays produced using two-step floating-ferrocene chemical vapor deposition. ACS Appl. Mater. Interfaces, 4(3), 1417–1422.
  • Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., and Bocquet, L. (2007). Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys. Fluids, 19(12), 123601.
  • Yin, J., and Deng, B. (2015). Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci., 479, 256–275.
  • Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., and Elimelech, M. (2010). High Performance Thin-Film Composite Forward Osmosis Membrane. Environ. Sci. Technol., 44(10), 3812–3818.
  • You, B., Jiang, J. H., and Fan, S. J. (2014a). Three-Dimensional Hierarchically Porous All-Carbon Foams for Supercapacitor. ACS Appl. Mater. Interfaces, 6(17), 15302–15308.
  • You, B., Wang, L. L., Li, N., and Zheng, C. L. (2014b). Improving the Energy Storage Performance of Graphene through Insertion of Pristine CNTs and Ordered Mesoporous Carbon Coating. Chemelectrochem, 1(4), 772–778.
  • Yu, H., Quan, X., Chen, S., and Zhao, H. (2007). TiO2-multiwalled carbon nanotube heterojunction Arrays and their charge separation capability. J. Physical Chem. C, 111(35), 12987–12991.
  • Yu, Z. X., Zeng, G. Y., Pan, Y., Lv, L., Min, H., Zhang, L., and He, Y. (2015). Effect of functionalized multi-walled carbon nanotubes on the microstructure and performances of PVDF membranes. Rsc Adv., 5(93), 75998–76006.
  • Yuan, D. J., Lin, W., Guo, R., Wong, C. P., and Das, S. (2012). The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition. Nanotechnology, 23(21), 215303.
  • Zhan, X., Wu, J., Chen, Z. Q., and Hinds, B. J. (2013). Single-step electrochemical functionalization of double-walled carbon nanotube (DWCNT) membranes and the demonstration of ionic rectification. Nanoscale Research Lett., 8, 279.
  • Zhang, J., Xu, Z., Shan, M., Zhou, B., Li, Y., Li, B., Niu, J., and Qian, X. (2013). Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci., 448, 81–92.
  • Zhang, J., Zou, H. L., Qing, Q., Yang, Y. L., Li, Q. W., Liu, Z. F., Guo, X. Y., and Du, Z. L. (2003). Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B, 107(16), 3712–3718.
  • Zhao, F.-Y., An, Q.-F., Ji, Y.-L., and Gao, C.-J. (2015). A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening. J. Membr. Sci., 492, 412–421.
  • Zhao, S., Wang, Z., Wang, J., Yang, S., and Wang, S. (2011). PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J. Membr. Sci., 376(1–2), 83–95.
  • Zhao, W., Song, C. H., and Pehrsson, P. E. (2002). Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc., 124(42), 12418–12419.
  • Zheng, J., Lennon, E. M., Tsao, H. K., Sheng, Y. J., and Jiang, S. Y. (2005). Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient. J. Chem. Phys., 122(21), 214702.
  • Zheng, Q.-Z., Wang, P., Yang, Y.-N., and Cui, D.-J. (2006). The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J. Membr. Sci., 286(1–2), 7–11.
  • Zhou, M., Li, J., Wu, C., Zhou, X., and Cai, L. (2011). Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs). Soft Matter., 7(9), 4391–4396.
  • Zhu, Y., Li, L., Zhang, C., Casillas, G., Sun, Z., Yan, Z., Ruan, G., Peng, Z., Raji, A.-R.O., Kittrell, C., Hauge, R. H., and Tour, J. M. (2012). A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Commun., 3, 1225.
  • Zularisam, A. W., Ismail, A. F., Salim, M. R., Sakinah, M., and Ozaki, H. (2007). The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes. Desalination, 212(1–3), 191–208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.