3,360
Views
110
CrossRef citations to date
0
Altmetric
Original Articles

Biochar properties: Transport, fate, and impact

Pages 1183-1296 | Published online: 18 Jul 2016

References

  • Commission of European Communities. Council Directive 91/271/EEC of 21 March 1991 concerning urban waste-water treatment (amended by the 98/15/EC of 27 February 1998).
  • United States Federal Register (1993). 40 CFR Part 503: Standards for the use and disposal of sewage sludge 58, 9248–9404.
  • Abdullah, H., Mediaswanti, K.A., and Wu, H. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy & Fuels 24, 1972–1979.
  • Abdullah, H., and Wu, H. (2009). Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels 23, 4174–4181.
  • Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., and Usman, A.R.A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131, 374–379.
  • Allen, R.L. (1847). A Brief compend of American agriculture. 2nd Edition, New York: CM Saxton.
  • Almeida, J.M., Bertilsson, M., Gorwa-Grauslund, M., Gorsich, S., and Lidén, G. (2009). Metabolic effects of furaldehydes and impacts on biotechnological processes. Applied Microbiology and Biotechnology 82, 625–638.
  • Almendros, G., González-Vila, F., and Martin, F. (1990). Fire-induced transformation of soil organic matter from an oak forest: An experimental approach to the effects of fire on humic substances. Soil Science 149, 158.
  • Almendros, G., Knicker, H., and González-Vila, F.J. (2003). Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C-and 15N-NMR spectroscopy. Organic Geochemistry 34, 1559–1568.
  • Ameloot, N., Graber, E.R., Verheijen, F.G.A., and De Neve, S. (2013). Interactions between biochar stability and soil organisms: Review and research needs. European Journal of Soil Science 64, 379–390.
  • American Society for Testing and Materials (ASTM):Conshohocken PA (2007). ASTMD1762-84 Standard Test Method for chemical analysis of wood charcoal.
  • Amonette, J. (2009). An Introduction to biochar with an emphasis on its properties and potential for climate change mitigation. Richland, WA (USA): Pacific Northwest National Laboratory.
  • Amonette, J.E., Joseph, S., and Lehmann, J. (2009). Characteristics of biochar-micro-chemical properties. In J. Lehmann and S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 33–52). London: Earthscan.
  • Antal, M.J., and Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research 42, 1619–1640.
  • Antal, M.J., Mochidzuki, K., and Paredes, L.S. (2003). Flash carbonization of biomass. Industrial & Engineering Chemistry Research 42, 3690–3699.
  • Argudo, M., Salagre, P., Medina, F., Correig, X., and Sueiras, J.E. (1998). Obtention and surface characterisation of several ash-free chars. Carbon 36, 1027–1031.
  • Ascough, P.L., Sturrock, C.J., and Bird, M.I. (2010). Investigation of growth responses in saprophytic fungi to charred biomass. Isotopes in Environmental and Health Studies 46, 64–77.
  • Atkinson, C., Fitzgerald, J., and Hipps, N. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil 337, 1–18.
  • Ayhan, D. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science 30, 219–230.
  • Azargohar, R., and Dalai, A. (2006). Biochar as a precursor of activated carbon. Applied Biochemistry and Biotechnology 131, 762–773.
  • Bagreev, A., Bandosz, T.J., and Locke, D.C. (2001). Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39, 1971–1979.
  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57, 233–266.
  • Baldock, J.A., and Smernik, R.J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry 33, 1093–1109.
  • Bamminger, C., Marschner, B., and Jüschke, E. (2014). An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. European Journal of Soil Science 65, 72–82.
  • Berge, N.D., Ro, K.S., Mao, J., Flora, J.R., Chappell, M.A., and Bae, S. (2011). Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45, 5696–703.
  • Bird, M.I., Moyo, C., Veenendaal, E.M., Lloyd, J., and Frost, P. (1999). Stability of elemental carbon in a savanna soil. Global Biogeochem. Cycles 13, 923–932.
  • Bird, M.I., Wurster, C.M., de Paula Silva, P.H., Bass, A.M., and de Nys, R. (2011a). Algal biochar—Production and properties. Bioresource Technology 102, 1886–1891.
  • Bird, M.I., Wurster, C.M., De Paula Silva, P.H., Paul, N.A., and De Nys, R. (2011b). Algal biochar: Effects and applications. Global Change Biology Bioenergy, no-no.
  • Birk, J.J., Steiner, C., Teixiera, W.C., Zech, W., and Glaser, B. (2009). Microbial response to charcoal amendments and fertilization of a highly weathered tropical soil. In W. Woods, W. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins and L. Rebellato (Eds.) Amazonian dark earths: Wim Sombroek's vision. (pp. 309–324). Springer: Berlin, Germany.
  • Blume, H.-P., and Leinweber, P. (2004). Plaggen Soils: Landscape history, properties, and classification. Journal of Plant Nutrition and Soil Science 167, 319–327.
  • Boateng, A. (2007). Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass. Industrial & Engineering Chemistry Research 46, 8857–8862.
  • Boehm, H.P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769.
  • Bonelli, P., Ramos, M., Buonomo, E., and Cukierman, A. (2006). Potentialities of the biochar generated from raw and acid pre-treated sugarcane agricultural wastes. In 8th Asia-Pacific International Symposium on Combustion and Energy Utilization, Sochi, Russian Federation.
  • Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., and Antal, M. J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Industrial & Engineering Chemistry Research 46, 5954–5967.
  • Braadbaart, F., Boon, J., Veld, H., David, P., and Van Bergen, P. (2004). Laboratory simulations of the transformation of peas as a result of heat treatment: Changes of the physical and chemical properties. Journal of Archaeological Science 31, 821–833.
  • Brennan, J.K., Bandosz, T.J., Thomson, K.T., and Gubbins, K.E. (2001). Water in porous carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects 187–188, 539–568.
  • Brewer, C.E., Chuang, V.J., Masiello, C.A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K., and Davies, C.A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy 66, 176–185.
  • Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A., and Brown, R.C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy 28, 386–396.
  • Bridgwater, A.V. (1999). Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis 51, 3–22.
  • Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38, 68–94.
  • Bridle, T.R., Hammerton, I., and Hertle, C.K. (1990). Control of heavy-metals and organochlorines using the oil from sludge process. Water Science and Technology 22, 249–258.
  • Bridle, T.R., and Pritchard, D. (2004). Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Technol 50, 169–175.
  • Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., and Zech, W. (2005). Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128, 116–129.
  • Brown, R.A., Kercher, A.K., Nguyen, T.H., Nagle, D.C., and Ball, W.P. (2006). Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry 37, 321–333.
  • Bruun, E., Cross, A., Hammond, J., Nelissen, V., Rasse, D.P., and Hauggaard-Nielsen, H. (2016). Biochar carbon stability and effect on greenhouse gas emissions. Biochar in European Soils and Agriculture: Science and Practice, 165–183.
  • Bruun, E.W., Ambus, P., Egsgaard, H., and Hauggaard-Nielsen, H. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry 46, 73–79.
  • Bruun, E.W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P.A., and Dam-Johansen, K. (2011a). Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy 35, 1182–1189.
  • Bruun, E.W., Müller-Stöver, D., Ambus, P., and Hauggaard-Nielsen, H. (2011b). Application of biochar to soil and N2O emissions: Potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. European Journal of Soil Science 62, 581–589.
  • Bruun, S., Clauson-Kaas, S., Bobuľská, L., and Thomsen, I.K. (2014). Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates. European Journal of Soil Science 65, 52–59.
  • Bruun, S., and Luxhoi, J. (2008). Is biochar production really carbon-negative? Environmental Science & Technology 42, 1388–1388.
  • Budai, A., Zimmerman, A., Cowie, A., Webber, J., Singh, B., Glaser, B., Masiello, C., Andersson, D., Shields, F., and Lehmann, J. (2013). Biochar carbon stability test method: An assessment of methods to determine biochar carbon stability. Carbon Methodology, IBI document, http://www.biochar-international.org/sites/default/files/IBI_Report_Biochar_Stability_Test_Method_Final.pdf.
  • Cabrera, A., Cox, L., Spokas, K.A., Celis, R., Hermosín, M.C., Cornejo, J., and Koskinen, W.C. (2011). Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. Journal of Agricultural and Food Chemistry 59, 12550–12560.
  • Cabrera Mesa, A., and Spokas, K. (2011). Impacts of Biochar (black carbon) additions on the sorption and efficacy of herbicides. In A. Kortekamp (Ed.) Herbicides and environment (pp. 315–340). InTech, Available from: http://www.intechopen.com/articles/show/title/impacts-of-biochar-black-carbon-additions-on-the-sorption-and-efficacy-of-herbicides.
  • Calvelo-Pereira, R., Pardo-Lorenzo, R., Aitkenhead, W., Macias, F., Hedley, M., Macia-Agullo, J.A., and  , M. C.-A. (2010). In fluence of pyrolysis temperature on heterotrophic basal soil respiration in biochar/soil mixtures. In: ‘NZBRC Biochar Workshop’, Palmerston North, New Zealand, 11–12 February 2010. (Massey University: Palmerston North, New Zealand).
  • Calvelo Pereira, R., Camps Arbestain, M., Kaal, J., Vazquez Sueiro, M., Sevilla, M., and Hindmarsh, J. (2014). Detailed carbon chemistry in charcoals from pre-European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. European Journal of Soil Science 65, 83–95.
  • Calvelo Pereira, R., Kaal, J., Camps Arbestain, M., Pardo Lorenzo, R., Aitkenhead, W., Hedley, M., Macías, F., Hindmarsh, J., and Maciá-Agulló, J.A. (2011). Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry 42, 1331–1342.
  • Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., and Ro, K.S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107, 419–428.
  • Cao, X., and Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology 101, 5222–5228.
  • Cao, X., Ro, K.S., Chappell, M., Li, Y., and Mao, J. (2010). Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Energy & Fuels 25, 388–397.
  • Castaldi, S., Riondino, M., Baronti, S., Esposito, F.R., Marzaioli, R., Rutigliano, F.A., Vaccari, F.P., and Miglietta, F. (2011). Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85, 1464–1471.
  • Cetin, E., Moghtaderi, B., Gupta, R., and Wall, T.F. (2004). Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83, 2139–2150.
  • Chan, K., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46, 437–444.
  • Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45, 629–634.
  • Chan, K.Y., and Xu, Z. (2009). Biochar–nutrient properties and their enhancement. In J. Lehmann and S. Joseph (Eds.) Biochar for environmental management: Science and technology (pp. 67–84). London: Earthscan Publications.
  • Chen, B., and Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76, 127–133.
  • Chen, W.-H., and Cheng, H.-C. (2014). Molecular modeling and simulation of physical properties and behavior of low-dimensional carbon Allotropes. In V. Harik (Ed.) Trends in nanoscale mechanics (pp. 45–109). Springer Netherlands.
  • Chen, Y.-X., Huang, X.-D., Han, Z.-Y., Huang, X., Hu, B., Shi, D.-Z., and Wu, W.-X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 78, 1177–1181.
  • Cheng, C.-H., Lehmann, J., and Engelhard, M.H. (2008). Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72, 1598–1610.
  • Cheng, C.-H., Lehmann, J., Thies, J.E., Burton, S.D., and Engelhard, M.H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37, 1477–1488.
  • Cheng, H., Hu, Y., and Zhao, J. (2009). Meeting China's water shortage crisis: Current practices and challenges. Environmental Science & Technology 43, 240–244.
  • Chun, Y., Sheng, G., Chiou, C.T., and Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology 38, 4649–4655.
  • Clough, T., Condron, L., Kammann, C., and Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy 3, 275.
  • Clough, T.J., and Condron, L.M. (2010). Biochar and the nitrogen cycle: Introduction. Journal of environmental quality 39, 1218–1223.
  • Conte, P., Schmidt, H.-P., and Cimò, G. (2015). Research and application of biochar in Europe. In M. Guo et al. (eds.) Agricultural and Environmental Applications of Biochar: Advances and Barriers (SSSA Special Publication, 409-422). Madison, WI: Soil Science Society of America, Inc.
  • Cordero, T., Marquez, F., Rodriguez-Mirasol, J., and Rodriguez, J.J. (2001). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80, 1567–1571.
  • Crombie, K., Mašek, O., Sohi, S.P., Brownsort, P., and Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131.
  • Cross, A., and Sohi, S. P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology and Biochemistry 43, 2127–2134.
  • Cross, A., and Sohi, S.P. (2013). A method for screening the relative long-term stability of biochar. GCB Bioenergy 5, 215–220.
  • Dangzhen, L., Minghou, X., Xiaowei, L., Zhonghua, Z., Zhiyuan, L., and Hong, Y. (2010). Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology 91, 903–909.
  • Davidson, D.A., Dercon, G., Stewart, M., and Watson, F. (2006). The legacy of past urban waste disposal on local soils. Journal of Archaeological Science 33, 778–783.
  • Day, D., Evans, R.J., Lee, J.W., and Reicosky, D. (2005). Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30, 2558–2579.
  • Deenik, J.L., McClellan, T., Uehara, G., Antal, M.J., and Campbell, S. (2010). Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal 74, 1259–1270.
  • DeLuca, T.H., MacKenzie, M.D., and Gundale, M.J. (2009). Bio-char effects on soil nutrient transformation. In: J. Lehmann and S. Joseph (Eds.), Biochar for environmental management: science and technology (pp. 251–270). London: Earthscan Publications.
  • Demirbas, A. (2001). Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Conversion and Management 42, 1229–1238.
  • Demirbas, A. (2006). Production and characterization of bio-chars from biomass via pyrolysis. Energy Sources Part A: Recovery, Utilization & Environmental Effects 28, 413–422.
  • Di Blasi, C., Signorelli, G., Di Russo, C., and Rea, G. (1999). Product distribution from pyrolysis of wood and agricultural residues. Industrial & Engineering Chemistry Research 38, 2216–2224.
  • Downie, A., Crosky, A., and Munroe, P. (2009). Physical properties of biochar. In: J. Lehmann and S. Joseph (Eds.), Biochar for environmental management–science and technology (pp. 13–32). London: Earthscan Publications.
  • Doydora, S.A., Cabrera, M.L., Das, K.C., Gaskin, J.W., Sonon, L.S., and Miller, W.P. (2011). Release of nitrogen and phosphorus from poultry litter amended with acidified biochar. International Journal of Environmental Research and Public Health 8, 1491–1502.
  • Dresselhaus, M.S., Dresselhaus, G., Eklund, P., and Jones, D.E.H. (1996). Science of fullerenes and carbon nanotubes. New York: Academic Press.
  • Ehrenfreund, P. and Foing, B.H. (2010). Fullerenes and Cosmic Carbon. Science 329, 1159–1160.
  • Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology 114, 644–653.
  • European Biochar Foundation. (EBC) (2016). European biochar producers. European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.european-biochar.org/en/producer. Vol. 2016.
  • Evans, R.J., and Milne, T.A. (1987). Molecular characterization of the pyrolysis of biomass. Energy & Fuels 1, 123–137.
  • Fabbri, D., Torri, C., and Spokas, K.A. (2012). Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production. Journal of Analytical and Applied Pyrolysis 93, 77–84.
  • Fang, X., Chua, T., Schmidt-Rohr, K., and Thompson, M.L. (2010). Quantitative 13C NMR of whole and fractionated iowa mollisols for assessment of organic matter composition. Geochimica Et Cosmochimica Acta 74, 584–598.
  • Fang, Y., Singh, B., Singh, B.P., and Krull, E. (2014). Biochar carbon stability in four contrasting soils. European Journal of Soil Science 65, 60–71.
  • Felber, R., Leifeld, J., Horák, J., and Neftel, A. (2014). Nitrous oxide emission reduction with greenwaste biochar: Comparison of laboratory and field experiments. European Journal of Soil Science 65, 128–138.
  • Feng, J.-W., Zheng, S., and Maciel, G.E. (2004). EPR investigations of the effects of inorganic additives on the charring and char/air interactions of cellulose. Energy & Fuels 18, 1049–1065.
  • Fernandes, M.B., Skjemstad, J.O., Johnson, B.B., Wells, J.D., and Brooks, P. (2003). Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features. Chemosphere 51, 785–795.
  • Fowles, M. (2007). Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy 31, 426–432.
  • Franklin, R.E. (1951). Crystallite Growth in Graphitizing and Non-Graphitizing Carbons. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 196–218.
  • Fuertes, A.B., Arbestain, M.C., Sevilla, M., Maciá-Agulló, J.A., Fiol, S., López, R., Smernik, R.J., Aitkenhead, W.P., Arce, F., and Macias, F. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research 48, 618–626.
  • Funke, A., and Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 4, 160–177.
  • Galinato, S.P., Yoder, J.K., and Granatstein, D. (2011). The economic value of biochar in crop production and carbon sequestration. Energy Policy 39, 6344–6350.
  • Gaskin, J., Steiner, C., Harris, K., Das, K., and Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 51, 2061–2069.
  • Gaskin, J.W., Harris, K., Lee, D., Speir, A., Morris, L.M., Ogden, L., and Das, K.C. (2007). Potential for pyrolysis char to affect soil moisture and nutrient status of loamy sand soil. In: Georgia water resources conference, University of Georgia.
  • Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., and Fisher, D.S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal 102, 623–633.
  • Gaunt, J.L., and Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science & Technology 42, 4152–4158.
  • Gaur, S., and Reed, T.B. (1995). An atlas of thermal data for biomass and other fuels. National Renewable Energy Lab., Golden, CO (United States).
  • Geissler, C., and Belau, L. (1971). Zum Verhalten der stabilen Kohlenstoffisotope bei der Inkohlung. Zeitschrift für Angewandte Geologie 17, 13–16.
  • Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science 60, 457–470.
  • Glaser, B. (2010). Biochar—Production, development and characterization for its use as soil amendment. BaCaTeC, http://www.bacatec.de/dl/Ge09_Glaser-Steiner_engl.pdf.
  • Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W. (2001). The “Terra Preta” phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41.
  • Gomez, J.D., Denef, K., Stewart, C.E., Zheng, J., and Cotrufo, M.F. (2014). Biochar addition rate influences soil microbial abundance and activity in temperate soils. European Journal of Soil Science 65, 28–39.
  • González, J.F., Román, S., Encinar, J.M., and Martínez, G. (2009). Pyrolysis of various biomass residues and char utilization for the production of activated carbons. Journal of Analytical and Applied Pyrolysis 85, 134–141.
  • Greenberg, J.P., Friedli, H., Guenther, A.B., Hanson, D., Harley, P., and Karl, T. (2006). Volatile organic emissions from the distillation and pyrolysis of vegetation. Atmospheric Chemistry and Physics 6, 81–91.
  • Grob, J., Donnelly, A., Flora, G., and Miles, T. (2011). Biochar and the biomass recycling industry. BioCycle 52, 50–52.
  • Guillén, M.A.D., and Manzanos, M.A.J. (2002). Study of the volatile composition of an aqueous oak smoke preparation. Food Chemistry 79, 283–292.
  • Guiotoku, M., Rambo, C., Maia, C., and Hotza, D. (2001). Synthesis of carbon-based materials by microwave-assisted hydrothermal process. In: U. Chandra (Ed.) Microwave heating (pp. 291–308). InTech, Available from: http://www.intechopen.com/articles/show/title/synthesis-of-carbon-based-materials-by-microwave-assisted-hydrothermal-process.
  • Guiotoku, M., Rambo, C.R., Hansel, F.A., Magalhães, W.L.E., and Hotza, D. (2009). Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Materials Letters 63, 2707–2709.
  • Guo, J., and Chen, B. (2014). Insights on the molecular mechanism for the recalcitrance of biochars: Interactive effects of carbon and silicon components. Environmental Science & Technology 48, 9103–9112.
  • Guo, Y., and Rockstraw, D.A. (2007). Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials 100, 12–19.
  • Haberstroh, P.R., Brandes, J.A., Gélinas, Y., Dickens, A.F., Wirick, S., and Cody, G. (2006). Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon X-ray spectromicroscopy. Geochimica Et Cosmochimica Acta 70, 1483–1494.
  • Hammes, K., and Schmidt, M. (2009). Changes of biochar in soil. In: J. Lehmann and S. Joseph (Eds.) Biochar for environmental management–science and technology (pp. 169–181). London: Earthscan Publications.
  • Hammes, K., Smernik, R.J., Skjemstad, J.O., Herzog, A., Vogt, U.F., and Schmidt, M.W.I. (2006). Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Organic Geochemistry 37, 1629–1633.
  • Harris, P.J.F. (2005). New perspectives on the structure of graphitic carbons. Critical Reviews in Solid State and Materials Sciences 30, 235–253.
  • Harris, P.J.F., and Tsang, S.C. (1997). High-resolution electron microscopy studies of non-graphitizing carbons. Philosophical Magazine A 76, 667–677.
  • Harvey, O.R., Herbert, B.E., Rhue, R.D., and Kuo, L.-J. (2011). Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science & Technology 45, 5550–5556.
  • Harvey, O.R., Kuo, L.J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E., and Herbert, B.E. (2012). An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environmental Science & Technology 46, 1415–1421.
  • Harvey, O.R., and Rhue, R.D. (2008). Kinetics and energetics of phosphate sorption in a multi-component Al(III)-Fe(III) hydr(oxide) sorbent system. Journal of Colloid and Interface Science 322, 384–393.
  • Haumaier, L., and Zech, W. (1995). Black carbon–possible source of highly aromatic components of soil humic acids. Organic Geochemistry 23, 191–196.
  • Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kögel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., and Rullkötter, J. (2000). The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry 31, 945–958.
  • Heilmann, S.M., Jader, L.R., Harned, L.A., Sadowsky, M.J., Schendel, F.J., Lefebvre, P.A., von Keitz, M.G., and Valentas, K.J. (2011a). Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Applied Energy 88, 3286–3290.
  • Heilmann, S.M., Jader, L.R., Sadowsky, M.J., Schendel, F.J., von Keitz, M.G., and Valentas, K.J. (2011b). Hydrothermal carbonization of distiller's grains. Biomass and Bioenergy 35, 2526–2533.
  • Heymann, D., Chibante, L.P.F., Brooks, R.R., Wolbach, W.S., and Smalley, R.E. (1994). Fullerenes in the cretaceous-tertiary boundary layer. Science 265, 645–647.
  • Hilscher, A., Heister, K., Siewert, C., and Knicker, H. (2009). Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry 40, 332–342.
  • Horne, P.A., and Williams, P.T. (1996). Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75, 1051–1059.
  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., and Nelson, P.F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management 92, 223–228.
  • Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., and Titirici, M.-M. (2010). Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials 22, 813–828.
  • Hu, B., Yu, S.H., Wang, K., Liu, L., and Xu, X.W. (2008). Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Transactions, 5414–5423.
  • Hua, L., Wu, W., Liu, Y., McBride, M.B., and Chen, Y. (2009). Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental Science and Pollution Research 16, 1–9.
  • Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A.M., Solaiman, Z.M., Alghamdi, S.S., Ammara, U., Ok, Y.S., and Siddique, K.H.M. (2016). Biochar for crop production: Potential benefits and risks. Journal of Soils and Sediments, 1–32.
  • Hwang, I.H., Matsuto, T., Tanaka, N., Sasaki, Y., and Tanaami, K. (2007). Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling. Waste Management 27, 1155–1166.
  • International Biochar Initiative (IBI) (2015). Standardized product definition and product testing guidelines for biochar that is used in soils. Available at: http://www.biochar-international.org/characterizationstandard.
  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., and Zimmerman, A.R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology 101, 8868–8872.
  • Jeffery, S., Verheijen, F.G.A., van der Velde, M., and Bastos, A.C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment 144, 175–187.
  • Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A., and Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613–6621.
  • Joseph, S., Graber, E.R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G.X., Li, L., Taylor, P., Rawal, A., and Hook, J. (2013). Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management 4, 323–343.
  • Joseph, S., Peacocke, C., Lehmann, J., and Munroe, P. (2009). Developing a biochar classification and test methods. In: J. Lehmann and S. Joseph (Eds.), Biochar for environmental management–science and technology (pp. 107–126). London: Earthscan Publications.
  • Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik, R.J., and Amonette, J.E. (2010). An investigation into the reactions of biochar in soil. Soil Research 48, 501–515.
  • Kaal, J., Schneider, M.P.W., and Schmidt, M.W.I. (2012). Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study. Biomass and Bioenergy 45, 115–129.
  • Kalderis, D., Kotti, M.S., Méndez, A., and Gascó, G. (2014). Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 5, 477–483.
  • Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., and Kishimoto, T. (2005). Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal 108, 127–137.
  • Karaosmanoǧlu, F., Işıḡıgür-Ergüdenler, A., and Sever, A. (2000). Biochar from the Straw-Stalk of Rapeseed Plant. Energy & Fuels 14, 336–339.
  • Karve, P.S.S., Carter, S., Anderson, P., Prabunhe, R., Cross, A., Haszeldine, S., Haefele, S., Knowles, T., Field, J., Tanger, P. (2011). Biochar for Carbon Reduction, Sustainable Agriculture and Soil Management (BIOCHARM). Final report for APN (Asia Pacific Network for Climate Change Research).
  • Keiluweit, M., Kleber, M., Sparrow, M.A., Simoneit, B.R.T., and Prahl, F.G. (2012). Solvent-extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environmental Science & Technology 46, 9333–9341.
  • Keiluweit, M., Nico, P.S., Johnson, M.G., and Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environmental Science & Technology 44, 1247–1253.
  • Keith, A., Singh, B., and Singh, B.P. (2011). Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environmental Science & Technology 45, 9611–9618.
  • Kim, K.H., Kim, J.-Y., Cho, T.-S., and Choi, J.W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology 118, 158–162.
  • Kinney, T.J., Masiello, C.A., Dugan, B., Hockaday, W.C., Dean, M.R., Zygourakis, K., and Barnes, R.T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy 41, 34–43.
  • Kinyangi, J., Solomon, D., Liang, B., Lerotic, M., Wirick, S., and Lehmann, J. (2006). Nanoscale biogeocomplexity of the organomineral assemblage in soil. Soil Science Society of America Journal 70, 1708–1718.
  • Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M., and Subramanian, P. (2009). A review on gasification of biomass. Renewable and Sustainable Energy Reviews 13, 179–186.
  • Kleiner, K. (2009). The bright prospect of biochar. Nature Reports Climate Change 3, 72–74.
  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., and Soja, G. (2011). Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, 990–1000.
  • Knicker, H. (2007). How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118.
  • Knicker, H., González-Vila, F.J., Polvillo, O., González, J.A., and Almendros, G. (2005). Fire-induced transformation of C- and N- forms in different organic soil fractions from a dystric cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biology and Biochemistry 37, 701–718.
  • Knudsen, J.N., Jensen, P.A., Lin, W., Frandsen, F.J., and Dam-Johansen, K. (2004). Sulfur transformations during thermal conversion of herbaceous biomass. Energy & Fuels 18, 810–819.
  • Kookana, R.S., Sarmah, A.K., Van Zwieten, L., Krull, E., and Singh, B. (2011). Biochar application to soil: Agronomic and environmental benefits and unintended consequences. In: L.S. Donald, (Ed.), Advances in agronomy (Volume 112, pp. 103–143). Academic Press.
  • Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E. (1985). C60: Buckminsterfullerene. Nature 318, 162–163.
  • Krull, E.S., Baldock, J., Skjemstad, J.O., and Smernik, R.J. (2009). Characteristics of biochar: Organo-chemical properties. In: J. Lehmann and S. Joseph (Eds.), Biochar for environmental management: science and technology (pp. 53–65). London: Earthscan.
  • Kuhlbusch, T.A.J. (1995). Method for determining black carbon in residues of vegetation fires. Environmental Science & Technology 29, 2695–2702.
  • Kumar, S., Kothari, U., Kong, L., Lee, Y.Y., and Gupta, R.B. (2011a). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass and Bioenergy 35, 956–968.
  • Kumar, S., Loganathan, V.A., Gupta, R.B., and Barnett, M.O. (2011b). An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environmental Management 92, 2504–2512.
  • Kuo, L.-J., Louchouarn, P., and Herbert, B.E. (2011). Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: Implications for characterizations of biomass combustion residues. Chemosphere 85, 797–805.
  • Kurosaki, F., Koyanaka, H., Hata, T., and Imamura, Y. (2007). Macroporous carbon prepared by flash heating of sawdust. Carbon 45, 671–673.
  • Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., and Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry 41, 210–219.
  • Kwapinski, W., Byrne, C., Kryachko, E., Wolfram, P., Adley, C., Leahy, J., Novotny, E., and Hayes, M. (2010). Biochar from biomass and waste. Waste and Biomass Valorization 1, 177–189.
  • Laird, D.A. (2008). The charcoal vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100, 178–181.
  • Lang, T., Jensen, A.D., and Jensen, P.A. (2005). Retention of organic elements during solid fuel pyrolysis with emphasis on the peculiar behavior of nitrogen. Energy & Fuels 19, 1631–1643.
  • Lee, J.W., Kidder, M., Evans, B.R., Paik, S., Buchanan Iii, A.C., Garten, C.T., and Brown, R.C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science & Technology 44, 7970–7974.
  • Lehmann, J. (2003). Amazonian dark earths: Origin properties management. Netherlands: Springer.
  • Lehmann, J. (2007a). Bio-energy in the black. Frontiers in Ecology and the Environment 5, 381–387.
  • Lehmann, J. (2007b). A handful of carbon. NATURE-LONDON- 447, 143.
  • Lehmann, J., da Silva, J.P., Steiner, C., Nehls, T., Zech, W., and Glaser, B. (2003). Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil 249, 343–357.
  • Lehmann, J., Gaunt, J., and Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Global Change 11, 395–419.
  • Lehmann, J., and Joseph, S. (2009a). Biochar for environmental management: An introduction. In: J. Lehmann and S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 1–12). London: Earthscan Publications.
  • Lehmann, J., and Joseph,  , S. (Eds.) (2009b). Biochar for environmental management:Science and technology. London; Sterling, VA: Earthscan Publications.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., and Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology and Biochemistry 43, 1812–1836.
  • Li, X., Hagaman, E., Tsouris, C., and Lee, J.W. (2002). Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase. Energy & Fuels 17, 69–74.
  • Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M., Fühner, C., Bens, O., Kern, J., and Emmerich, K.-H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2, 71–106.
  • Liu, Z., Quek, A., Kent Hoekman, S., and Balasubramanian, R. (2013). Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943–949.
  • Liu, Z., and Zhang, F.-S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials 167, 933–939.
  • Liu, Z., Zhang, F.-S., and Wu, J. (2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89, 510–514.
  • Lu, L., Namioka, T., and Yoshikawa, K. (2011). Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes. Applied Energy 88, 3659–3664.
  • Lua, A.C., and Yang, T. (2004). Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. Journal of Colloid and Interface Science 276, 364–372.
  • Lutz, H., Romeiro, G., Damasceno, R., Kutubuddin, M., and Bayer, E. (2000). Low temperature conversion of some Brazilian municipal and industrial sludges. Bioresource Technology 74, 103–107.
  • Macías, F., and Camps Arbestain, M. (2010). Soil carbon sequestration in a changing global environment. Mitigation and Adaptation Strategies for Global Change 15, 511–529.
  • Major, J., Lehmann, J., Rondon, M., and Goodale, C. (2010). Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Global Change Biology 16, 1366–1379.
  • Manyà, J.J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology 46, 7939–7954.
  • Mara dos Santos Barbosa, J., Ré-Poppi, N., and Santiago-Silva, M. (2006). Polycyclic aromatic hydrocarbons from wood pyrolyis in charcoal production furnaces. Environmental Research 101, 304–311.
  • Mašek, O., Brownsort, P., Cross, A., and Sohi, S. (2011). Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103, 151–155.
  • Masiello, C.A. (2004). New directions in black carbon organic geochemistry. Marine Chemistry 92, 201–213.
  • Masulili, A., Utomo, W.H., and  , M.S.S. (2010). Rice husk biochar for rice-based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science (1916-9752) 2, 39–47.
  • McLaughlin, H., Anderson, P., Shields, F., and Reed, T. (2009). All biochars are not created equal and how to tell them apart. In: Proceedings of North American biochar conference (pp. 9–12), Colorado, USA: Boulder.
  • Mészáros, E., Jakab, E., Várhegyi, G., Bourke, J., Manley-Harris, M., Nunoura, T., and Antal, M.J. (2007). Do all carbonized charcoals have the same chemical structure? 1. Implications of thermogravimetry−mass spectrometry measurements. Industrial & Engineering Chemistry Research 46, 5943–5953.
  • Meyer, S., Bright, R.M., Fischer, D., Schulz, H., and Glaser, B. (2012). Albedo impact on the suitability of biochar systems to mitigate global warming. Environmental Science & Technology, 46, 12726–12734.
  • Moghtaderi, B. (2006). The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire and Materials 30, 1–34.
  • Mohan, D., Pittman Jr, C.U., and Steele, P.H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20, 848–889.
  • Moore, K.J., Birrell, S., Brown, R.C., Casler, M.D., Euken, J.E., Hanna, H.M., Hayes, D.J., Hill, J.D., Jacobs, K.L., Kling, C.L., Laird, D., Mitchell, R.B., Murphy, P.T., Raman, D.R., Schwab, C.V., Shinners, K.J., Vogel, K.P., and Volenec, J.J. (2014). Midwest vision for sustainable fuel production. Biofuels 5, 687–702.
  • Morley, J., Club, Y.C., and Youngstown, O. (1929). Compost and charcoal. The National Greenkeeper 3, 8–26.
  • Mücher, H.J., Slotboom, R.T., and ten Veen, W.J. (1990). Palynology and micromorphology of a man-made soil. A reconstruction of the agricultural history since late-medieval times of the posteles in the Netherlands. CATENA 17, 55–67.
  • Mukherjee, A., Lal, R., and Zimmerman, A.R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of The Total Environment 487, 26–36.
  • Mukherjee, A., Zimmerman, A.R., and Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247–255.
  • Mukome, F.N.D., Zhang, X., Silva, L.C.R., Six, J., and Parikh, S.J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Journal of Agricultural and Food Chemistry 61, 2196–2204.
  • Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., and Kern, J. (2011). Hydrothermal carbonization of anaerobically digested maize silage. Bioresource Technology 102, 9255–9260.
  • Mursito, A.T., Hirajima, T., and Sasaki, K. (2010). Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel 89, 635–641.
  • Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., and Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology 102, 57–70.
  • Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., and Niandou, M.A.S. (2009a). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174, 105–112.
  • Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K., Ahmedna, M., Rehrah, D., Watts, D.W., and Busscher, W.J. (2009b). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3, 195–206.
  • Oberdörster, E. (2004). Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile Largemouth Bass. Environ Health Perspect 112, 1058–1062.
  • Oberdorster, G., Oberdorster, E., and Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113, 823–839.
  • Overend, R.P. (2004). Thermochemical conversion of biomass. In E. E. Shpilrain (Ed.), Renewable energy sources charged with energy from the Sun and originated from Earth–Moon interaction, Vol. 1. Energy from Biomass. Encyclopedia of Life Support Systems (EOLSS), Oxford, UK, http://www.eolss.net/outlinecomponents/Renewable-Energy-Sources-Charged-Energy-Sun-Originated-Earth-Moon-Interaction.aspx.
  • Özçimen, D., and Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy 35, 1319–1324.
  • Özçimen, D., and Karaosmanoglu, F. (2004). Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy 29, 779–787.
  • Panwar, N.L., Kothari, R., and Tyagi, V.V. (2012). Thermo chemical conversion of biomass—Eco-friendly energy routes. Renewable and Sustainable Energy Reviews 16, 1801–1816.
  • Peng, X., Ye, L.L., Wang, C.H., Zhou, H., and Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern China. Soil and Tillage Research 112, 159–166.
  • Petrov, N., Budinova, T., Razvigorova, M., Parra, J., and Galiatsatou, P. (2008). Conversion of olive wastes to volatiles and carbon adsorbents. Biomass and Bioenergy 32, 1303–1310.
  • Phyllis and Phyllis2 (2013). Database for biomass and waste, Energy research Centre of the Netherlands. Available at https://www.ecn.nl/phyllis2/.
  • Preston, C.M., and Schmidt, M.W.I. (2006). Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420.
  • Prommer, J., Wanek, W., Hofhansl, F., Trojan, D., Offre, P., Urich, T., Schleper, C., Sassmann, S., Kitzler, B., Soja, G., and Hood-Nowotny, R.C. (2014). Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS ONE 9, e86388.
  • Quirk, R.G., Van Zwieten, L., Kimber, S., Downie, A., Morris, S., and Rust, J. (2012). Utilization of biochar in sugarcane and sugar-industry management. Sugar Tech 14, 321–326.
  • Raave, H., Keres, I., Kauer, K., Nõges, M., Rebane, J., Tampere, M., and Loit, E. (2014). The impact of activated carbon on NO3−-N, NH4+-N, P and K leaching in relation to fertilizer use. European Journal of Soil Science 65, 120–127.
  • Raveendran, K., Ganesh, A., and Khilar, K.C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74, 1812–1822.
  • Raveendran, K., Ganesh, A., and Khilar, K.C. (1996). Pyrolysis characteristics of biomass and biomass components. Fuel 75, 987–998.
  • Retan, G.A. (1915). Charcoal as a means of solving some nursery problems. Journal of Forestry 13, 25–30.
  • Rillig, M.C., Wagner, M., Salem, M., Antunes, P.M., George, C., Ramke, H.-G., Titirici, M.-M., and Antonietti, M. (2010). Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Applied Soil Ecology 45, 238–242.
  • Román, S., Nabais, J.M.V., Laginhas, C., Ledesma, B., and González, J.F. (2012). Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Processing Technology 103, 78–83.
  • Rondon, M. A., Lehmann, J., Ramírez, J., and Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils 43, 699–708.
  • Ruyter, H.P. (1982). Coalification model. Fuel 61, 1182–1187.
  • Sanchez-Silva, L., López-González, D., Villaseñor, J., Sánchez, P., and Valverde, J.L. (2012). Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology 109, 163–172.
  • Sanchez, M.E., Lindao, E., Margaleff, D., Martinez, O., and Moran, A. (2009). Bio-fuels and bio-char production from pyrolysis of sewage sludge. Journal of Residuals Science & Technology 6, 35–41.
  • Sánchez, M.E., Lindao, E., Margaleff, D., Martínez, O., and Morán, A. (2009). Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of bio-fuels and biochar soil management. Journal of Analytical and Applied Pyrolysis 85, 142–144.
  • Santiago, A., and Santiago, L. (1988). Charcoal chips as a practical substrate for container horticulture in the humid tropics. International Society for Horticultural Science (ISHS): Leuven, Belgium, 141–148.
  • Schmidt, H.P., Bucheli, T., Kammann, C., Glaser, B., Abiven, S., and Leifeld, J. (2013). EBC (2012) 'European Biochar Certificate-Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.european-biochar.org/en/downloadVersion4.8
  • Schmidt, M.W.I., and Noack, A.G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 14, 777–793.
  • Schneider, D., Escala, M., Supawittayayothin, K., and Tippayawong, N. (2011). Characterization of biochar from hydrothermal carbonization of bamboo. Journal homepage: www.IJEE.IEEFoundation.org2, 647–652.
  • Sensöz, S. (2003). Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Bioresource Technology 89, 307–311.
  • Sevilla, M., and Fuertes, A.B. (2009a). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry – A European Journal 15, 4195–4203.
  • Sevilla, M., and Fuertes, A.B. (2009b). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281–2289.
  • Sevilla, M., and Fuertes, A.B. (2010). Graphitic carbon nanostructures from cellulose. Chemical Physics Letters 490, 63–68.
  • Sevilla, M., Maciá-Agulló, J.A., and Fuertes, A.B. (2011). Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass and Bioenergy 35, 3152–3159.
  • Shackley, S.J., and Sohi, S.P., (Eds) (2010). An assessment of the benefits and issues associated with the application of biochar to soil. Department for Environment, Food and Rural Affairs, London, UK.
  • Shafizadeh, F., and Sekiguchi, Y. (1983). Development of aromaticity in cellulosic chars. Carbon 21, 511–516.
  • Shao, G., Dai, L., Dukes, J.S., Jackson, R.B., Tang, L., and Zhao, J. (2011). Increasing forest carbon sequestration through cooperation and shared strategies between China and the United States. Environmental Science & Technology 45, 2033–2034.
  • Shinogi, Y. (2004). Nutrient leaching from carbon products of sludge. In: ASAE/CSAE Annual International Meeting, Papper number 044063, Ottawa, Ontario, Canada.
  • Shinogi, Y., and Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology 90, 241–247.
  • Sika, M.P., and Hardie, A.G. (2014). Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil. European Journal of Soil Science 65, 113–119.
  • Silber, A., Levkovitch, I., and Graber, E.R. (2010). pH-Dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environmental Science & Technology 44, 9318–9323.
  • Singh, B., Singh, B.P., and Cowie, A.L. (2010a). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48, 516–525.
  • Singh, B.P., Cowie, A.L., and Smernik, R.J. (2012). Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environmental Science & Technology 46, 11770–11778.
  • Singh, B.P., Hatton, B.J., Singh, B., Cowie, A.L., and Kathuria, A. (2010b). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality 39, 1224.
  • Sipilä, K., Kuoppala, E., Fagernäs, L., and Oasmaa, A. (1998). Characterization of biomass-based flash pyrolysis oils. Biomass and Bioenergy 14, 103–113.
  • Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology 22, 1315–1324.
  • Sohi, S., Lopez-Capel, E., Krull, E., and Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report 5, 17–31.
  • Sohi, S.P., Krull, E., Lopez-Capel, E., and Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy 105, 47–82.
  • Sombroek, W., Ruivo, M., Fearnside, P., Glaser, B., and Lehmann, J. (2004). Amazonian dark earths as carbon stores and sinks. In: J. Lehmann, D. C. Kern, B. Glaser and W. W.I.   (Eds.), Amazonian dark earths: Origin, properties, management (pp. 125–139). Dordrecht: Kluwer Academic Publishers.
  • Song, W., and Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 94, 138–145.
  • Spokas, K., Novak, J., and Venterea, R. (2012). Biochar's role as an alternative N-fertilizer: ammonia capture. Plant and Soil 350, 35–42.
  • Spokas, K.A. (2010). Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management 1, 289–303.
  • Spokas, K.A., Novak, J.M., Stewart, C.E., Cantrell, K.B., Uchimiya, M., DuSaire, M.G., and Ro, K.S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85, 869–882.
  • Spokas, K.A., and Reicosky, D.C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science 3, Article 4.
  • Steinbeiss, S., Gleixner, G., and Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology & Biochemistry 41, 1301–1310.
  • Steiner, C., and Taylor, P. (2010). The Green Revolution. In: P. Taylor (Ed.), The biochar revolution: transforming agriculture and environment. Global Publishing Group. Victoria, Australia 361 pages, pp. 269–280.
  • Streubel, J.D., Collins, H.P., Garcia-Perez, M., Tarara, J., Granatstein, D., and Kruger, C.E. (2011). Influence of contrasting biochar types on five soils at increasing rates of application. Soil Science Society of America Journal 75, 1402–1413.
  • Sumner, M.E. and Miller, W.P. (1996). Cation Exchange Capacity and Exchange Coefficients In D. L. Sparks et al. (eds.) Methods of Soil Analysis Part 3—Chemical Methods. Madison, WI: Soil Science Society of America, American Society of Agronomy, SSSA Book Series, 1201–1229.
  • Sütterlin, H., Trittler, R., Bojanowski, S., Stadlbauer, E.A., and Kümmerer, K. (2007). Fate of benzalkonium chloride in a sewage sludge low temperature conversion process investigated by LC LC/ESI MS/MS. CLEAN–Soil, Air, Water 35, 81–87.
  • Taghizadeh-Toosi, A., Clough, T., Sherlock, R., and Condron, L. (2012). Biochar adsorbed ammonia is bioavailable. Plant and Soil 350, 57–69.
  • Tagoe, S., Horiuchi, T., and Matsui, T. (2008). Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant and Soil 306, 211–220.
  • Tanaka, S. (1963). Fundamental study on wood carbonization. Bulletin of Experimental Forest of Hokkaido University.
  • Taylor, P. (2010). Biochar ancient origins, modern solution. In: P. Taylor (Ed.), The biochar revolution: transforming agriculture and environment (pp. 1–18). Global Publishing Group, Victoria, Australia (361 pages).
  • The National Aeronautics and Space Administration (NASA). (2015) NASA Telescope Finds Elusive Buckyballs in Space. Available at http://www.nasa.gov/mission_pages/spitzer/news/spitzer20100722.html.
  • Titiladunayo, I., McDonald, A., and Fapetu, O. (2012). Effect of Temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste and Biomass Valorization 3, 311–318.
  • Titirici, M.-M., Antonietti, M., and Baccile, N. (2008). Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chemistry 10, 1204–1212.
  • Titirici, M.-M., Thomas, A., and Antonietti, M. (2007a). Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 31, 787–789.
  • Titirici, M.M., Thomas, A., Yu, S.-H., Müller, J.-O., and Antonietti, M. (2007b). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials 19, 4205–4212.
  • Trompowsky, P.M., Benites, V.D.M., Madari, B.E., Pimenta, A.S., Hockaday, W.C., and Hatcher, P.G. (2005). Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Organic Geochemistry 36, 1480–1489.
  • Tryon, E.H. (1948). Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs 18, 81–115.
  • Tsai, W.T., Lee, M.K., and Chang, Y.M. (2006). Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis 76, 230–237.
  • Tsai, W.T., Lee, M.K., and Chang, Y.M. (2007). Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98, 22–28.
  • Tsukashima, H. (1966). The infrared spectra of artificial coal made from submerged wood at Uozu, Toyama Prefecture, Japan. Bulletin of the Chemical Society of Japan 39, 460–465.
  • Uchimiya, M., Klasson, K.T., Wartelle, L.H., and Lima, I.M. (2011). Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Chemosphere 82, 1438–1447.
  • Ulyett, J., Sakrabani, R., Kibblewhite, M., and Hann, M. (2014). Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. European Journal of Soil Science 65, 96–104.
  • Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., and Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management 27, 205–212.
  • Uzun, B.B., Apaydin-Varol, E., Ates, F., Ozbay, N., and Putun, A.E. (2010). Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel 89, 176–184.
  • Uzun, B.B., Pütün, A.E., and Pütün, E. (2006). Fast pyrolysis of soybean cake: Product yields and compositions. Bioresource Technology 97, 569–576.
  • Van Krevelen, D. (1993). Coal: typology, physics, chemistry, constitution, 3rd completely revised edition, Elservier Science. Amsterdam pp 193–223.
  • Van Krevelen, D.W. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., and Cowie, A. (2010a). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327, 235–246.
  • van Zwieten, L., Kimber, S., Morris, S., Downie, A., Berger, E., Rust, J., and Scheer, C. (2010b). Influence of biochars on flux of N2O and CO2 from ferrosol. Soil Research 48, 555–568.
  • Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., and Diafas, I. (2010). Biochar application to soils—A critical scientific review of effects on soil properties, processes and functions. Joint Research Centre, Ispra, Italy.
  • Wang, T., Camps-Arbestain, M., Hedley, M., and Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil 357, 173–187.
  • Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., and Xing, B. (2013). Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution 174, 289–296.
  • Wannapeera, J., Fungtammasan, B., and Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 92, 99–105.
  • Watzinger, A., Feichtmair, S., Kitzler, B., Zehetner, F., Kloss, S., Wimmer, B., Zechmeister-Boltenstern, S., and Soja, G. (2014). Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment. European Journal of Soil Science 65, 40–51.
  • Wild, T. (2006). Demineralisierung und mechanisch/thermische Entwässerung von Braunkohlen und Biobrennstoffen. Universität Dortmund, Germany, 101–145.
  • Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., and Singh, S. (2014). Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of environmental management 146, 189–197.
  • Worasuwannarak, N., Sonobe, T., and Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis 78, 265–271.
  • Wu, M., Han, X., Zhong, T., Yuan, M., and Wu, W. (2016a). Soil organic carbon content affects the stability of biochar in paddy soil. Agriculture, Ecosystems & Environment 223, 59–66.
  • Wu, M., Yang, M., Han, X., Zhong, T., Zheng, Y., Ding, P., and Wu, W. (2016b). Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration. Environmental Science and Pollution Research 23, 1007–1014.
  • Xiao, B., Sun, X.F., and Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability 74, 307–319.
  • Yamato, M., Okimori, Y., Wibowo, I.F., Anshori, S., and Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science & Plant Nutrition 52, 489–495.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., and Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology 102, 6273–6278.
  • Yip, K., Xu, M., Li, C.Z., Jiang, S.P., and Wu, H. (2011). Biochar as a fuel: 3. Mechanistic understanding on biochar thermal annealing at mild temperatures and its effect on biochar reactivity. Energy & Fuels 25, 406–414.
  • Yoshida, T., and Antal, M.J. (2009). Sewage sludge carbonization for terra preta applications. Energy & Fuels 23, 5454–5459.
  • Yu, C., Tan, Y., Fang, M., Luo, Z., and Cen, K. (2005). Experimental study on alkali emission during rice straw pyrolysis. Journal-Zhejiang University (Engineering Science) 39, 1435–1444.
  • Zeng, L., Qin, C., Wang, L., and Li, W. (2011). Volatile compounds formed from the pyrolysis of chitosan. Carbohydrate Polymers 83, 1553–1557.
  • Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., and Crowley, D. (2010a). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment 139, 469–475.
  • Zhang, L., Xu, C., and Champagne, P. (2010b). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management 51, 969–982.
  • Zhao, L., Cao, X., Mašek, O., and Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256–257, 1–9.
  • Zimmerman, A.R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science & Technology 44, 1295–1301.
  • Zimmerman, A.R., Gao, B., and Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry 43, 1169–1179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.