1,917
Views
79
CrossRef citations to date
0
Altmetric
Articles

Marine shells: Potential opportunities for extraction of functional and health-promoting materials

, , , , , & show all
Pages 1047-1116 | Published online: 20 Jun 2016

References

  • © FAO 2005–2015. Aquaculture topics and activities. State of world aquaculture. Text by Rohana Subasinghe. In FAO Fisheries and Aquaculture Department [online]. Rome. Updated 27 May 2005. [ Cited 7 June 2015]. http://www.fao.org/fishery/topic/13540/en.
  • FAO yearbook. (2012). Fishery and aquaculture statistics. 2012/FAO annuaire. Statistiques des pêches et de l'aquaculture. 2012/FAO anuario. Estadísticas de pesca y acuicultura. Rome/Roma, FAO. 76 pp.
  • Malik, A., and Grohmann, E. (2011). Environmental protection strategies for sustainable development. Netherlands: Springer.
  • Jung, Jong-Hyeon, Lee, Jae-Jeong, Lee, Gang-Woo, Yoo, K. -S., and Shon, B. -H. (2012). Reuse of waste shells as a SO2/NOx removal sorbent. In D. Achilias, (Ed.), Material recycling—Trends and perspectives. In Tech.: Rijeka, Croatia.
  • Bremner, H. A. (2002). Safety and quality issues in fish processing. Elsevier Science: CRC Press, Boca Raton, FL.
  • Yong, S. K., Bolan, N. S., Lombi, E., and Skinner, W. M. (2015). Enhanced Zn(II) and Pb(II) removal from wastewater using thiolated chitosan beads (ETB). Malaysian J. Anal. Sci., 19, 586–589.
  • Yong, S. K., Shrivastava, M., Srivastava, P., Kunhikrishnan, A., and Bolan, N. (2015). Environmental applications of chitosan and its derivatives. In M. D. Whitacre (Ed.), Reviews of environmental contamination and toxicology volume 233. (pp. 1–43). Cham: Springer International Publishing.
  • Yong, S. K., Skinner, W. M., Bolan, N. S., Lombi, E., Kunhikrishnan, A., and Ok, Y. S. (2016). Sulfur crosslinks from thermal degradation of chitosan dithiocarbamate derivatives and thermodynamic study for sorption of copper and cadmium from aqueous system. Environ. Sci. Pollut. Res. Int., 23, 1050–1059.
  • Adour, L., Arbia, W., Amrane, A., and Mameri, N. (2008). Combined use of waste materials—Recovery of chitin from shrimp shells by lactic acid fermentation supplemented with date juice waste or glucose. J. Chem. Technol. Biotechnol., 83, 1664–1669.
  • María, C. G., and Roque, A. H. (2013). Biotechnological processes for chitin recovery out of crustacean waste: A mini-review. Electron J. Biotechnol., 16, 1–14.
  • FAO. (2013). Statistical year book. Regional Office for Asia and the Pacific: Bangkok. p. 164.
  • Dahiya, N., Tewari, R., and Hoondal, G. S. (2006). Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol., 71, 773–782.
  • Noishiki, Y., Takami, H., Nishiyama, Y., Wada, M., Okada, S., and Kuga, S. (2003). Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4, 896–899.
  • Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Prog. Polym. Sci., 31, 603–632.
  • Rabea, E. I., Badawy, M. E. T, Stevens, C. V., Smagghe, G., and Steurbaut, W. (2003). Chitosan as antimicrobial agent:  applications and mode of action. Biomacromolecules 4, 1457–1465.
  • Youn, D. K., No, H. K., and Prinyawiwatkul, W. (2013). Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. Int. J. Food Sci. Technol., 48, 571–577.
  • Thein-Han, W. W., and Misra, R.D.K. (2009). Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater., 5, 1182–1197.
  • Czechowska-Biskup, R., Rokita, B., Ulanski, P., and Rosiak, J. M. (2005). Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat-binding capacity. Nucl. Instrum. Methods Phys. Res. B 236, 383–390.
  • Guinesi, L. S., and Cavalheiro, É. T. G. (2006). The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta 444, 128–133.
  • Kurita, K. (2006). Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. (N Y) 8, 203–226.
  • Kim, S. K. (2010). Chitin, chitosan, oligosaccharides and their derivatives: Biological activities and applications. CRC Press, Boca Raton, FL.
  • Qiu, Y. (2008). Bioengineering, C.U. Chitosan derivatives for tissue engineering. Clemson University, Clemson, SC.
  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., and Dutta, J. (2009). Perspectives for chitosan-based antimicrobial films in food applications. Food Chem., 114, 1173–1182.
  • de Britto, D., and de Assis, O.B.G. (2007). Synthesis and mechanical properties of quaternary salts of chitosan-based films for food application. Int. J. Biol. Macromol., 41, 198–203.
  • Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb Technol., 35, 126–139.
  • Gyung-Hyun, J., Ro-Dong, P., and Woo-Jin, J. (2010). Enzymatic production of chitin from crustacean shell waste. Chitin, chitosan, oligosaccharides and their derivatives (pp. 37–45). CRC Press, Boca Raton, FL.
  • Kurita, K. (2001). Controlled functionalization of the polysaccharide chitin. Prog Polym Sci., 26, 1921–1971.
  • Percot, A., Viton, C., and Domard, A. (2003). Optimization of chitin extraction from shrimp shells. Biomacromolecules 4, 12–18.
  • Aye, K. N., and Stevens, W. F. (2004). Improved chitin production by pretreatment of shrimp shells. J. Chem. Technol. Biotechnol., 79, 421–425.
  • No, H. K., and Hur, E. Y. (1998). Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin. J. Agric. Food Chem., 46, 3844–3846.
  • Simpson, B. K., Gagne, N., and Simpson, M. V. (1994). Bioprocessing of chitin and chitosan. In A. M. Martin, (Ed.) Fisheries Processing (pp. 155–173). US: Springer.
  • Sini, T. K., Santhosh, S., and Mathew, P. T. (2007). Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr. Res., 342, 2423–2429.
  • Manni, L., Ghorbel-Bellaaj, O., Jellouli, K., Younes, I., and Nasri, M. (2010). Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl. Biochem. Biotechnol., 162, 345–357.
  • Jung, W. J., Jo, G. H., Kuk, J. H., Kim, Y. J., Oh, K. T., and Park, R. D. (2007). Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydr. Polym., 68, 746–750.
  • Oh, K-T., Kim, Y-J., Nguyen, V. N., Jung, W-J., and Park, R-D. (2007). Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem., 42, 1069–1074.
  • Ferrer, J., Paez, G., Marmol, Z., Ramones, E., Garcia, H., and Forster, C. F. (1996). Acid hydrolysis of shrimp-shell wastes and the production of single cell protein from the hydrolysate. Bioresour. Technol., 57, 55–60.
  • Bueno-Solano, C., López-Cervantes, J., Campas-Baypoli, O. N., Lauterio-García, R., Adan-Bante, N. P., and Sánchez-Machado, D. I. (2009). Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chem., 112, 671–675.
  • Babu, C. M., Chakrabarti, R., and Surya Sambasivarao, K. R. (2008). Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids. LWT - Food Sci. Technol., 41, 227–235.
  • Wang, S-L., Hsu, W-T., Liang, T-W., Yen, Y-H., and Wang, C-L. (2008). Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour. Technol., 99, 5679–5686.
  • Ghorbel-Bellaaj, O., Jridi, M., Khaled, H. B., Jellouli, K., and Nasri, M. (2012). Bioconversion of shrimp shell waste for the production of antioxidant and chitosan used as fruit juice clarifier. Int. J. Food Sci. Technol., 47, 1835–1841.
  • Ghorbel-Bellaaj, O., Hajji, S., Younes, I., Chaabouni, M., Nasri, M., and Jellouli, K. (2013). Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. Int. J. Biol. Macromol., 61, 243–250.
  • Ghorbel-Bellaaj, O., Hajji, S., Younes, I., Chaabouni, M., Nasri, M., and Jellouli, K. (2013). Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. Int. J. Biol. Macromol., 61, 243–250.
  • Ghorbel-Bellaaj, O., Hmidet, N., Jellouli, K., Younes, I., Maâlej, H., Hachicha, R., and Nasri, M (2011). Shrimp waste fermentation with Pseudomonas aeruginosa A2: Optimization of chitin extraction conditions through Plackett–Burman and response surface methodology approaches. Int. J. Biol. Macromol., 48, 596–602.
  • Beaney, P., Lizardi-Mendoza, J., and Healy, M. (2005). Comparison of chitins produced by chemical and bioprocessing methods. J. Chem. Technol. Biotechnol., 80, 145–150.
  • Khanafari, A., Marandi, R., and Sanatei, S. (2008). Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J. Environ. Health Sci. Eng., 5, 19–24.
  • Wahyuntari, B., Junianto Setyahadi, S. (2011). process design of microbiological chitin extraction. Microbiology, 1, 39–45.
  • Das, S., and Ganesh, A. (2010). Extraction of chitin from trash crabs (Podophthalmus vigil) by an eccentric method. Curr. Res. J. Biol. Sci., 2, 72–75.
  • Duan, S., Li, L., Zhuang, Z., Wu, W., Hong, S., and Zhou, J. (2012). Improved production of chitin from shrimp waste by fermentation with epiphytic lactic acid bacteria. Carbohydr. Polym., 89, 1283–1288.
  • Bhaskar, N., Suresh, P. V., Sakhare, P. Z., and Sachindra, N. M. (2007). Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme Microb. Technol., 40, 1427–1434.
  • Gal, A., Habraken, W., Gur, D., Fratzl, P., Weiner, S., and Addadi, L. (2013). Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. Angew. Chem. Int. Ed., 52, 4867–4870.
  • Oso, A. O., Idowu, A. A., and Niameh, O. T. (2011). Growth response, nutrient and mineral retention, bone mineralisation and walking ability of broiler chickens fed with dietary inclusion of various unconventional mineral sources. J. Anim. Physiol. Anim. Nutr. (Berl) 95, 461–467.
  • Guinotte, F, Nys, Y., and de Monredon, F. (1991). The effects of particle size and origin of calcium carbonate on performance and ossification characteristics in broiler chicks. Poult. Sci., 70, 1908–1920.
  • Gerry, R. W. (1980). Ground-dried whole mussels as a calcium supplement for chicken rations. Poult. Sci., 59, 2365–2368.
  • Muir, F. V., Harris, P. C., and Gerry, R. W. (1976). The comparative value of five calcium sources for laying hens. Poult Sci., 55, 1046–1051.
  • Finkelstein, A. D., Wohlt, J. E., Emanuele, S. M., and Tweed, S. M. (1993). Composition and nutritive value of ground sea clam shells as calcium supplements for lactating holstein cows1. J. Dairy Sci.,76, 582–589.
  • Heu, M-S., Kim, J-S., and Shahidi, F. (2003). Components and nutritional quality of shrimp processing by-products. Food Chem., 82, 235–242.
  • Shono, M., Shimizu, I., Aoyagi, E., Taniguchi, T., Takenaka, H., Ishikawa, M., Urata, M., Sannomiya, K., Tamaki, K., Harada, N., Nakaya, Y., and Takayama, T. (2008). Reducing effect of feeding powdered nacre of Pinctada maxima on the visceral fat of rats. Biosci. Biotechnol. Biochem., 72, 2761–2763.
  • Larsen, T., Thilsted, S. H., Kongsbak, K., and Hansen, M. (2000). Whole small fish as a rich calcium source. Br. J. Nutr., 83, 191–196.
  • Ciria-Recasens, M., Blanch-Rubio, J., Coll-Batet, M., Del Pilar Lisbona-Perez, M., Diez-Perez, A., Carbonell-Abello, J., Manasanch, J., and Perez-Edo, L. (2011). Comparison of the effects of ossein-hydroxyapatite complex and calcium carbonate on bone metabolism in women with senile osteoporosis: A randomized, open-label, parallel-group, controlled, prospective study. Clin Drug Investig., 31, 817–824.
  • Pelayo, I., Haya, J., De la Cruz, J. J., Seco, C., Bugella, J. I., Diaz, J. L., Bajo, J. M., and Repolles, M. (2008). Raloxifene plus ossein-hydroxyapatite compound versus raloxifene plus calcium carbonate to control bone loss in postmenopausal women: A randomized trial. Menopause 15, 1132–1138.
  • Castelo-Branco, C., Pons, F., Vicente, J. J., Sanjuan, A., and Vanrell, J. A. (1999). Preventing postmenopausal bone loss with ossein-hydroxyapatite compounds. Results of a two-year, prospective trial. J. Reprod. Med., 44, 601–605.
  • Castelo-Branco, C., Ciria-Recasens, M., Cancelo-Hidalgo, M. J., Palacios, S., Haya-Palazuelos, J., Carbonell-Abello, J., Blanch-Rubio, J., Martinez-Zapata, M. J., Manasanch, J., and Perez-Edo, L. (2009). Efficacy of ossein-hydroxyapatite complex compared with calcium carbonate to prevent bone loss: A meta-analysis. Menopause 16, 984–991.
  • Albertazzi, P., Steel, S. A., Howarth, E. M., and Purdie, D. W. (2004). Comparison of the effects of two different types of calcium supplementation on markers of bone metabolism in a postmenopausal osteopenic population with low calcium intake: A double-blind placebo-controlled trial. Climacteric 7, 33–40.
  • Farzadi, A., Bakhshi, F., Solati-Hashjin, M., Asadi-Eydivand, M., and Osman, N.A.A. (2014). Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceram Int., 40, 6021–6029.
  • Skwarek, E., Janusz, W., and Sternik, D. (2014). Adsorption of citrate ions on hydroxyapatite synthetized by various methods. J. Radioanal. Nucl. Chem., 299, 2027–2036.
  • Thian, E. S., Konishi, T., Kawanobe, Y., Lim, P. N., Choong, C., Ho, B., and Aizawa, M. (2013). Zinc-substituted hydroxyapatite: A biomaterial with enhanced bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med., 24, 437–445.
  • Qiu, Z-Y., Noh, I-S., and Zhang, S-M. (2013). Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Front Mater. Sci., 7, 40–50.
  • Malde, M., Bügel, S., Kristensen, M., Malde, K., Graff, I., and Pedersen, J. (2010). Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutr. Metab. (Lond)., 7, 1–9.
  • Yao, Z., Xia, M., Li, H., Chen, T., Ye, Y., and Zheng, H. (2013). Bivalve shell: Not an abundant useless waste but a functional and versatile biomaterial. Crit. Rev. Environ. Sci. Technol., 44, 2502–2530.
  • Chang, F., Li, G., Haws, M., and Niu, T. (2007). Element concentrations in shell of Pinctada margaritifera from French Polynesia and evaluation for using as a food supplement. Food Chem., 104, 1171–1176.
  • Fujita, T., Fukase, M., Miyamoto, H., Matsumoto, T., and Ohue, T. (1990). Increase of bone mineral density by calcium supplement with oyster shell electrolysate. Bone Miner., 11, 85–91.
  • Fujita, T., Ohue, T., Fujii, Y., Miyauchi, A., and Takagi, Y. (1996). Heated oyster shell-seaweed calcium (AAA Ca) on osteoporosis. Calcif Tissue Int., 58, 226–230.
  • Ross, E. A., Szabo, N. J., and Tebbett, I. R. (2000). Lead content of calcium supplements. JAMA 284, 1425–1429.
  • Palaniappan, M., Selvarajan, S., Srinivasamurthy, S., and Chandrasekaran, A. (2014). Oyster shell calcium induced parotid swelling. J. Pharmacol. Pharmacother., 5, 256–257.
  • Malmberg, P., and Nygren, H. (2008). Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS). Proteomics 8, 3755–3762.
  • Sato, K. (2007). Mechanism of hydroxyapatite mineralization in biological systems (Review). J. Ceram. Soc. Jpn., 115, 124–130.
  • Rabiei, A., Blalock, T., Thomas, B., Cuomo, J., Yang, Y., and Ong, J. (2007). Microstructure, mechanical properties, and biological response to functionally graded HA coatings. Mater. Sci. Eng. C., 27, 529–533.
  • Sadat-Shojai, M., Khorasani, M-T., Dinpanah-Khoshdargi, E., and Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater., 9, 7591–7621.
  • Karageorgiou, V., and Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491.
  • Kilpadi, K. L., Sawyer, A. A., Prince, C. W., Chang, P. L., and Bellis, S. L. (2004). Primary human marrow stromal cells and Saos-2 osteosarcoma cells use different mechanisms to adhere to hydroxylapatite. J. Biomed. Mater. Res. A., 68, 273–285.
  • Demers, C., Hamdy, C. R., Corsi, K., Chellat, F., Tabrizian, M., and Yahia, L. (2002). Natural coral exoskeleton as a bone graft substitute: A review. Biomed. Mater. Eng., 12, 15–35.
  • Wu, S-C., Hsu, H-C., Hsu, S-K., Wang, W-H., and Ho, W-F. (2011). Preparation and characterization of four different compositions of calcium phosphate scaffolds for bone tissue engineering. Mater. Charact., 62, 526–534.
  • Zhang, C. Y., Lu, H., Zhuang, Z., Wang, X. P., and Fang, Q. F. (2010). Nano-hydroxyapatite/poly(L-lactic acid) composite synthesized by a modified in situ precipitation: Preparation and properties. J. Mater. Sci. Mater. Med., 21, 3077–3083.
  • Zaremba, C. M., Morse, D. E., Mann, S., Hansma, P. K., and Stucky, G. D. (1998). Aragonite−hydroxyapatite conversion in gastropod (abalone) nacre. Chem. Mater., 10, 3813–3824.
  • Ni, M., and Ratner, B. D. (2003). Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials 24, 4323–4331.
  • Walsh, P. J., Buchanan, F. J., Dring, M., Maggs, C., Bell, S., and Walker, G. M. (2008). Low-pressure synthesis and characterisation of hydroxyapatite derived from mineralise red algae. Chem. Eng. J., 137, 173–179.
  • Vecchio, K. S., Zhang, X., Massie, J. B., Wang, M., and Kim, C. W. (2007). Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. Acta Biomater., 3, 785–793.
  • Vecchio, K. S., Zhang, X., Massie, J. B., Wang, M., and Kim, C. W. (2007). Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater., 3, 910–918.
  • Ben-Nissan, B. (2003). Natural bioceramics: from coral to bone and beyond. Curr. Opin. Solid State Mater. Sci., 7, 283–288.
  • Damien, E., and Revell, P. A. (2004). Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. J. Appl. Biomater. Biomech., 2, 65–73.
  • Kusmanto, F., Walker, G., Gan, Q., Walsh, P., Buchanan, F., Dickson, G., McCaigue, M., Maggs, C., and Dring, M. (2008). Development of composite tissue scaffolds containing naturally sourced mircoporous hydroxyapatite. Chem. Eng. J., 139, 398–407.
  • Zhang, X., and Vecchio, K. (2013). Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front Mater. Sci., 7, 103–117.
  • Álvarez-Lloret, P., Rodríguez-Navarro, A. B., Falini, G., Fermani, S., and Ortega-Huertas, M. (2010). Crystallographic control of the hydrothermal conversion of calcitic sea urchin spine (Paracentrotus lividus) into apatite. Cryst. Growth Des., 10, 5227–5232.
  • Tămăşan, M., Ozyegin, L. S., Oktar, F. N., and Simon, V. (2013). Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae infundibulum concavus marine shells. Mater. Sci. Eng. C., 33, 2569–2577.
  • Agathopoulos, S., Ozyegin, L. S., Ahmad, Z., Gunduz, O., Kayali, E. S., Meydanoglu, O., and Oktar, F. (2012). Nano-bioceramics production from razor shell. Key Eng. Mater., 493–494, 775–780.
  • Correia, R. N., Magalhães, M.C.F., Marques, P.A.A.P., and Senos, A.M.R. (1996). Wet synthesis and characterization of modified hydroxyapatite powders. J. Mater. Sci. Mater. Med., 7, 501–505.
  • Meyer, J. L., and Nancollas, G. H. (1972). The effect of pH and temperature on the crystal growth of hydroxyapatite. Arch Oral Biol., 17, 1623–1627.
  • Rakovan, J. (2002). Growth and surface properties of apatite. Rev. Miner. Geochem., 48, 51–86.
  • Zhang, X., and Vecchio, K. S. (2006). Creation of dense hydroxyapatite (synthetic bone) by hydrothermal conversion of seashells. Mater. Sci. Eng. C., 26, 1445–1450.
  • Lee, S-W, Balázsi, C., Balázsi, K., Seo, D-H., Kim, H., Kim, C-H., and Kim, S.-G. (2014). Comparative study of hydroxyapatite prepared from seashells and eggshells as a bone graft material. Tissue Eng. Regen. Med., 11, 113–120.
  • Bramhe, S., Kim, T. N., Balakrishnan, A., and Chu, M. C. (2014). Conversion from biowaste Venerupis clam shells to hydroxyapatite nanowires. Mater. Lett., 135, 195–198.
  • Ibrahim, A-R., Wei, W., Zhang, D., Wang, H., and Li, J. (2013). Conversion of waste eggshells to mesoporous hydroxyapatite nanoparticles with high surface area. Mater. Lett., 110, 195–197.
  • Tsuruga, E., Takita, H., Itoh, H., Wakisaka, Y., and Kuboki, Y. (1997). Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem., 121, 317–324.
  • Boonyang, U., Chaopanich, P., Wongchaisuwat, A., and Senthongkaew, P.S.S. (2010). Effect of phosphate precursor on the production of hydroxyapatite from crocodile eggshells. J. Biomim. Biomater. Tissue Eng., 5, 31–37.
  • Nandi, S. K., Kundu, B., Mukherjee, J., Mahato, A., Datta, S., and Balla, V. K. (2015). Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration. Mater. Sci. Eng. C., 49, 816–823.
  • Shavandi, A., Bekhit, AE-D., Ali, A., Sun, Z., and Ratnayake, J. T. (2015). Microwave-assisted synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of Green mussel shells (Perna canaliculus). Powder Technol., 273, 33–39.
  • Shavandi, A., Bekhit, AE-D., Ali, A., and Sun, Z. (2015). Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater. Chem. Phys., 149–150, 607–616.
  • Gunduz, O., Sahin, Y. M., Agathopoulos, S., Ben-Nissan, B., and Oktar, F. N. (2014). A new method for fabrication of nanohydroxyapatite and tcp from the sea snail cerithium vulgatum. J. Nanomater., 2014, 6.
  • Kalita, S. J., and Verma, S. (2010). Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization. Mater. Sci. Eng. C., 30, 295–303.
  • Kumar, G. S., Thamizhavel, A., and Girija, E. K. (2012). Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater. Lett., 76, 198–200.
  • Eggli, P. S., Moller, W., and Schenk, R. K. (1988). Porous hydroxyapatite and tricalcium phosphate cylinders with two different oore size ranges implanted in the cancellous bone of rabbits: A comparative histomorphometric and histologic study of bonyingrowth and implant substitution. Clin. Orthop. Relat. Res., 232, 127–138.
  • Ge, X-X., Sun, Y-H., Liu, C., and Qi, W-K. (2009). Influence of combustion reagent and microwave drying method on the characteristics of nano-sized Nd3+:YAG powders synthesized by the gel combustion method. J. Sol-Gel Sci. Technol., 52, 179–187.
  • Alves, A., Bergmann, C. P., and Berutti, F. A. (2013). Novel synthesis and characterization of nanostructured materials., Berlin Heidelberg: Springer.
  • Jalota, S., Tas, A. C., and Bhaduri, S. B. (2004). Microwave-assisted synthesis of calcium phosphate nanowhiskers. J. Biomed. Mater. Res., 19, 1876–1881.
  • Lak, A., Mazloumi, M., Mohajerani, M. S., Zanganeh, S., Shayegh, M. R., Kajbafvala, A., Arami, H., and Sadrnezhaad, S. K. (2008). Rapid formation of mono-dispersed hydroxyapatite nanorods with narrow-sizedistribution via microwave irradiation. J. Am. Ceram. Soc., 91, 3580–3584.
  • Meejoo, S., Maneeprakorn, W., and Winotai, P. (2006). Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim Acta., 447, 115–120.
  • Sarig, S., and Kahana, F. (2002). Rapid formation of nanocrystalline apatite. J. Cryst. Growth 237–239(Part 1), 55–59.
  • Gross, T. S., Srinivasan, S., Liu, C. C., Clemens, T. L., and Bain, S. D. (2002). Noninvasive loading of the murine tibia: An in vivo model for the study of mechanotransduction. J. Bone Miner. Res., 17, 493–501.
  • Qi, C., Tang, Q-L., Zhu, Y-J., Zhao, X-Y., and Chen, F. (2012). Microwave-assisted hydrothermal rapid synthesis of hydroxyapatite nanowires using adenosine 5′-triphosphate disodium salt as phosphorus source. Mater. Lett., 85, 71–73.
  • Dewavrin, J-Y., Hamzavi, N., Shim, V.P.W., and Raghunath, M. (2014). Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding. Acta Biomater., 10, 4351–4359.
  • Torcasio, A., van Lenthe, G. H., and Van Oosterwyck, H. (2008). The importance of loading frequency, rate and vibration for enhancing bone adaptation and implant osseointegration. Eur. Cell Mater., 16, 56–68.
  • Greenwald, A. S., Boden, S. D., Goldberg, V. M., Khan, Y., Laurencin, C. T., and Rosier, R. N. (2001). Bone-graft substitutes: facts, fictions, and applications. J. Bone Joint Surg. Am., 83, 98–103.
  • Rihn, J. A., Gates, C., Glassman, S. D., Phillips, F. M., Schwender, J. D., and Albert, T. J. (2008). The use of bone morphogenetic protein in lumbar spine surgery. Bone Joint J., 90, 2014–2025.
  • Carofino, B. C., and Lieberman, J. R. (2008). Gene therapy applications for fracture-healing. J. Bone Joint Surg. Am., 90, 99–110.
  • Dorozhkin, S. (2013). Self-setting calcium orthophosphate formulations. J. Funct. Biomater., 4, 209.
  • Song, H. C., and Park, J. W. (2001). Improvement of SO2 removal by the solubility change of Ca(OH)2 in the spray dryer system. Environ. Technol., 22, 1001–1006.
  • Onoda, H., and Nakanishi, H. (2012). Preparation of calcium phosphate with oyster shells. Nat. Res., 3, 71–74.
  • Onoda, H., Fukatsu, R., and Tafu, M. (2013). Reaction of sea shells with resemble phosphorus wastewater and application of products. J. Environ. Occup. Sci., 2, 71–76.
  • El Haddad, M., Regti, A., Laamari, M. R., Slimani, R., Mamouni, R., Antri, S. E., and Lazar, S. (2014). Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions. J. Taiwan Inst. Chem. Eng., 45, 533–540.
  • El Haddad, M., Regti, A., Slimani, R., and Lazar, S. (2014). Assessment of the biosorption kinetic and thermodynamic for the removal of safranin dye from aqueous solutions using calcined mussel shells. J. Ind. Eng. Chem., 20, 717–724.
  • Tahir, S. S., and Rauf, N. (2006). Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 63, 1842–1848.
  • Bekçi, Z., Seki, Y., and Cavas, L. (2009). Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. J. Hazard Mater., 161, 1454–1460.
  • Iqbal, M. J., and Ashiq, M. N. (2007). Adsorption of dyes from aqueous solutions on activated charcoal. J. Hazard Mater., 139, 57–66.
  • Chowdhury, S., and Saha, P. (2010). Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 164, 168–177.
  • Daneshvar, E., Sohrabi, M. S., Kousha, M., Bhatnagar, A., Aliakbarian, B., Converti, A., and Norrström, A.-C. (2014). Shrimp shell as an efficient bioadsorbent for Acid Blue 25 dye removal from aqueous solution. J. Taiwan Inst. Chem. Eng., 45, 2926–2934.
  • Boro, J., Deka, D., and Thakur, A. J. (2012). A review on solid oxide derived from waste shells as catalyst for biodiesel production. Renew. Sust. Energ. Rev., 16, 904–910.
  • Gupta, V. K., Tuohy, M., Kubicek, C. P., Saddler, J., and Xu, F. (2013). Bioenergy research: Advances and applications., Elsevier Science, Oxford, UK.
  • Boey, P-L., Maniam, G. P., and Hamid, S. A. (2009). Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour. Technol., 100, 6362–6368.
  • Boey, P-L., Maniam, G. P., Hamid, S. A., and Ali, D.M.H. (2011). Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology. Fuel 90, 2353–2358.
  • Boro, J., Konwar, L. J., Thakur, A. J., and Deka, D. (2014). Ba doped CaO derived from waste shells of T. striatula (TS-CaO) as heterogeneous catalyst for biodiesel production. Fuel 129, 182–187.
  • Xie, J., Zheng, X., Dong, A., Xiao, Z., and Zhang, J. (2009). Biont shell catalyst for biodiesel production. Green Chem., 11, 355–364.
  • Sawai, J., Shiga, H., and Kojima, H. (2001). Kinetic analysis of the bactericidal action of heated scallop-shell powder. Int. J. Food Microbiol., 71, 211–218.
  • Watanabe, T., Fujimoto, R., Sawai, J.U.N., Kikuchi, M., Yahata, S., and Satoh, S. (2014). Antibacterial characteristics of heated Scallop-shell nano-particles. Biocontrol Sci., 19, 93–97.
  • Jeong, M. S., Park, J. S., Song, S. H., and Jang, S. B. (2007). Characterization of antibacterial nanoparticles from the Scallop, Ptinopecten yessoensis. Biosci. Biotechnol. Biochem., 71, 2242–2247.
  • Sawai, J., and Shiga, H. (2006). Kinetic analysis of the antifungal activity of heated scallop-shell powder against Trichophyton and its possible application to the treatment of dermatophytosis. Biocontrol Sci., 11, 125–128.
  • Sawai, J., Satoh, M., Horikawa, M., Shiga, H., and Kojima, H. (2001). Heated scallop-shell powder slurry treatment of shredded cabbage. J. Food Prot., 64, 1579–1583.
  • Shankarlal, S., Prabu, K., and Natarajan, E. (2011). Antimicrobial and antioxidant activity of purple sea urchin shell (Salmacis virgulata L. Agassiz and Desor 1846). Am. - Eurasi J. Sci. Res., 6, 178–181.
  • Giftson, H., and Patterson, J. (2014). Antibacterial activity of the shell extracts of marine mollusc Donax faba against Pathogens. Int. J. Microbiol. Res., 2, 140–143.
  • Anderson, H. A., Mathieson, J. W., and Thomson, R. H. (1969). Distribution of spinochrome pigments in echinoids. Comp. Biochem. Physiol., 28, 333–345.
  • Mishchenko, N. P., Vasileva, E. A., and Fedoreyev, S. A. (2014). Mirabiquinone, a new unsymmetrical binaphthoquinone from the sea urchin Scaphechinus mirabilis. Tetrahedron Lett., 55, 5967–5969.
  • Yakubovskaya, A. Y., Pokhilo, N. D., Mishchenko, N. P., and Anufriev, V. F. (2007). Spinazarin and ethylspinazarin, pigments of the sea urchin Scaphechinus mirabilis. Russ. Chem. Bull., 56, 819–822.
  • Kuwahara, R., Hatate, H., Chikami, A., Murata, H., and Kijidani, Y. (2010). Quantitative separation of antioxidant pigments in purple sea urchin shells using a reversed-phase high performance liquid chromatography. Lwt-Food Sci. Technol., 43, 1185–1190.
  • Powell, C., Hughes, A. D., Kelly, M. S., Conner, S., and McDougall, G. J. (2014). Extraction and identification of antioxidant polyhydroxynaphthoquinone pigments from the sea urchin, Psammechinus miliaris. Lwt-Food Sci. Technol., 59, 455–460.
  • Mathieson, J. W., and Thomson, R. H. (1971). Naturally occurring quinones. Part XVIII. New spinochromes from Diadema antillarum, Spatangus purpureus, and Temnopleurus toreumaticus. J. Chem. Soc., 153–160.
  • Mischenko, N. P., Fedoreyev, S. A., Pokhilo, N. D., Anufriev, V. P., Denisenko, V. A., and Glazunov, V. P. (2005). Echinamines A and, B., first aminated hydroxynaphthazarins from the sea urchin Scaphechinus mirabilis. J. Nat. Prod., 68, 1390–1393.
  • Shikov, A. N., Ossipov, V. I., Martiskainen, O., Pozharitskaya, O. N., Ivanova, S. A., and Makarov, V. G. (2011). The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells. J. Chrom. A., 1218, 9111–9114.
  • Zhou, D. Y., Qin, L., Zhu, B. W., Wang, X. D., Tan, H., Yang, J. F., Li, D. M., Dong, X. P., Wu, H. T., Sun, L. M., Li, X. L., and Murata, Y. (2011). Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chem., 129, 1591–1597.
  • Kol′tsova, E., and Krasovskaya, N. (2009). Quinoid pigments from the sea urchin Toxopneustes pileolus. Chem. Nat. Comp., 45, 427–428.
  • Li, D. M., Zhou, D. Y., Zhu, B. W., Miao, L., Qin, L., Dong, X. P., Wang, X. D., and Murata, Y. (2013). Extraction, structural characterization and antioxidant activity of polyhydroxylated 1,4-naphthoquinone pigments from spines of sea urchin Glyptocidaris crenularis and Strongylocentrotus intermedius. Eur. Food Res. Technol., 237, 331–339.
  • Amarowicz, R., Synowiecki, J., and Shahidi, F. (1994). Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus). Food Chem., 51, 227–229.
  • Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol., 28, 25–30.
  • Lebedev, A. V., Levitskaya, E. L., Tikhonova, E. V., and Ivanova, M. V. (2001). Antioxidant properties, autooxidation, and mutagenic activity of echinochrome A compared with its etherified derivative. Biochemistry (Moscow) 66, 885–893.
  • Lebedev, A. V., Ivanova, M. V., and Ruuge, E. K. (2003). How do calcium ions induce free radical oxidation of hydroxy-1,4-naphthoquinone? Ca2+ stabilizes the naphthosemiquinone anion-radical of echinochrome A. Arch. Biochem. Biophys., 413, 191–198.
  • Zhou, D. Y., Zhu, B. W., Wang, X. D., Qin, L., Li, D. M., Miao, L., and Murata, Y. (2012). Stability of polyhydroxylated 1,4-naphthoquinone pigment recovered from spines of sea urchin Strongylocentrotus nudus. Int. J. Food Sci. Technol., 47, 1479–1486.
  • Lebedev, A. V., Ivanova, M. V., and Levitsky, D. O. (2008). Iron chelators and free radical scavengers in naturally occurring polyhydroxylated 1,4-naphthoquinones. Hemoglobin 32, 165–179.
  • Pozharitskaya, O. N., Ivanova, S. A., Shikov, A. N., and Makarov, V. G. (2013). Evaluation of free radical-scavenging activity of sea urchin pigments using HPTLC with post-chromatographic derivatization. Chromatographia 76, 1353–1358.
  • Lebedev, A. V., Ivanova, M. V., and Krasnovid, N. I. (1999). Interaction of natural polyhydroxy-1,4-naphthoquinones with superoxide anion-radical. Biochemistry (Moscow) 64, 1273–1278.
  • Lebedev, A. V., Ivanova, M. V., Krasnovid, N. I., and Koltzova, E. A. (1999). Weak acid properties of hydroxylated naphthazarins and their reaction with superoxide anion-radical. Voprosy Meditsinskoj Khimii., 45, 129–130.
  • Kuwahara, R., Hatate, H., Yuki, T., Murata, H., Tanaka, R., and Hama, Y. (2009). Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina. LWT - Food Sci. Technol., 42, 1296–1300.
  • Moridani, M. Y., Pourahmad, J., Bui, H., Siraki, A., and O'Brien, P. J. (2003). Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radical Biol. Med., 34, 243–253.
  • Hsu, B., Coupar, I. M., and Ng, K. (2006). Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica. Food Chem., 98, 317–328.
  • Kim, W-S., Park, B-S., Kim, H-K., Park, J-S., Kim, K-J., Choi, J-S., Chung, S.-J., Kim, D.-D., and Sung, J.-H. (2008). Evidence supporting antioxidant action of adipose-derived stem cells: Protection of human dermal fibroblasts from oxidative stress. J. Dermatol. Sci., 49, 133–142.
  • Kanupriya, Dipti, P., Sharma, S. K., Sairam, M., Ilavazhagan, G., Sawhney, R. C., and Banerjee, P. K. (2006). Flavonoids protect U-937 macrophages against tert-butylhydroperoxide induced oxidative injury. Food Chem. Toxicol., 44, 1024–1030.
  • Lennikov, A., Kitaichi, N., Noda, K., Mizuuchi, K., Ando, R., Dong, Z., Fukuhara, J., Kinoshita, S., Namba, K., Ohno, S., and Ishida, S. (2014). Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats. Mol. Vision., 20, 171–177.
  • Pozharitskaya, O. N., Shikov, A. N., Makarova, M. N., Ivanova, S. A., Kosman, V. M., Makarov, V. G., Bazgier, V., Berka, K., Otyepka, M., and Ulrichová, J. (2013). Antiallergic effects of pigments isolated from green sea urchin (Strongylocentrotus droebachiensis) shells. Planta Medica 79, 1698–1704.
  • Jeong, S. H., Kim, H. K., Song, I. S., Lee, S. J., Ko, K. S., Rhee, B. D., Kim, N., Mishchenko, N. P., Fedoryev, S. A., and Stonik, V. A. (2014). Echinochrome A protects mitochondrial function in cardiomyocytes against cardiotoxic drugs. Mar. Drugs 12, 2922–2936.
  • Buĭmov, G., Maksimov, I., Perchatkin, V., Repin, A., Afanas' ev, S., Markov, V., and Karpov, R. (2001). [Effect of the bioantioxidant histochrome on myocardial injury in reperfusion therapy on patients with myocardial infarction]. Terapevticheskii arkhiv 74, 12–16.
  • Mishchenko, N. P., Fedoreev, S. A., and Bagirova, V. L. (2003). Histochrome: A new original domestic drug. J. Pharm. Chem., 37, 48–52.
  • Egorov, E. A., Alekhina, V. A., Volobueva, T. M., Fedoreev, S. A., Mishchenko, N. P., and Kol'tsova, E. A. (1999). Histochrome, a new antioxidant, in the treatment of ocular diseases. Vestnik oftalmologii 115, 34–35.
  • Mizutani, K., Nagatsu, T., Asashima, M., and Kinoshita, S. (1972). Inhibition of tyrosine hydroxylase by naphthoquinone pigments of echinoids. Biochem. Pharma., 21, 2463–2468.
  • Kuzuya, H., Ikuta, K., and Nagatsu, T. (1973). Inhibition of dopamine-beta-hydroxylase by spinochrome A and echinochrome, A., naphthoquinone pigments of echinoids. Biochem. Pharma., 22, 2722–2724.
  • Franco-Zavaleta, M. E., Jiménez-Pichardo, R., Tomasini-Campocosio, A., and Guerrero-Legarreta, I. (2010). Astaxanthin extraction from shrimp wastes and its stability in 2 model systems. J. Food Sci., 75, C394–C399.
  • Ambati, R. R., Moi, P. S., Ravi, S., and Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs 12, 128–152.
  • Delgado-Vargas, F., Jiménez, A., and Paredes-López, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr., 40, 173–289.
  • Gharibi, S., Hamedian, A. A., Barin, A., Erfanmanesh, A., and Sadighara, P. (2012). The comparative survey between extraction methods for determination of bioactivity level in shrimp wastes of Penaeus semisulcatus. Global Veterinaria 8, 463–466.
  • Zare Jeddi, M., Jahed Khaniki, G., and Sadighara, P. (2013). Optimization of extraction of carotenoids from shrimp waste. Global Veterinaria 10, 636–637.
  • Sachindra, N. M., Bhaskar, N., and Mahendrakar, N. S. (2006). Recovery of carotenoids from shrimp waste in organic solvents. Waste Manage., 26, 1092–1098.
  • Mezzomo, N., Maestri, B., dos Santos, R. L., Maraschin, M., and Ferreira, S.R.S. (2011). Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration. Talanta 85, 1383–1391.
  • Quan, C., and Turner, C. (2009). Extraction of astaxanthin from shrimp waste using pressurized hot ethanol. Chromatographia 70, 247–251.
  • Du, J., He, J., Yu, Y., Zhu, S., and Li, J. (2013). Astaxanthin extracts from shrimp (Litopenaeus vannamei) discards assisted by high pressure processing. American Society of Agricultural and Biological Engineers Annual International Meeting 2013, ASABE 2013. p. 2852–2860.
  • Sachindra, N. M., and Mahendrakar, N. S. (2005). Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Biosour. Technol., 96, 1195–1200.
  • Inoue, T., Simpson, K. L., Tanaka, Y., and Sameshima, M. (1988). Condensed astaxanthin of pigmented oil from crayfish carapace and its feeding experiment. Nippon Suisan Gakkaishi 54, 103–106.
  • Gimeno, M., Ramírez-Hernández, J. Y., Mártinez-Ibarra, C., Pacheco, N., García-Arrazola, R., Bárzana, E., and Shirai, K. (2007). One-solvent extraction of astaxanthin from lactic acid fermented shrimp wastes. J. Agric. Food Chem., 55, 10345–10350.
  • Sachindra, N. M., Bhaskar, N., Siddegowda, G. S., Sathisha, A. D., and Suresh, P. V. (2007). Recovery of carotenoids from ensilaged shrimp waste. Bioresour. Technol., 98, 1642–1646.
  • Armenta, R. E., and Guerrero-Legarreta, I. (2009). Amino acid profile and enhancement of the enzymatic hydrolysis of fermented shrimp carotenoproteins. Food Chem., 112, 310–315.
  • Armenta-López, R., Guerrero, L. I., and Huerta, S. (2002). Astaxanthin extraction from shrimp waste by lactic fermentation and enzymatic hydrolysis of the carotenoprotein complex. J. Food Sci., 67, 1002–1006.
  • Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., and Simpson, B. K. (2009). Extraction of carotenoprotein from black tiger shrimp shells with the aid of bluefish trypsin. J. Food Biochem., 33, 201–217.
  • Sila, A., Nasri, M., and Bougatef, A. (2012). Isolation and characterisation of carotenoproteins from deep-water pink shrimp processing waste. Int. J. Biol. Macromol., 51, 953–959.
  • Subramaniam, B., Rajewski, R. A., and Snavely, K. (1997). Pharmaceutical processing with supercritical carbon dioxide. J. Pharma Sci., 86, 885–890.
  • Charest, D. J., Balaban, M. O., Marshall, M. R., and Cornell, J. A. (2001). Astaxanthin extraction from crawfish shells by supercritical CO2 with ethanol as cosolvent. J. Aquat Food Prod. Technol., 10, 81–96.
  • Félix-Valenzuela, L., Higuera-Ciapara, I., Goycoolea-Valencia, F., and Argüelles-Monal, W. (2001). Supercritical CO2/ethanol extraction of astaxanthin from blue crab (Callinectes sapidus) shell waste. J. Food Process Eng., 24, 101–112.
  • Mezzomo, N., Martínez, J., Maraschin, M., and Ferreira, S.R.S. (2013). Pink shrimp (P. brasiliensis and P. paulensis) residue: Supercritical fluid extraction of carotenoid fraction. J. Supercr. Fluids 74, 22–33.
  • Sánchez-Camargo, A. P., Martinez-Correa, H. A., Paviani, L. C., and Cabral, F. A. (2011). Supercritical CO2 extraction of lipids and astaxanthin from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J. Supercr. Fluids 56, 164–173.
  • De Holanda, H. D., and Netto, F. M. (2006). Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J. Food Sci., 71, C298–C303.
  • Sachindra, N. M., and Mahendrakar, N. S. (2010). Stability of carotenoids recovered from shrimp waste and their use as colorant in fish sausage. J. Food Sci. Technol., 47, 77–83.
  • Armenta, R. E., and Isabbl, G. L. (2009). Stability studies on astaxanthin extracted from fermented shrimp byproducts. J. Agri. Food Chem., 57, 6095–6100.
  • Sowmya, R., and Sachindra, N. M. (2012). Evaluation of antioxidant activity of carotenoid extract from shrimp processing byproducts by in vitro assays and in membrane model system. Food Chem., 134, 308–314.
  • Küçükgülmez, A., and Celik, M. (2013). The effects of natural antioxidant extract isolated from giant red shrimp (Aristaeomorpha foliacea) shells on fatty acid profiles of anchovy (Engraulis encrasicolus) during refrigerated storage. J. Aquat Food Prod. Technol., 22, 66–76.
  • Senphan, T., Benjakul, S., and Kishimura, H. (2014). Characteristics and antioxidative activity of carotenoprotein from shells of Pacific white shrimp extracted using hepatopancreas proteases. Food Biosci., 5, 54–63.
  • Sowmya, R., and Sachindra, N. M. (2013). Enhancement of non-specific immune responses in common carp, Cyprinus carpio, by dietary carotenoids obtained from shrimp exoskeleton. Aquacul Res., n/a–n/a.
  • Park, J. S., Chyun, J. H., Kim, Y. K., Line, L. L., and Chew, B. P. (2010). Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab., 7, 1–10.
  • Monroy-Ruiz, J., Sevilla, M.Á., Carrón, R., and Montero, M. J. (2011). Astaxanthin-enriched-diet reduces blood pressure and improves cardiovascular parameters in spontaneously hypertensive rats. Pharmacol. Res., 63, 44–50.
  • Santos, S. D., Cahú, T. B., Firmino, G. O., de Castro, C.C.M.M.B., Carvalho Jr, L. B., Bezerra, R. S., and Filho, J. L. L. (2012). Shrimp waste extract and astaxanthin: Rat alveolar macrophage, oxidative stress and inflammation. J. Food Sci., 77, H141–H146.
  • Folmer, F., Jaspars, M., Solano, G., Cristofanon, S., Henry, E., Tabudravu, J., Black, K., Green, D. H., Küpper, F. C., Aalbersberg, W., Feussner, K., Dicato, M., and Diederich, M. (2009). The inhibition of TNF-α-induced NF-κB activation by marine natural products. Biochem. Pharma., 78, 592–606.
  • Zhang, J., Nie, J., Zhang, Q., Li, Y., Wang, Z., and Hu, Q. (2014). Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. J. Biomater. Sci. Polym. Ed., 25, 61–74.
  • Chew, B. P., and Park, J. S. (2004). Carotenoid action on the immune response. J. Nutr., 134, 257S–261S.
  • Chew, B., Wong, M., Park, J., and Wong, T. (1998). Dietary beta-carotene and astaxanthin but not canthaxanthin stimulate splenocyte function in mice. Anticancer Res., 19, 5223–5227.
  • Svobodova, A., Walterova, D., and Vostalova, J. (2006). Ultraviolet light induced alteration to the skin. Biomed. Pap. - Palacky University Olomouc 150, 25.
  • Hama, S., Takahashi, K., Inai, Y., Shiota, K., Sakamoto, R., Yamada, A., Tsuchiya, H., Kanamura, K., Yamashita, E., and Kogure, K. (2012). Protective effects of topical application of a poorly soluble antioxidant astaxanthin liposomal formulation on ultraviolet-induced skin damage. J. Pharma. Sci., 101, 2909–2916.
  • Yoon, H. S., Cho, H. H., Cho, S., Lee, S. R., Shin, M. H., and Chung, J. H. (2014). Supplementating with dietary astaxanthin combined with collagen hydrolysate improves facial elasticity and decreases matrix metalloproteinase-1 and -12 expression: A comparative study with placebo. J. Med. Food., 17, 810–816.
  • Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., Mitch, W. E., and Harrison, D. G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest., 111, 1201–1209.
  • Maritim, A., Sanders, R., and Watkins, rJ. (2003). Diabetes, oxidative stress, and antioxidants: A review. J Biochem Mol Toxicol., 17, 24–38.
  • Sila, A., Ghlissi, Z., Kamoun, Z., Makni, M., Nasri, M., Bougatef, A., and Sahnoun, Z. (2014). Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. Eur. J. Nutr., 54, 301–307.
  • Otton, R., Marin, D. P., Bolin, A. P., Santos, R.D.C.M.D., Polotow, T. G., Sampaio, S. C., and de Barros, M. P. (2010). Astaxanthin ameliorates the redox imbalance in lymphocytes of experimental diabetic rats. Chem-Biol. Interact., 186, 306–315.
  • Agarwal, V., Tjandra, E. S., Iyer, K. S., Humfrey, B., Fear, M., Wood, F. M., Dunlop, S., and Raston, C. L. (2014). Evaluating the effects of nacre on human skin and scar cells in culture. Toxicol Res., 3, 223–227.
  • Zhang, C., and Zhang, R. (2006). Matrix proteins in the outer shells of molluscs. Mar. Biotechnol., 8, 572–586.
  • Cariolou, M. A., and Morse, D. E. (1988). Purification and characterization of calcium-binding conchiolin shell peptides from the mollusc, Haliotis rufescens, as a function of development. J. Comput. Physio. B., 157, 717–729.
  • Bevelander, G., and Nakahara, H. (1980). Compartment and envelope formation in the process of biological mineralization. In: The Mechanisms of Biomineralization in Animals and Plants; Omori, M.,Watabe, N., Eds.; Tokai University Press: Kanagawa, Japan. 19–27.
  • Sarashina, I., and Endo, K. (2001). The complete primary structure of molluscan shell protein 1 (msp-1), an acidic glycoprotein in the shell matrix of the scallop patinopecten yessoensis. Mar. Biotechnol., 3, 362–369.
  • Noguchi, T., Torita, A., and Hasegawa, Y. (2007). Purification and characterization of a matrix shell protein from the shell of scallop Patinopecten yessoensis. Fish. Sci., 73, 1177–1185.
  • Pereira Mouriès, L., Almeida, M-J., Milet, C., Berland, S., and Lopez, E. (2002). Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: Fibroblasts, bone marrow stromal cells and osteoblasts. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 132, 217–229.
  • Liu, Y. C., Uchiyama, K., Natsui, N., and Hasegawa, Y. (2002). In vitro activities of the components from scallop shells. Fish. Sci., 68, 1330–1336.
  • Kobayashi, K., Liu, Y., and Hasegawa, Y. (2008). Scallop shell extract increases mRNA expression of uncoupling protein 1 in differentiated C3H10T1/2 adipocyte cells. Fish. Sci., 74, 944–946.
  • Kim, H., Lee, K., Ko, C. Y., Kim, H. S., Shin, H. I., Kim, T., Lee, S. H., and Jeong, D. (2012). The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation. Biomaterials 33, 7489–7496.
  • Lopez, E., Vidal, B., Berland, S., Camprasse, S., Camprasse, G., and Silve, C. (1992). Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell., 24, 667–679.
  • Liao, H., Mutvei, H., Sjöström, M., Hammarström, L., and Li, J. (2000). Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21, 457–468.
  • Atlan, G., Delattre, O., Berland, S., LeFaou, A., Nabias, G., Cot, D., and Lopez, E. (1999). Interface between bone and nacre implants in sheep. Biomaterials 20, 1017–1022.
  • Lamghari, M., Berland, S., Laurent, A., Huet, H., and Lopez, E. (2001). Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22, 555–562.
  • Almeida, M. J., Milet, C., Peduzzi, J., Pereira, L., Haigle, J., Barthélemy, M., and Lopez, E. (2000). Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J. Exp. Zool., 288, 327–334.
  • Bédouet, L., José Schuller, M., Marin, F., Milet, C., Lopez, E., and Giraud, M. (2001). Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: Extraction and partial analysis of nacre proteins. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 128, 389–400.
  • Tanasawet, S., Withyachumnarnkul, B., Changsangfar, C., Cummins, S. F., Sroyraya, M., Sangsuwan, P., Kitiyanant, Y., Asuvapongpatana, S., and Weerachatyanukul, W. (2013). Isolation of organic matrix nacreous proteins from haliotis diversicolor and their effect on in vitro osteoinduction. Malacologia, 56, 107–119.
  • Oliveira, D. V., Silva, T. S., Cordeiro, O. D., Cavaco, S. I., and Simes, D. C. (2012). Identification of proteins with potential osteogenic activity present in the water-soluble matrix proteins from crassostrea gigas nacre using a proteomic approach. Sci. World J., 2012, 1-10.
  • Zhang, C., Li, S., Ma, Z., Xie, L., and Zhang, R. (2006). A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar. Biotechnol., 8, 624–633.
  • Lao, Y., Zhang, X., Zhou, J., Su, W., Chen, R., Wang, Y., Zhou, W., and Xu, Z.-F. (2007). Characterization and in vitro mineralization function of a soluble protein complex P60 from the nacre of Pinctada fucata. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 148, 201–208.
  • Wang, X., Liu, S., Xie, L., Zhang, R., and Wang, Z. (2011). Pinctada fucata mantle gene 3 (PFMG3) promotes differentiation in mouse osteoblasts (MC3T3-E1). Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 158, 173–180.
  • Torita, A., Liu, Y. C., and Hasegawa, Y. (2004). Photoprotective activity of scallop shell water-extract in keratinocyte cells. Fish. Sci., 70, 910–915.
  • Liu, Y. C., Torita, A., and Hasegawa, Y. (2006). Scallop shell extract promotes recovery from UV-B-induced damage in rat skin epidermal layer. Fish. Sci., 72, 388–392.
  • Liu, Y. C., Torita, A., and Hasegawa, Y. (2008). Scallop shell extract inhibits squalene monohydroperoxide-induced skin erythema and wrinkle formation in rat. Fish. Sci., 74, 217–219.
  • Torita, A., Miyamoto, A., and Hasegawa, Y. (2007). The effects of scallop shell extract on collagen synthesis. Fish. Sci., 73, 1388–1394.
  • Torita, A., Miyamoto, A., Ishiguro, K., Yamamoto, S., and Hasegawa, Y. (2011). Organic components from scallop shell increase expression of keratinocyte growth factor in human skin fibroblast. Fish. Sci., 77, 263–269.
  • Lopez, E., Faou, A. L., Borzeix, S., and Berland, S. (2000). Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl). Tissue Cell., 32, 95–101.
  • Almeida, M. J., Pereira, L., Milet, C., Haigle, J., Barbosa, M., and Lopez, E. (2001). Comparative effects of nacre water-soluble matrix and dexamethasone on the alkaline phosphatase activity of MRC-5 fibroblasts. J. Biomed. Mater. Res. A., 57, 306–312.
  • Jian-Ping, D., Jun, C., Yu-Fei, B., Bang-Xing, H., Shang-Bin, G., and Li-Li, J. (2010). Effects of pearl powder extract and its fractions on fibroblast function relevant to wound repair. Pharma Biol., 48, 122–127.
  • Lee, K., Kim, H., Kim, J. M., Chung, Y. H., Lee, T. Y., Lim, H. S., Lim, J. H., Kim, T., Bae, J. S., Woo, C. H., Kim, K. J., and Jeong, D. (2012). Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function. Mol. Biol. Rep., 39, 3211–3218.
  • Liu, Y. C., and Hasegawa, Y. (2006). Reducing effect of feeding powdered scallop shell on the body fat mass of rats. Biosci. Biotech. Bioch., 70, 86–92.
  • Liu, Y., Natsui, N., and Hasegawa, Y. (2006). Promotion of lypolysis activity in mouse C3H10T1/2 adipocyte cells by components from scallop shells. Fish. Sci., 72, 702–704.
  • Liu, Y. C., Satoh, K., and Hasegawa, Y. (2006). Feeding scallop shell powder induces the expression of uncoupling protein 1 (UCP1) in white adipose tissue of rats. Biosci. Biotech. Bioch., 70, 2733–2738.
  • Takahashi, K., Satoh, K., Katagawa, M., Torita, A., and Hasegawa, Y. (2012). Scallop shell extract inhibits 3T3-L1 preadipocyte differentiation. Fish. Sci., 78, 897–903.
  • Fukuda, M., Takahashi, K., Ohkawa, C., Sasaki, Y., and Hasegawa, Y. (2013). Identification of a resistant protein from scallop shell extract and its bile acid-binding activity. Fish. Sci.,79, 1017–1025.
  • Xu, H., Huang, K., Gao, Q., Gao, Z., and Han, X. (2001). A study on the prevention and treatment of myopia with nacre on chicks. Pharmacol. Res., 44, 1–6.
  • Lee, S. Y., Kim, H. J., and Han, J. S. (2013). Anti-inflammatory effect of oyster shell extract in LPS-stimulated raw 264.7 cells. Prev. Nutr. Food Sci., 18, 23–29.
  • Chaturvedi, R., Singha, P. K., and Dey, S. (2013). Water-soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation. PLoS One 8.
  • Mitsuhashi, T., Ono, K., Fukuda, M., and Hasegawa, Y. (2013). Free radical scavenging ability and structure of a 90-kDa protein from the scallop shell. Fish. Sci., 79, 495–502.
  • Meruvu, H., and Donthireddy, S. (2014). Optimization studies for chitinase production from Parapeneopsis hardwickii (spear shrimp) exoskeleton by solid-state fermentation with marine isolate citrobacter freundii str. nov. haritD11. Arab. J. Sci. Eng., 39, 5297–5306.
  • Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A., and Nasri, M. (2010). An oxidant- and solvent-stable protease produced by Bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive. Appl. Biochem. Biotechnol., 160, 2308–2321.
  • Ghorbel-Bellaaj, O., Jellouli, K., Younes, I., Manni, L., Ouled Salem, M., and Nasri, M. (2011). A solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl. Biochem. Biotechnol., 164, 410–425.
  • Wang, S. L., Chang, T. J., and Liang, T. W. (2010). Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation 21, 321–333.
  • Bajaj, M., Winter, J., and Gallert, C. (2011). Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochem. Eng. J., 56, 51–62.
  • Choorit, W., Patthanamanee, W., and Manurakchinakorn, S. (2008). Use of response surface method for the determination of demineralization efficiency in fermented shrimp shells. Bioresour. Technol., 99, 6168–6173.
  • Sorokulova, I., Krumnow, A., Globa, L., and Vodyanoy, V. (2009). Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum. J. Ind. Microbiol. Biotechnol., 36, 1123–1126.
  • Aytekin, O., and Elibol, M. (2010). Cocultivation of Lactococcus lactis and Teredinobacter turnirae for biological chitin extraction from prawn waste. Bioprocess Biosyst. Eng., 33, 393–399.
  • Liu, P., Liu, S., Guo, N., Mao, X., Lin, H., Xue, C., and Wei, D. (2014). Cofermentation of Bacillus licheniformis and Gluconobacter oxydans for chitin extraction from shrimp waste. Biochem. Eng. J., 91, 10–15.
  • Jo, G. H., Jung, W. J., Kuk, J. H., Oh, K. T., Kim, Y. J., and Park, R. D. (2008). Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr. Polym., 74, 504–508.
  • Abdou, E. S., Nagy, K.S.A., and Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol., 99, 1359–1367.
  • Chang, K.L.B., and Tsai, G. (1997). Response surface optimization and kinetics of isolating chitin from pink shrimp (Solenocera melantho) shell waste. J. Agric. Food Chem., 45, 1900–1904.
  • Mojarrad, J. S., Nemati, M., Valizadeh, H., Ansarin, M., and Bourbour, S. (2007). Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. J. Agric. Food Chem., 55, 2246–2250.
  • Goodrich, J. D., and Winter, W. T. (2006). α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8, 252–257.
  • Sagheer, F.A.A., Al-Sughayer, M. A., Muslim, S., and Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym., 77, 410–419.
  • Nidheesh, T., Suresh, and P. V. (2014). Optimization of conditions for isolation of high quality chitin from shrimp processing raw byproducts using response surface methodology and its characterization. J. Food Sci. Technol., 52, 3812–3823.
  • Jeon, D. J., and Yeom, S. H. (2009). Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate. Bioresour. Technol., 100, 2646–2649.
  • Jung, J-H., Lee, Y-S., Yoo, K-S., Lee, H-K., Oh, K-J., and Shon, B-H. (2005). Reactivity of bio-sorbent prepared by waste shells of shellfish in acid gas cleaning reaction. Korean J. Chem. Eng., 22, 566–568.
  • Goloshchapov, D. L., Kashkarov, V. M., Rumyantseva, N. A., Seredin, P. V., Lenshin, A. S., Agapov, B. L., and Domashevskaya, E. P. (2013). Synthesis of nanocrystalline hydroxyapatite by precipitation using hen's eggshell. Ceram. Int., 39:4539–4549.
  • Ho, W-F., Hsu, H-C., Hsu, S-K., Hung, C-W., and Wu, S-C. (2013). Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int., 39, 6467–6473.
  • Behari, J. (2009). Biophysical bone behaviour: principles and applications., Wiley: Singapore.
  • Wu, S-C., Tsou, H-K., Hsu, H-C., Hsu, S-K., Liou, S-P., and Ho, W-F. (2013). A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram Int., 39, 8183–8188.
  • Ripamonti, U., Roden, L. C., and Renton, L. F. (2012). Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials 33, 3813–3823.
  • dos Santos, E. A., Farina, M., Soares, G. A., and Anselme, K. (2008). Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J. Mater. Sci. Mater. Med., 19, 2307–2316.
  • Dong, X-L., Zhou, H-L., Wu, T., and Wang, Q. (2008). Behavior regulation of adsorbed proteins via hydroxyapatite surface texture control. J. Phys. Chem. B., 112, 4751–4759.
  • Chaudhuri, B., Mondal, B., Modak, D. K., Pramanik, K., and Chaudhuri, B. K. (2013). Preparation and characterization of nanocrystalline hydroxyapatite from egg shell and K2HPO4 solution. Mater. Lett., 97, 148–150.
  • Zhang, Y., Liu, Y., Ji, X., Banks, C. E., and Song, J. (2011). Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane. Colloid Surf. B., 82, 490–496.
  • Lu, Z., Roohani-Esfahani, S. I., Kwok, P. C., and Zreiqat, H. (2011). Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation. Tissue Eng. Part A., 17, 1651–1661.
  • Rosa, A. L., Beloti, M. M., and van Noort, R. (2003). Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography. Dent. Mater., 19, 768–772.
  • Annaz, B., Hing, K. A., Kayser, M., Buckland, T., and Di Silvio, L. (2004). Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J. Microsc., 215, 100–110.
  • Shariffuddin, J. H., Jones, M. I., and Patterson, D. A. (2013). Greener photocatalysts: Hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater. Chem. Eng. Res. Des., 91, 1693–1704.
  • Roohani-Esfahani, S. I., Nouri-Khorasani, S., Lu, Z., Appleyard, R., and Zreiqat, H. (2010). The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 31, 5498–5509.
  • Hu, J., Russell, J. J., Ben-Nissan, B., and Vago, R. (2001). Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J. Mater. Sci. Lett., 20, 85–87.
  • Pramanik, S., Agarwal, A. K., Rai, K. N., and Garg, A. (2007). Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int., 33, 419–426.
  • Habibovic, P., Yuan, H., van der Valk, C. M., Meijer, G., van Blitterswijk, C. A., and de Groot, K. (2005). 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26, 3565–3575.
  • Jones, A. C., Milthorpe, B., Averdunk, H., Limaye, A., Senden, T. J., Sakellariou, A., Sheppard, A. P., Sok, R. M., Knackstedt, M. A., Brandwood, A., Rohner, D., and Hutmacher, D. W. (2004). Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25, 4947–4954.
  • Kaplan, D. L. (1998). Mollusc shell structures: Novel design strategies for synthetic materials. Curr. Opin. Solid State. Mater., 3, 232–236.
  • Lin, A.Y.M., Meyers, M. A., and Vecchio, K. S. (2006). Mechanical properties and structure of Strombus gigas. Tridacna gigas, and Haliotis rufescens sea shells: A comparative study. Mater. Sci. Eng. C., 26, 1380–1389.
  • Camprasse, S., Camprasse, G., Pouzol, M., and Lopez, E. (1990). Artificial dental root made of natural calcium carbonate (bioracine). Clin. Mater., 5, 235–250.
  • Lamghari, M., Almeida, M. J., Berland, S., Huet, H., Laurent, A., Milet, C., and Lopez, E. (1999). Stimulation of bone marrow cells and bone formation by nacre: In vivo and in vitro studies. Bone 25, 91S–94S.
  • O'Keefe, R. J., and Mao, J. (2011). Bone tissue engineering and regeneration: From discovery to the clinic—An overview. Tissue Eng. Part B. Rev., 389–392.
  • Di Silvio, L., Dalby, M. J., and Bonfield, W. (2002). Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials 23, 101–107.
  • Khan, A. F., Saleem, M., Afzal, A., Ali, A., Khan, A., and Khan, A. R. (2014). Bioactive behavior of silicon-substituted calcium phosphate-based bioceramics for bone regeneration. Mater. Sci. Eng. C., 35, 245–252.
  • Hing, K., Gibson, I., Revell, P., Best, S., and Bonfield, W. (2000). Influence of phase purity on the in vivo response to hydroxyapatite. Bioceramics 2000, 373–376.
  • Vallet-Regi, M., and Arcos, D. (2005). Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J. Mater. Chem., 15, 1509–1516.
  • Chang, Y. L., Stanford, C. M., and Keller, J. C. (2000). Calcium and phosphate supplementation promotes bone cell mineralization: Implications for hydroxyapatite (HA)-enhanced bone formation. J. Biomed. Mater. Res., 52, 270–278.
  • Wang, C., Duan, Y., Markovic, B., Barbara, J., Howlett, C. R., Zhang, X., and Zreiqat, H. (2004). Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials 25, 2507–2514.
  • Cardemil, C., Elgali, I., Xia, W., Emanuelsson, L., Norlindh, B., Omar, O., and Thomsen, P. (2013). Strontium-doped calcium phosphate and hydroxyapatite granules promote different inflammatory and bone remodelling responses in normal and ovariectomised rats. PLoS One 8, e84932.
  • Handschel, J., Wiesmann, H. P., Stratmann, U., Kleinheinz, J., Meyer, U., and Joos, U. (2002). TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 23, 1689–1695.
  • Vijayaraghavan, K., Palanivelu, K., and Velan, M. (2006). Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour. Technol., 97, 1411–1419.
  • Dahiya, S., Tripathi, R. M., and Hegde, A. G. (2008). Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass. Bioresour Technol., 99, 179–187.
  • Yeom, S. H., and Jung, K-Y. (2009). Recycling wasted scallop shell as an adsorbent for the removal of phosphate. J. Ind. Eng. Chem., 15, 40–44.
  • Pradhan, S., Shukla, S. S., and Dorris, K. L. (2005). Removal of nickel from aqueous solutions using crab shells. J. Hazard. Mater., 125, 201–204.
  • Hsu, T-C. (2009). Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. J. Hazard Mater., 171, 995–1000.
  • Asaoka, S., Yamamoto, T., Kondo, S., and Hayakawa, S. (2009). Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresour. Technol., 100, 4127–4132.
  • Park, W. H., and Polprasert, C. (2008). Roles of oyster shells in an integrated constructed wetland system designed for P removal. Ecol. Eng., 34, 50–56.
  • Tsai, H-C., Lo, S-L., and Kuo, J. (2011). Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater. Bioresour. Technol., 102, 7802–7806.
  • Yu, Y., Wu, R., and Clark, M. (2010). Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. J. Colloid Interface Sci., 350, 538–543.
  • Suteu, D., Bilba, D., Aflori, M., Doroftei, F., Lisa, G., Badeanu, M., and Malutan, T. (2012). The seashell wastes as biosorbent for reactive dye removal from textile effluents. CLEAN – Soil, Air, Water 40, 198–205.
  • Nakatani, N., Takamori, H., Takeda, K., and Sakugawa, H. (2009). Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour. Technol., 100, 1510–1513.
  • Viriya-empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., and Faungnawakij, K. (2010). Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour. Technol., 101, 3765–3767.
  • Boro, J., Thakur, A. J., and Deka, D. (2011). Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process Technol., 92, 2061–2067.
  • Suryaputra, W., Winata, I., Indraswati, N., and Ismadji, S. (2013). Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 50, 795–799.
  • Birla, A., Singh, B., Upadhyay, S. N., and Sharma, Y. C. (2012). Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour. Technol., 106, 95–100.
  • Nair, P., Singh, B., Upadhyay, S. N., and Sharma, Y. C. (2012). Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix mereterix as a heterogeneous catalyst. J. Clean. Prod., 29–30, 82–90.
  • Rezaei, R., Mohadesi, M., and Moradi, G. R. (2013). Optimization of biodiesel production using waste mussel shell catalyst. Fuel 109, 534–541.
  • Xiao, Hua Liu, Hai, Xin Bai, Dong, Jie Zhu, and Cao, G. (2010). Green catalyzing transesterification of soybean oil with methanol for biodiesel based on the reuse of waste river-snail shell. Adv. Mater. Res., 148–149, 794–798.
  • Hu, S., Wang, Y., and Han, H. (2011). Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioenergy 35, 3627–3635.
  • Xing, R., Qin, Y., Guan, X., Liu, S., Yu, H., and Li, P. (2013). Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products. Egypt. J. Aquat Res., 39, 83–90.
  • Bodur, T., and Cagri-Mehmetoglu, A. (2012). Removal of Listeria monocytogenes. Staphylococcus aureus and Escherichia coli O157:H7 biofilms on stainless steel using scallop shell powder. Food Control 25, 1–9.
  • Luo, H., Huang, G., Fu, X., Liu, X., Zheng, D., Peng, J., Zhang, K., Huang, B., Fan, L., Chen, F., and Sun, X. (2013). Waste oyster shell as a kind of active filler to treat the combined wastewater at an estuary. J. Environ. Sci., 25, 2047–2055.
  • Liu, Y-X., Yang, T. O., Yuan, D-X., and Wu, X-Y. (2010). Study of municipal wastewater treatment with oyster shell as biological aerated filter medium. Desalination 254, 149–153.
  • Kim, Y. S., Choi, Y. M., Noh, D. O., Cho, S. Y., and Suh, H. J. (2007). The effect of oyster shell powder on the extension of the shelf life of tofu. Food Chem., 103, 155–160.
  • Choi, Y. M., Whang, J. H., Kim, J. M., and Suh, H. J. (2006). The effect of oyster shell powder on the extension of the shelf-life of Kimchi. Food Control 17, 695–699.
  • Li, M., Yao, Z. T., Chen, T., Lou, Z. H., and Xia, M. (2014). The antibacterial activity and mechanism of mussel shell waste derived material. Powder Technol., 264, 577–582.
  • Oikawa, K., Asada, T., Yamamoto, K., Wakabayashi, H., Sasaki, M., Sato, M., and Matsuda, J. (2000). Antibacterial activity of calcined shell calcium prepared from wild surf clam. J. Health Sci., 46, 98–103.
  • Bae, D-H., Yeon, J-H., Park, S-Y., Lee, D-H., and Ha, S-D. (2006). Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria. Arch. Pharmacal. Res., 29, 298–301.
  • Khalafy, J., and Bruce, J. (2002). Oxidative dehydrogenation of 1-tetralones: Synthesis of juglone, naphthazarin, and alpha-hydroxyanthraquinones. J. Sci. Islamic Republic Iran 13, 131–140.
  • Mischenko, N. P., Fedoreyev, S. A., Pokhilo, N. D., Anufriev, V. P., Denisenko, V. A., and Glazunov, V. P. (2005). Echinamines A and, B., first animated hydroxynaphthazarins from the sea urchin Scaphechinus mirabilis. J. Nat. Prod., 68, 1390–1393.
  • Kol'tsova, E. A., Denisenko, V. A., and Maksimov, O. B. (1978). Quinoid pigments of echinodermata V. Pigments of the sea urchin Strongylocentrotus dröebachiensis. Chem. Nat. Comp., 14, 371–374.
  • Kol'tsova, E. A., Chumak, G. N., and Maksimov, O. B. (1977). Quinoid pigments of echinodermata III. Minor pigments of the sea urchin Strongylocentrotus nudus. C Chem. Nat. Comp., 13, 174–177.
  • Utkina, N. K., Shchedrin, A. P., and Maksimov, O. B. (1976). A new binaphthoquinone from Strongylocentrotus intermedius. Chem. Nat. Comp., 12, 387–389.
  • Hatate, H., Murata, H., Hama, Y., Tanaka, R., and Suzuki, N. (2002). Antioxidative activity of spinochromes extracted from shells of sea urchins. Fish. Sci., 68, 1641–1642.
  • Ma, C., Zhang, C., Nie, Y., Xie, L., and Zhang, R. (2005). Extraction and purification of matrix protein from the nacre of pearl oyster Pinctada fucata. Tsinghua Sci. Techno., 10, 499–503.
  • Michenfelder, M., Fu, G., Lawrence, C., Weaver, J.C. (2003). Wustman BA, Taranto L, Evans JS, Morse DE. Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers., 70, 522–533.
  • Tsukamoto, D., Sarashina, I., Endo, K. (2004). Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem. Biophys. Res. Commun., 320, 1175–1180.
  • Suzuki, M., Murayama, E., Inoue, H., Ozaki, N., Tohse, H., Kogure, T., Nagasawa H. (2004). Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem. J., 382, 205–213.
  • Gotliv B-A., et al. (2005). Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. ChemBioChem., 6, 304–314.
  • Marin, F., Amons, R., Guichard, N., Stigter, M., Hecker, A., Luquet, G., Layrolle, P., Alcaraz, G., Riondet, C., & Westbroek, P. (2005). Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. Journal of Biological Chemistry, 280, 33895–33908.
  • Zhang, Y., Meng, Q., Jiang, T., Wang, H., Xie, L., & Zhang, R. (2003). A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135, 43–54.
  • Marin, F., Amons, R., Guichard, N., Stigter, M., Hecker, A., Luquet, G., Layrolle, P., Alcaraz, G., Riondet, C., & Westbroek, P. (2005). Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. Journal of Biological Chemistry, 280, 33895–33908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.