1,380
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Critical review of the methane generation potential of municipal solid waste

, , &
Pages 1117-1182 | Published online: 12 Aug 2016

References

  • Abram, J. W., and Nedwell, D. B. (1978). Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117, 89–92.
  • Alkaabi, S., Van Geel, P. J., and Warith, M. A. (2009). Effect of saline water and sludge addition on biodegradation of municipal solid waste in bioreactor landfills. Waste Manag. Res., 27, 59–69.
  • Allen, M. R., Braithwaite, A., and Hills, C. C. (1997). Trace organic compounds in landfill gas at seven U.K. waste disposal sites. Environ. Sci. Technol., 31, 1054–1061.
  • Amini, H. R., and Reinhart, D. R. (2011). Regional prediction of long-term landfill gas to energy potential. Waste Manag., 31, 2020–2026.
  • Amini, H. R., Reinhart, D. R., and Mackie, K. R. (2012). Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag., 32, 305–316.
  • Amini, H. R., Reinhart, D. R., and Niskanen, A. (2013). Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data. Waste Manag., 33, 2720–2728.
  • Anderson, R., Jambeck, J., and McCarron, G. (2009). Modeling of hydrogen sulfide generation from landfills beneficially utilizing processed construction and demolition materials. Retrieved from https://erefdn.org/wp-content/uploads/2015/12/H2SModeling_Jambeck-UNH_2-26-10_FINAL.pdf
  • Angelidaki, I., and Ahring, B. K. K. (2000). Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci. Technol., 41, 189–194.
  • Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., and van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol., 59, 927–934.
  • Angelidaki, I., Chen, X., Cui, J., Kaparaju, P., and Ellegaard, L. (2006). Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor. Water Res., 40, 2621–2628.
  • Angelidaki, I., and Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Re/Views Environ. Sci. Bio/Technology, 3, 117–129.
  • ASTM International. (1992). E1196-92. Standard test method for determining the anaerobic biodegradation potential of organic chemicals. West Conshohocken, PA: Author.
  • ASTM International. (2007). D5210-92 (reapproved 2007). Standard test method for determining the anaerobic biodegradation of plastic materials in the presence of municipal sewage sludge. West Conshohocken, PA: Author.
  • ASTM International. (2008a). E 2170-01. Standard test method for determining anaerobic biodegradation potential of organic chemicals under methanogenic conditions. West Conshohocken, PA: Author.
  • ASTM International. (2008b). D5231-92. Standard test method for determination of the composition of unprocessed municipal solid waste. West Conshohocken, PA: Author.
  • Atabi, F., Harati, S. A. N., and Sagharlu, N. Q. (2014). Calculation of Ch 4 and Co 2 emission rate in Kahrizak landfill site through landgem mathematical model. Retrieved from https://sciforum.net/conference/wsf-4/paper/2614/download/pdf
  • Attenborough, G., Hall, D., Gregory, R., and McGoochan, L. (2002). Development of a landfill gas risk assessment model: GasSim, in: Twenty-Fifth Annual Landfill Gas Symposium. SWANA, Monterey, CA.
  • Bahor, B., Van Brunt, M., Stovall, J., and Blue, K. (2009). Integrated waste management as a climate change stabilization wedge. Waste Manag. Res., 27, 839–849.
  • Bahor, B., Van Brunt, M., Weitz, K., and Szurgot, A. (2010). Life-cycle assessment of waste management greenhouse gas emissions using municipal waste combustor data. J. Environ. Eng. 136, 749–755.
  • Bareither, C. A., Benson, C. H., and Edil, T. B. (2012a). Effects of waste composition and decomposition on the shear strength of municipal solid waste. J. Geotech. Geoenviron. Eng., 138, 1161–1174.
  • Bareither, C. A., Breitmeyer, R. J., Benson, C. H., Barlaz, M. A., and Edil, T. B. (2012b). Deer track bioreactor experiment: Field-scale evaluation of municipal solid waste bioreactor performance. J. Geotech. Geoenviron. Eng., 138, 658–670.
  • Barlaz, M. A. (2006). Forest products decomposition in municipal solid waste landfills. Waste Manag., 26, 321–333.
  • Barlaz, M. A., Ham, R., and Schaefer, D. (1989). Mass-balance analysis of anaerobically decomposed refuse. J. Environ. Eng., 115, 1088–1102.
  • Barlaz, M. A., Milke, M. W., and Ham, R. K. (1987). Gas production parameters in sanitary landfill simulators. Waste Manag. Res., 5, 27–39.
  • Barrena, R., d'Imporzano, G., Ponsá, S., Gea, T., Artola, A., Vázquez, F., Sánchez, A., and Adani, F. (2009). In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste. J. Hazard. Mater., 162, 1065–1072.
  • Barton, J. R., Dalley, D., and Patel, V. (1996). Life cycle assessment for waste management. Waste Manag., 16, 35–50.
  • Barton, J. R., Issaias, I., and Stentiford, E. I. (2008). Carbon: Making the right choice for waste management in developing countries. Waste Manag., 28, 690–698.
  • Bayard, R., Morais, J. D. A., Ducom, G., Achour, F., Rouez, M., and Gourdon, R. (2010). Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste. J. Hazard. Mater., 175, 23–32.
  • Bentley, H., Smith, S., and Schrauf, T. (2005). Baro-pneumatic estimation of landfill gas generation rates at four landfills in the southeastern United States, in: Proceedings from the SWANA 28th Annual Landfill Gas Symposium. pp. 1–16.
  • Berge, N. D., Reinhart, D. R., and Townsend, T. G. (2005). The fate of nitrogen in bioreactor landfills. Crit. Rev. Environ. Sci. Technol., 35, 365–399.
  • Bilgili, M. S., Demir, A., and Varank, G. (2009). Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study. Bioresour. Technol., 100, 4976–4980.
  • Bingemer, H. G., and Crutzen, P. J. (1987). The production of methane from solid wastes. J. Geophys. Res., 92, 2181–2187.
  • Bogner, J. (1990). Controlled study of landfill biodegradation rates using modified BMP assays. Waste Manag. Res., 8, 329–352.
  • Bogner, J., and Matthews, E. (2003). Global methane emissions from landfills: New methodology and annual estimates 1980–1996. Global Biogeochem. Cycles, 17(2). Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/2002GB001913/full
  • Börjesson, G., Samuelsson, J., Chanton, J. P., Adolfsson, R., Galle, B., and Svensson, B. H. (2009). A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus B, 61, 424–435.
  • Buffiere, P., Loisel, D., Bernet, N., and Delgenes, J.-P. (2006). Toward new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol., 53, 233–241.
  • Buivid, M., Wise, D., Blanchet, M., Remedios, E. C., Jenkins, B. M., Boyd, W. F., and Pacey, J. G. (1981). Fuel gas enhancement by controlled landfilling of municipal solid waste. Resour. Conserv., 6, 3–20.
  • Burklin, C., and Lloyd, B. (2009a). User's manual China landfill gas model version 1.1. Washington, DC: U.S. EPA.
  • Burklin, C., and Lloyd, B. (2009b). User's manual Philippines landfill gas model version 1.0, LMOP. Washington, DC: U.S. EPA.
  • Burnley, S. J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste Manag., 27, 1274–1285.
  • Calabrò, P. S., Orsi, S., Gentili, E., and Carlo, M. (2011). Modelling of biogas extraction at an Italian landfill accepting mechanically and biologically treated municipal solid waste. Waste Manag. Res., 29, 1277–1285.
  • Caldas, Á., Machado, S., Karimpour-Fard, M., and Carvalho, M. (2014). MSW characteristics and landfill gas generation performance in tropical regions. Electron. J. Geotech. Eng., 19, 8545–8560.
  • Castrejón-Godínez, M. L., Sánchez-Salinas, E., Rodríguez, A., and Ortiz-Hernández, M. L. (2015). Analysis of solid waste management and greenhouse gas emissions in Mexico: A study case in the central region. J. Environ. Prot. (Irvine,. Calif)., 06, 146–159.
  • Cecchi, F., Pavan, P., Alvarez, J. M., Bassetti, A., and Cozzolino, C. (1991). Anaerobic digestion of municipal solid waste: Thermophilic vs. mesophilic performance at high solids. Waste Manag. Res., 9, 305–315.
  • Chalvatzaki, E., and Lazaridis, M. (2010). Estimation of greenhouse gas emissions from landfills: application to the Akrotiri landfill site (Chania, Greece). Glob. NEST J., 12, 108–116.
  • Chandler, J. A., Jewell, W. J., and Gossett, J. M. (1980). Predicting methane fermentation biodegradability. Symp. Biotechnol. Energy Prod. Conserv. 2nd Proc., 10, 93–107.
  • Chen, Y., Cheng, J. J., and Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresour. Technol., 99, 4044–4064.
  • Cherubini, F., Bargigli, S., and Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy, 34, 2116–2123.
  • Chiemchaisri, C., and Visvanathan, C. (2008). Greenhouse gas emission potential of the municipal solid waste disposal sites in Thailand. J. Air Waste Manag. Assoc., 58, 629–635.
  • Cho, H. S., Moon, H. S., and Kim, J. Y. (2012). Effect of quantity and composition of waste on the prediction of annual methane potential from landfills. Bioresour. Technol., 109, 86–92.
  • Cho, J. K., Park, S. C., and Chang, H. N. (1995). Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour. Technol., 52, 245–253.
  • Christensen, T. H., Bhander, G. S., Lindvall, H., Larsen, A. W., Fruergaard, T., Damgaard, A., Manfredi, S., Boldrin, A., Riber, C., and Hauschild, M. (2007). Experience with the use of LCA-modelling (EASEWASTE) in waste management. Waste Manag. Res., 25, 257–262.
  • Christensen, T. H., and Kjeldsen, P. (1989). Basic biochemical processes in landfills, in: Christensen, T. H. (Ed.), Sanitary Landfilling: Process, Technology and Environmental Impact. Toronto, Canada: Academic Press Ltd., pp. 29–49.
  • Christensen, T. H., Simion, F., Tonini, D., and Møller, J. (2009). Global warming factors modelled for 40 generic municipal waste management scenarios. Waste Manag. Res., 27, 871–884.
  • Chugh, S., Chynoweth, D. P., Clarke, W., Pullammanappallil, P., and Rudolph, V. (1999). Degradation of unsorted municipal solid waste by a leach-bed process. Bioresour. Technol., 69, 103–115.
  • Chugh, S., Clarke, W., Pullammanappallil, P., and Rudolph, V. (1998). Effect of recirculated leachate volume on MSW degradation. Waste Manag. Res., 16, 564–573.
  • Chynoweth, D. P., Owens, J., O'Keefe, D., Earle, J., Bosch, G., and Legrand, R. (1992). Sequential batch anaerobic composting of the organic fraction of municipal solid waste. Water Sci. Technol., 25, 327–339.
  • Clean Energy Regulator. (2014). Guideline: Solid Waste Calculator. Retrieved from http://www.cleanenergyregulator.gov.au/NGER/Forms-and-resources/Calculators
  • Conestoga-Rovers & Associates. (2009). Landfill Gas Generation Assessment Procedure Guidelines. Exton, PA: Author.
  • Cossu, R., and Raga, R. (2008). Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 28, 381–388.
  • Dahlén, L., and Lagerkvist, A. (2008). Methods for household waste composition studies. Waste Manag., 28, 1100–1112.
  • Davidsson, A., Gruvberger, C., Christensen, T. H., Hansen, T. L., and Jansen, J. L. C. (2007). Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag., 27, 406–414.
  • De Baere, L. (2000). Anaerobic digestion of solid waste: state-of-the-art. Water Sci. Technol., 41, 283–290.
  • De Gioannis, G., Muntoni, A., Cappai, G., and Milia, S. (2009). Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Manag., 29, 1026–1034.
  • De la Cruz, F. B., and Barlaz, M. A. (2010). Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. Environ. Sci. Technol., 44, 4722–4728.
  • De la Cruz, F. B., Chanton, J. P., and Barlaz, M. A. (2013). Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples. Waste Manag., 33, 2001–2005.
  • Dearman, B., and Bentham, R. H. (2007). Anaerobic digestion of food waste: comparing leachate exchange rates in sequential batch systems digesting food waste and biosolids. Waste Manag., 27, 1792–1799.
  • Demir, A., Bilgili, M., and Ozkaya, B. (2004). Effect of leachate recirculation on refuse decomposition rates at landfill site: a case study. Int. J. Environ. Pollut. 21, 175–189.
  • Demirel, B., and Scherer, P. A. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Bio/Technology, 7, 173–190.
  • Di Bella, G., Di Trapani, D., and Viviani, G. (2011). Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models. Waste Manag., 31, 1820–1826.
  • Dinsdale, R. M., Hawkes, F. R., and Hawkes, D. L. (1997). Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater. Water Res., 31, 163–169.
  • Donovan, S. M., Bateson, T., Gronow, J. R., and Voulvoulis, N. (2010). Modelling the behaviour of mechanical biological treatment outputs in landfills using the GasSim model. Sci. Total Environ., 408, 1979–1984.
  • Eklund, B., Anderson, E. P., Walker, B. L., and Burrows, D. B. (1998). Characterization of landfill gas composition at the Fresh Kills municipal solid-waste landfill. Environ. Sci. Technol., 32, 2233–2237.
  • El-Fadel, M., Findikakis, A. N., and Leckie, J. O. (1996a). Numerical modelling of generation and transport of gas and heat in landfills I. Model formulation. Waste Manag. Res., 14, 483–504.
  • El-Fadel, M., Findikakis, A. N., and Leckie, J. O. (1996b). Estimating and enhancing methane yield from municipal solid waste. Hazard. Waste Hazard. Mater., 13, 309–331.
  • El-Fadel, M., Findikakis, A. N., and Leckie, J. O. (1997). Environmental impacts of solid waste landfilling. J. Environ. Manag., 50, 1–25.
  • Eleazer, W. E., Odle, W. S., Wang, Y.-S., and Barlaz, M. A. (1997). Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ. Sci. Technol., 31, 911–917.
  • EMCON Associates. (1982). Methane generation and recovery from landfills, 2nd ed. San Jose, CA: Ann Arbor Science.
  • Environment Canada. (2012). Greenhouse gas sources and sinks in Canada. National Inventory Report 1990–2012. Part 1.
  • European Council. (1999). Council Directive 1999/31/EC. Off. J. Eur. Communities.
  • European Parliament. (2006). Regulation No 166/2006 of the European Parliament and of the Council of 18 January 2006 concerning the establishment of a European Pollutant Release and Transfer Register and amending Council Directives 91/689/EEC and 96/61/EC. Off. J. Eur. Union, L33, 1–17.
  • Fairweather, R. J., and Barlaz, M. A. (1998). Hydrogen sulfide production during decomposition of landfill inputs. J. Environ. Eng., 124, 353–361.
  • Faour, A. A., Reinhart, D. R., You, H., Faour, A. A., and You, H. (2005). First-order kinetic gas generation model parameters for wet landfills. Waste Manag., 27, 946–953.
  • Farquhar, G. J., and Rovers, F. A. (1973). Gas production during refuse decomposition. Water, Air, Soil Pollut. 2, 483–495.
  • Fdéz-Güelfo, L. A., Alvarez-Gallego, C., Sales Márquez, D., and Romero García, L. I. (2010). Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum. Bioresour. Technol., 101, 9031–9039.
  • Federle, T. W., Barlaz, M. A., Pettigrew, C. A., Kerr, K. M., Kemper, J. J., Nuck, B. A. and Schechtman, L. A. (2002). Anaerobic biodegradation of aliphatic polyesters: poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) and poly (ϵ-caprolactone). Biomacromolecules, 3(4), 813–822.
  • Findikakis, A. N., Papelis, C., Halvadakis, C. P., and Leckie, J. O. (1988). Modelling gas production in managed sanitary landfills. Waste Manag. Res., 6, 115–123.
  • Forster-Carneiro, T., Pérez, M., and Romero, L. I. (2008). Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour. Technol., 99, 6994–7002.
  • Gallert, C., and Winter, J. (1997). Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol., 48, 405–410.
  • Gentil, E., Clavreul, J., and Christensen, T. H. (2009). Global warming factor of municipal solid waste management in Europe. Waste Manag. Res., 27, 850–860.
  • Gentil, E. C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S., Kaplan, P. O., Barlaz, M. A., Muller, O., Matsui, Y., Ii, R., and Christensen, T. H. (2010). Models for waste life cycle assessment: Review of technical assumptions. Waste Manag., 30, 2636–2648.
  • German Federal Ministry for the Environment Nature Conservation. (2001). Ordinance on environmentally compatible storage of waste from human settlements and on biological waste-treatment facilities. Berlin, Germany: Author.
  • Govindan, S. S., and Agamuthu, P. (2014). Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis. Waste Manag. Res., 32, 1005–1014.
  • Graunke, R. E., and Wilkie, A. C. (2014). Examining the mechanisms of short-term solubilization of ground food waste for high-rate anaerobic digestion. Int. Biodeterior. Biodegradation, 86, 327–333.
  • Gunaseelan, V. N. (1997). Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, 13, 83–114.
  • Gunaseelan, V. N. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy, 26, 389–399.
  • Halvadakis, C. P., Robertson, A. P., and Leckie, J. O. (1983). Landfill methanogenesis: literature review and critique. Stanford, CA: Stanford University Department of Civil Engineering.
  • Hansen, T. L., Jansen, J. L. C., Davidsson, A., and Christensen, T. H. (2007). Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery. Waste Manag., 27, 398–405.
  • Hansen, T. L., Schmidt, J. E., Angelidaki, I., Marca, E., Jansen, J. L. C., Mosbaek, H., and Christensen, T. H. (2004). Method for determination of methane potentials of solid organic waste. Waste Manag., 24, 393–400.
  • Heyer, K.-U., Hupe, K., and Stegmann, R. (2013). Methane emissions from MBT landfills. Waste Manag., 33, 1853–1860.
  • Intergovernmental Panel on Climage Change. (1996). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual. Geneva, Switzerland: Author.
  • Intergovernmental Panel on Climage Change. (2000). Waste, in: Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Geneva, Switzerland: Author.
  • Intergovernmental Panel on Climage Change. (2006). Solid waste disposal, in: Pipatti, R., Svardal, P. (Eds.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 5: Waste. Geneva, Switzerland: Author, pp. 1–40.
  • International Organization for Standardization. (2012). ISO 11734:1995 Water quality – Evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge – Method by measurement of the biogas production.
  • Ishii, K., and Furuichi, T. (2013). Estimation of methane emission rate changes using age-defined waste in a landfill site. Waste Manag., 33, 1861–1869.
  • Izumi, K., Okishio, Y., Nagao, N., Niwa, C., Yamamoto, S., and Toda, T. (2010). Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegradation, 64, 601–608.
  • Jensen, J. E. F., and Pipatti, R. (2000). Background paper: CH4 emissions from solid waste disposal, in: Jensen, J. E. F., Pipatti, R. (Eds.), Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Geneva, Switzerland: IPCC, pp. 419–439.
  • Jeon, E., Bae, S., Lee, D., and Seo, D. (2007). Methane generation potential and biodegradability of MSW components, in: Sardinia 2007 Eleventh International Waste Management and Landfill Symposium. Cagliari, Italy.
  • Jha, A. K., Sharma, C., Singh, N., Ramesh, R., Purvaja, R., and Gupta, P. K. (2008). Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites. Chemosphere, 71, 750–758.
  • Jigar, E., Bairu, A., and Gesessew, A. (2014). Application of IPCC model for estimation of methane from municipal solid waste landfill. J. Environ. Sci. Water Resour., 3, 52–58.
  • Johari, A., Ahmed, S. I., Hashim, H., Alkali, H., and Ramli, M. (2012). Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev., 16, 2907–2912.
  • Jokela, J. P. Y., Vavilin, V. A., and Rintala, J. A. (2005). Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation. Bioresour. Technol., 96, 501–508.
  • Jung, Y., Imhoff, P. T., Augenstein, D., and Yazdani, R. (2011). Mitigating methane emissions and air intrusion in heterogeneous landfills with a high permeability layer. Waste Manag., 31, 1049–1058.
  • Kaplan, P. O., Decarolis, J., and Thorneloe, S. (2009). Is it better to burn or bury waste for clean electricity generation? Environ. Sci. Technol., 43, 1711–1717.
  • Kelly, R. J., Shearer, B. D., Kim, J., Goldsmith, C. D., Hater, G. R., and Novak, J. T. (2006). Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Manag., 26, 1349–1356.
  • Kim, H., and Townsend, T. G. (2012). Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Manag., 32, 1427–1433.
  • Kim, H.-S., and Yi, S.-M. (2009). Methane emission estimation from landfills in Korea (1978–2004): Quantitative assessment of a new approach. J. Air Waste Manag. Assoc., 59, 70–77.
  • Kim, I. S., Kim, D. H., and Hyun, S. H. (2000). Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water Sci. Technol., 41, 67–73.
  • Kim, M., Ahn, Y.-H., and Speece, R. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res., 36, 4369–4385.
  • Kirkeby, J. T., Birgisdottir, H., Bhander, G. S., Hauschild, M., and Christensen, T. H. (2007). Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE. Waste Manag., 27, 961–970.
  • Ko, J. H., Xu, Q., and Jang, Y.-C. (2015). Emissions and control of hydrogen sulfide at landfills: A review. Crit. Rev. Environ. Sci. Technol., 45, 2043–2083.
  • Kolbl, S., Paloczi, A., Panjan, J., and Stres, B. (2014). Addressing case specific biogas plant tasks: industry oriented methane yields derived from 5L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading. Bioresour. Technol., 153, 180–188.
  • Kolstad, J. J., Vink, E. T., De Wilde, B., & Debeer, L. (2012). Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polymer Degradation and Stability, 97(7), 1131–1141.
  • Kornboonraksa, T., Chiemchaisri, C., and Chiemchaisri, W. (2004). Determination of methane gas emissions from waste disposal sites in Thailand with geographical information system application 0-30. Retrieved from http://www.thaiscience.info/Article%20for%20ThaiScience/Article/4/Ts-4%20determination%20of%20methane%20gas%20emissions%20from%20waste%20disposal%20sites%20in%20thailand%20with%20geographical%20information%20system%20application.pdf
  • Kotsyurbenko, O. R., Nozhevnikova, A. N., Soloviova, T. I., and Zavarzin, G. A. (1996). Methanogenesis at low temperatures by microflora of tundra wetland soil. Antonie Van Leeuwenhoek, 69, 75–86.
  • Krause, M. J., and Townsend, T. G. (2014). Rapid Waste Composition Studies for the Assessment of Solid Waste Management Systems in Developing Countries. Waste Resources, 4(2): 1–6.
  • Krause, M. J., and Townsend, T.G. (2016). Life-Cycle Assumptions of Landfilled Polylactic Acid Underpredict Methane Generation. Environmental Science & Technology Letters, 3(4): 166–169.
  • Krause, M. J., Chickering, G. W., and Townsend, T. G. (2016). Translating Landfill Methane Generation Parameters Among First-Order Decay Models. Journal of the Air & Waste Management Association. DOI: 10.1080/10962247.2016.1200158.
  • Kumar, S., Gaikwad, S. A., Shekdar, A. V., Kshirsagar, P. S., and Singh, R. N. (2004). Estimation method for national methane emission from solid waste landfills. Atmos. Environ., 38, 3481–3487.
  • Kuo, I. R. (1990). A-88-09(II-B-33). Rationale for selecting tier 1 default values. Washington, DC: U.S. EPA.
  • Laloui-Carpentier, W., Li, T., Vigneron, V., Mazéas, L., and Bouchez, T. (2006). Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek, 89, 423–434.
  • Laner, D., Crest, M., Scharff, H., Morris, J. W. F., and Barlaz, M. A. (2012). A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag., 32, 498–512.
  • Lee, S.-H., Choi, K.-I., Osako, M., and Dong, J.-I. (2007). Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea. Sci. Total Environ., 387, 42–53.
  • Lefebvre, X., Pommier, S., Åkerman, A., Barina, G., and Budka, A. (2007). Analysis of the waste mass degradation degree in the context of functional stability of closed landfills, in: Eleventh International Waste Management and Landfill Symposium. Sardinia.
  • Lehrburger, C., Mullen, J., and Jones, C. V. (1991). Diapers: Environmental impacts and lifecycle analysis. No. 677.21 L524d. Massachusets, USA.
  • Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J. M., Junqua, G., and Steyer, J. P. (2010). Alternative methods for determining anaerobic biodegradability: A review. Process Biochem., 45, 431–440.
  • Lesteur, M., Latrille, E., Maurel, V. B., Roger, J. M., Gonzalez, C., Junqua, G., and Steyer, J. P. (2011). First step toward a fast analytical method for the determination of Biochemical Methane Potential of solid wastes by near infrared spectroscopy. Bioresour. Technol., 102, 2280–2288.
  • Levis, J. W., and Barlaz, M. A. (2011a). Is biodegradability a desirable attribute for discarded solid waste? Perspectives from a national landfill greenhouse gas inventory model. Environ. Sci. Technol., 45, 5470–5476.
  • Levis, J. W., and Barlaz, M. A. (2011b). What is the most environmentally beneficial way to treat commercial food waste? Environ. Sci. Technol., 45, 7438–7444.
  • Levis, J. W., and Barlaz, M. A. (2014). Landfill gas monte carlo model documentation and results. Retrieved from https://www3.epa.gov/warm/pdfs/lanfl_gas_mont_carlo_modl.pdf
  • Liu, G., Zhang, R., El-Mashad, H. M., and Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol., 100, 5103–5108.
  • Lornage, R., Redon, E., Lagier, T., Hébé, I., and Carré, J. (2007). Performance of a low cost MBT prior to landfilling: Study of the biological treatment of size reduced MSW without mechanical sorting. Waste Manag., 27, 1755–1764.
  • Machado, S. L., Carvalho, M. F., Gourc, J.-P., Vilar, O. M., and do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: simplified methods and field results. Waste Manag., 29, 153–161.
  • Mali Sandip, T., Khare Kanchan, C., and Biradar Ashok, H. (2012). Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresour. Technol., 110, 10–17.
  • Manfredi, S., and Christensen, T. H. (2009). Environmental assessment of solid waste landfilling technologies by means of LCA-modeling. Waste Manag., 29, 32–43.
  • Mata-Alvarez, J., Llabrés, P., Cecchi, F., and Pavan, P. (1992). Anaerobic digestion of the Barcelona central food market organic wastes: Experimental study. Bioresour. Technol., 39, 39–48.
  • McCarty, P. L. (1964). Anaerobic waste treatment fundamentals. Public Work., 95, 107–112.
  • McCauley-Bell, P., Reinhart, D. R., Sfeir, H., and Ryan, B. O. (1997). Municipal Solid Waste Composition Studies. Pract. Period. Hazardous, Toxic, Radioact. Waste Manag., 1, 158–163.
  • McGuinn, Y. C. (1988a). A-88-09(II-B-16). Use of a landfill gas generation model to estimate VOC emissions from landfills. Washington, DC: U.S. EPA.
  • McGuinn, Y. C. (1988b). A-88-09(II-B-17). Sensitivity analysis of landfill gas generation model. Washington, DC: U.S. EPA.
  • Mehta, R., Barlaz, M. A., Yazdani, R., Augenstein, D., Bryars, M., and Sinderson, L. (2002). Refuse decomposition in the presence and absence of leachate recirculation. J. Environ. Eng., 128, 228–236.
  • Meima, J. A., and Naranjo, N. M., and Haarstrick, A. (2008). Sensitivity analysis and literature review of parameters controlling local biodegradation processes in municipal solid waste landfills. Waste Manag., 28, 904–918.
  • Meraz, R. L., Vidales, A. M., and Domínguez, A. (2004). A fractal-like kinetics equation to calculate landfill methane production. Fuel, 83, 73–80.
  • Micales, J. A., and Skog, K. E. (1997). The decomposition of forest products in landfills. Int. Biodeterior. Biodegradation, 39, 145–158.
  • Møller, J., Boldrin, A., and Christensen, T. H. (2009). Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution. Waste Manag. Res., 27, 813–824.
  • Moody, L., Burns, R., Sell, S. T., and Bishop, G. (2011). Using anaerobic toxicity assays to aid in co-substrate selection for co-digestion. Appl. Eng. Agric., 27, 441–447.
  • Mor, S., Ravindra, K., De Visscher, A., Dahiya, R. P., and Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation: a case study. Sci. Total Environ., 371, 1–10.
  • Morris, J. (2010). Bury or burn North America MSW? LCAs provide answers for climate impacts & carbon neutral power potential Supporting Inforamtion. Environ. Sci. Technol., 44, 7944–7949.
  • Mou, Z., Scheutz, C., and Kjeldsen, P. (2014). Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills. Waste Manag., 34, 2251–2259.
  • Mou, Z., Scheutz, C., and Kjeldsen, P. (2015). Evaluation and application of site-specific data to revise the first order decay model for estimating landfill gas generation and emissions at Danish landfills. J. Air Waste Manage. Assoc., 65, 686–698.
  • Nastev, M., Therrien, R., Lefebvre, R., and Gélinas, P. (2001). Gas production and migration in landfills and geological materials. J. Contam. Hydrol., 52, 187–211.
  • New Zealand Legislation. (2008). Waste Minimisation Act 2008, http://www.mfe.govt.nz/waste/waste-strategy-and-legislation/waste-minimisation-act (Accessed 08/09/16).
  • Nieto, P. P., Hidalgo, D., Irusta, R., and Kraut, D. (2012). Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain). Water Sci. Technol., 66, 1842–1848.
  • NV, Afvalzorg (2015). Multiphase landfill gas generation and recovery model version January 2015 (no. version January 2015). Assendelft, the Netherlands: Author.
  • O'Keefe, D. M., Chynoweth, D. P., Barkdoll, A. W., Nordstedt, R. A., Owens, J. M., and Sifontes, J. (1993). Sequential batch anaerobic composting of municipal solid waste (MSW) and yard waste. Water Sci. Technol., 27, 77–86.
  • Ojeda-Benítez, S., Vega, C. A., and Marquez-Montenegro, M. Y. (2008). Household solid waste characterization by family socioeconomic profile as unit of analysis. Resour. Conserv. Recycl., 52, 992–999.
  • Oonk, H. (2010). Literature review: methane from landfills. Sustainable Landfill Foundation, http://www.ewp.rpi.edu/hartford/∼ernesto/F2014/MMEES/Papers/ENVIRONMENT/4SolidWaste/Oonk2010-FinalReport-LandfillMethane-Review.pdf (Accessed 08/10/16).
  • Oonk, H., Weenk, A., Coops, O., and Luning, L. (1995). Validation of landfill gas formation models. TNO Inst. of Environmental and Energy Technology.
  • Owen, W. F., Stuckey, D. C., Healy, J. B. Jr., Young, L. Y., and McCarty, P. L. (1979). Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res., 13, 485–492.
  • Owens, J., and Chynoweth, D. P. (1993). Biochemical methane potential of municipal solid waste (MSW) components. Water Sci. Technol., 27, 1–14.
  • Palmowski, L. M., and Müller, J. A. (2000). Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci. Technol., 41, 155–162.
  • Pan, J., and Voulvoulis, N. (2007). The role of mechanical and biological treatment in reducing methane emissions from landfill disposal of municipal solid waste in the United Kingdom. J. Air Waste Manag. Assoc., 57, 155–163.
  • Pareek, S., Mastsui, S., Kim, S., and Shimizu, Y. (1999). Mathematical modeling and simulation of methane gas production in simulated landfill column reactors under sulfidogenic and methanogenic environments. Water Sci. Technol., 39, 235–242.
  • Pavlostathis, S. G., and Giraldo-Gomez, E. (1991). Kinetics of anaerobic treatment. Water Sci. Technol., 24, 35–59.
  • Peer, R. L. R., Epperson, D. L., Campbell, D. L., and von Brook, P. (1992). EPA-600/R-92-037 Development of an empirical model of methane emissions from landfills. Washington, DC: U.S. EPA.
  • Pelt, R. (1993). A-88-09(IV-M-4). Methodology used to revise the model inputs in the municipal solid waste landfills input data bases (revised). Washington, DC: U.S. EPA.
  • Pelt, R. (1995). A-88-09(IV-B-10). Documentation of small size exemption cutoff level and tier 1 default values (revised). Washington, DC: U.S. EPA.
  • Pires, A., Martinho, G., and Chang, N.-B. (2011). Solid waste management in European countries: a review of systems analysis techniques. J. Environ. Manag., 92, 1033–1050.
  • Poggi-Varaldo, H. M., Rodríguez-Vázquez, R., Fernández-Villagóme, G., and Esparza-García, F. (1997). Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Appl. Microbiol. Biotechnol., 47, 284–291.
  • Pohland, F., and Harper, S. (1986). Critical review and summary of leachate and gas production from landfills. Cincinnati, OH: U.S. EPA.
  • Ponsá, S., Gea, T., Alerm, L., Cerezo, J., and Sánchez, A. (2008). Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag., 28, 2735–2742.
  • Ponsá, S., Gea, T., and Sánchez, A. (2011). Short-time estimation of biogas and methane potentials from municipal solid wastes. J. Chem. Technol. Biotechnol., 86, 1121–1124.
  • Powell, J., Jain, P., Kim, H., Townsend, T., and Reinhart, D. (2006). Changes in landfill gas quality as a result of controlled air injection. Environ. Sci. Technol., 40, 1029–1034.
  • Raco, B., Battaglini, R., and Lelli, M. (2010). Gas emission into the atmosphere from controlled landfills: an example from Legoli landfill (Tuscany, Italy). Environ. Sci. Pollut. Res. Int., 17, 1197–1206.
  • Raposo, F., De la Rubia, M. A., Fernández-Cegrí, V., and Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev., 16, 861–877.
  • Raposo, F., Fernández-Cegrí, V., De la Rubia, M. A., Borja, R., Béline, F., Cavinato, C., Demirer, G., Fernández, B., Fernández-Polanco, M., Frigon, J. C., Ganesh, R., Kaparaju, P., Koubova, J., Méndez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinck, I., and de Wilde, V. (2011). Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol., 86, 1088–1098.
  • Reinhart, D. R., and Townsend, T. G. (1997). Landfill bioreactor design and operation, 1st ed. Boca Raton, FL: CRC Press.
  • Ritchie, S., and McBean, E. (2011). Assessment of operations and design strategy controls to improve landfill gas utilization opportunities. Can. J. Civ. Eng., 38, 519–529.
  • Rose, C., Parker, A., Jefferson, B., and Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol., 45, 1827–1879.
  • Sanderson, J., Hettiaratchi, P., Hunte, C., Hurtado, O., and Keller, A. (2008). Methane balance of a bioreactor landfill in Latin America. J. Air Waste Manag. Assoc., 58, 620–628.
  • Sang, N. N., Soda, S., Ishigaki, T., and Ike, M. (2012). Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J. Biosci. Bioeng., 114, 243–250.
  • Scharff, H., and Jacobs, J. (2006). Applying guidance for methane emission estimation for landfills. Waste Manag., 26, 417–429.
  • Scheutz, C., Fredenslund, A. M., Nedenskov, J., Samuelsson, J., and Kjeldsen, P. (2011). Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content. Waste Manag., 31, 946–955.
  • Schumacher, M. M. (1983). Landfill methane recovery. Energy technology review No. 84. Park Ridge, NJ: Noyes Data Corporation.
  • Sfeir, H., Reinhart, D. R., and McCauley-Bell, P. R. (1999). An evaluation of municipal solid waste composition bias sources. J. Air Waste Manag. Assoc., 49, 1096–1102.
  • Shanmugam, P., and Horan, N. J. (2009). Simple and rapid methods to evaluate methane potential and biomass yield for a range of mixed solid wastes. Bioresour. Technol., 100, 471–474.
  • Shelton, D. R., and Tiedje, J. M. (1984). General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol., 47, 850–857.
  • Sil, A., Kumar, S., and Kumar, R. (2014a). Formulating LandGem model for estimation of landfill gas under Indian scenario. Int. J. Environ. Technol. Manag., 17, 293–299.
  • Sil, A., Kumar, S., and Wong, J. W. C. (2014b). Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills. Bioresour. Technol., 168, 97–99.
  • Siles, J. A., Brekelmans, J., Martín, M. A., Chica, A. F., and Martín, A. (2010). Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresour. Technol., 101, 9040–9048.
  • Siliezar, C., and Urquizo, R. (2009). User's manual Ecuador landfill gas model version 1.0 (no. EPA contract EP-W-06-022). Washington, DC: U.S. EPA.
  • Sormunen, K., Ettala, M., and Rintala, J. (2008). Detailed internal characterisation of two Finnish landfills by waste sampling. Waste Manag., 28, 151–163.
  • Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., Golvan, Y. M.-L., and Hebe, I. (2006). Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag. 26, 516–525.
  • Staley, B. F. B., and Barlaz, M. A. (2009). Composition of municipal solid waste in the United States and implications for carbon sequestration and methane yield. J. Environ. Eng., 135, 901–909.
  • Staley, B. F. B, de los Reyes, F. L., and Barlaz, M. A. (2011). Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl. Environ. Microbiol., 77, 2381–2391.
  • Staley, B. F. B, de los Reyes, F. L., and Barlaz, M. A. (2012). Comparison of bacteria and Archaea communities in municipal solid waste, individual refuse components, and leachate. FEMS Microbiol. Ecol., 79, 465–473.
  • Stege, C. A., and Davilia, J. L. (2010). User's manual Colombia landfill gas model version 1.0 (no. EP-W-06-023), LMOP. Washington, DC: U.S. EPA.
  • Stege, C. A., and Murray, D. L. (2007). User's manual Central America landfill gas model version 1.0. Washington, DC: U.S. EPA.
  • Stege, G. A., and Hall, C. (2009). User's manual Ukraine landfill gas model version 1.0 (no. EP-W-06-034). Washington, DC: U.S. EPA.
  • Stinson, J. A., and Ham, R. K. (1995). Effect of lignin on the anaerobic decomposition of cellulose as determined through the use of a biochemical methane potential method. Environ. Sci. Technol., 29, 2305–2310.
  • Sung, S., and Liu, T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53, 43–52.
  • Tchobanoglous, G., Theisen, H., and Vigil, S. (1993). Integrated solid waste management: engineering principles and management issues, 1st ed. New York, NY: McGraw-Hill.
  • Thompson, S., Sawyer, J., Bonam, R., and Valdivia, J. E. (2009). Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills. Waste Manag., 29, 2085–2091.
  • Thompson, S., and Tanapat, S. (2005). Modeling waste management options for greenhouse gas reduction. J. Environ. Informatics, 6, 16–24.
  • Tintner, J., Kühleitner, M., Binner, E., Brunner, N., and Smidt, E. (2012). Modeling the final phase of landfill gas generation from long-term observations. Biodegradation, 23, 407–414.
  • Tolaymat, T. M., Green, R. B., Hater, G. R., Barlaz, M. A., Black, P., Bronson, D., and Powell, J. (2010). Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors. J. Air Waste Manag. Assoc., 60, 91–97.
  • Townsend, T. G., Miller, W. L., Lee, H.-J., and Earle, J. F. K. (1996). Acceleration of landfill stabilization using leachate recycle. J. Environ. Eng., 122, 263–268.
  • Trzcinski, A. P., and Stuckey, D. C. (2012). Determination of the hydrolysis constant in the biochemical methane potential test of municipal solid waste. Environ. Eng. Sci., 29, 848–854.
  • United Nations Framework Convention on Climate Change. (2014a). National Inventory Submissions 2014. Annex I GHG Natl. Invent. Submissions. Retrieved from http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php
  • United Nations Framework Convention on Climate Change. (2014b). Cooperation with the Intergovernmental Panel on Climate Change. Retrieved from http://unfccc.int/science/workstreams/cooperation_with_the_ipcc/items/1077.php
  • U.S. Congress. (1996a). 40 CFR Part 60 subpart WWW—standards of performance for municipal solid waste landfills. Washington, DC: Author.
  • U.S. Congress. (1996b). 40 CFR §60.754 Test methods and procedures. Code of Federal Regulations.
  • U.S. Environmental Protection Agency. (1991a). Air Emissions from municipal solid waste landfills. Background information for proposed standards and guidelines. EPA-450/3-90-011a. Research Triangle Park, NC: Author.
  • U.S. Environmental Protection Agency. (1991b). Criteria for municipal solid waste landfills subpart D: Design criteria. Washington, DC: Author.
  • U.S. Environmental Protection Agency. (1993). Supplement F to compilation of air pollutant emission factors, 4th ed. Washington, DC: Author.
  • U.S. Environmental Protection Agency. (1995a). Air emissions from municipal solid waste landfills: Background information for final standards and guidelines. EPA-453/R-94-021. Washington, DC: Author.
  • U.S. Environmental Protection Agency. (1995b). Compilation of air pollutant emission factors volume 1: Stationary point and area sources, 5th ed. Washington, DC: Author.
  • U.S. Environmental Protection Agency. (1997). Emission factor documentation for AP-42 section 2.4 municipal solid waste landfills revised. Research Triangle Park, NC: Author.
  • U.S. Environmental Protection Agency. (1998a). Chapter 2.4 Municipal solid waste landfills, in: Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources (AP-42). Research Triangle Park, NC: Author.
  • U.S. Environmental Protection Agency. (1998b). Municipal solid waste landfill New Source Performance Standards (NSPS) and Emission Guidelines (EG) – Questions and Answers revised. Retrieved from https://www3.epa.gov/airtoxics/landfill/landfq&a.pdf
  • U.S. Environmental Protection Agency. (1999). Municipal solid waste landfills, volume 1: Summary of the requirements for the new source performance standards and emission guidelines for municipal solid waste landfills. EPA-453R/96-004. Retrieved from https://www3.epa.gov/airtoxics/landfill/lf-vol1.pdf
  • U.S. Environmental Protection Agency. (2005). Landfill gas emissions model (LandGEM) version 3.02 user's guide. Retrieved from https://www3.epa.gov/ttncatc1/dir1/landgem-v302-guide.pdf
  • Valencia, R., van der Zon, W., Woelders, H., Lubberding, H. J., and Gijzen, H. J. (2009). Achieving “final storage quality” of municipal solid waste in pilot scale bioreactor landfills. Waste Manag., 29, 78–85.
  • Vermeulen, J., Huysmans, A., Crespo, M., Van Lierde, A., De Rycke, A., and Verstraete, W. (1993). Processing of biowaste by anaerobic composting to plant growth substrates. Water Sci. Technol., 27, 109–119.
  • Wagland, S. T., Tyrrel, S. F., Godley, A. R., and Smith, R. (2009). Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Manag., 29, 1218–1226.
  • Wang, B., Nges, I. A., Nistor, M., and Liu, J. (2014). Determination of methane yield of cellulose using different experimental setups. Water Sci. Technol., 70, 599.
  • Wang, X., De la Cruz, F. B., Ximenes, F., and Barlaz, M. A. (2015). Decomposition and carbon storage of selected paper products in laboratory-scale landfills. Sci. Total Environ., 532, 70–79.
  • Wang, X., Nagpure, A. S., DeCarolis, J. F., and Barlaz, M. A. (2013a). Using observed data to improve estimated methane collection from select U. S. landfills. Environ. Sci. Technol., 47, 3251–3257.
  • Wang, X., Padgett, J. M., De la Cruz, F. B., and Barlaz, M. A. (2011). Wood biodegradation in laboratory-scale landfills. Environ. Sci. Technol., 45, 6864–6871.
  • Wang, X., Padgett, J. M., Powell, J. S., and Barlaz, M. A. (2013b). Decomposition of forest products buried in landfills. Waste Manag., 33, 2267–2276.
  • Wang, Y. S., Byrd, C. S., and Barlaz, M. A. (1994). Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. J. Ind. Microbiol., 13, 147–153.
  • Wang, Y. S., Odle, W. S., Eleazer, W. E., and Barlaz, M. A. (1997). Methane potential of food waste and anaerobic toxicity of leachate produced during food waste decomposition. Waste Manag. Res., 15, 149–167.
  • Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S. H., and Nopharatana, A. (2010). Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand. Environ. Monit. Assess., 164, 249–261.
  • Warith, M. A., and Sharma, R. (1998). Technical review of methods to enhance biological degradation in sanitary landfills. Water Qual. Res. J. Canada, 33, 417–437.
  • Werner, J. J., Knights, D., Garcia, M. L., Scalfone, N. B., Smith, S., Yarasheski, K., Cummings, T. A., Beers, A. R., Knight, R., and Angenent, L. T. (2011). Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. U. S. A., 108, 4158–4163.
  • Woese, C. R., Kandler, O., and Wheelis, M. L. (1990). Toward a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci., 87, 4576–4579.
  • Wu, T., Wang, X., Li, D., and Yi, Z. (2010). Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos. Environ., 44, 5065–5071.
  • Wu, W. M., Hickey, R. F., and Zeikus, J. G. (1991). Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl. Environ. Microbiol., 57, 3438–3449.
  • Ximenes, F. A., Gardner, W. D., and Cowie, A. L. (2008). The decomposition of wood products in landfills in Sydney, Australia. Waste Manag., 28, 2344–2354.
  • Xu, F., and Li, Y. (2012). Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour. Technol., 118, 219–226.
  • Yang, N., Zhang, H., Shao, L.-M., Lü, F., and He, P.-J. (2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. J. Environ. Manag., 129, 510–521.
  • Yildiz, S., Yaman, C., Demir, G., Ozcan, H. K., Coban, A., Okten, H. E., and Goren, S. (2013). Characterization of municipal solid waste in Istanbul, Turkey. Environmental Progress & Sustainable Energy, 32(3), 734–739.
  • Yilmaz, T., Yuceer, A., and Basibuyuk, M. (2008). A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater. Bioresour. Technol., 99, 156–163.
  • Yoshida, H., Gable, J. J., and Park, J. K. (2012). Evaluation of organic waste diversion alternatives for greenhouse gas reduction. Resour. Conserv. Recycl., 60, 1–9.
  • Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., and Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol., 98, 929–935.
  • Zhang, Y., Banks, C. J., and Heaven, S. (2012). Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manag., 104, 166–174.
  • Zheng, W., Phoungthong, K., Lü, F., Shao, L.-M., and He, P.-J. (2013). Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manag., 33, 2632–2640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.