1,385
Views
76
CrossRef citations to date
0
Altmetric
ARTICLES

Designing advanced biochar products for maximizing greenhouse gas mitigation potential

, , , , , , , , , & show all
Pages 1367-1401 | Published online: 17 Oct 2016

References

  • Xiong, Z., Shihong, Z., Haiping, Y., Tao, S., Yingquan, C., and Hanping, C. (2013). Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Res., 6(4), 1147–1153.
  • Smith, E., Gordon, R., Bourque, C., and Campbell, A. (2007). Comparison of three simple field methods for ammonia volatilization from manure. Can. J. Soil Sci., 87(4), 469–477.
  • IPCC. (2013). Climate Change 2013: the physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ Pr.
  • Dhillon, R.S., and von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass Bioenergy 48, 75–89.
  • Suddick, E.C., and Six, J. (2013). An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci. Total Environ., 465, 298–307.
  • Thangarajan, R., Bolan, N. S., Naidu, R., and Surapaneni, A. (2015). Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environmental Science and Pollution Research, 22(12), 8843–8854.
  • Goldberg, E.D. (1985). Black carbon in the environment: properties and distribution. New York: John Wiley & Sons Inc., 216.
  • Kuhlbusch, T.A.J., and Crutzen, P.J. (1995). Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem. Cycles 9(4), 491–501.
  • Lehmann, J. (2007). Bio-energy in the black. Front. Ecol. Environ., 5(7), 381–387.
  • Watson, A.Y., and Valberg, P.A. (2001). Carbon black and soot: Two different substances. Am. Ind. Hygiene Assoc. J., 62(2), 218–228.
  • Knowles, O.A., Robinson, B.H., Contangelo, A., and Clucas, L. (2011). Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ., 409(17), 3206–3210.
  • Lehmann, J., John, G., and R, M. (2006). Bio-char sequestration in terrestrial ecosystems - A review. Mitigation Adapt. Strategies Global Change 11(2), 403–427.
  • Shafeeyan, M.S., Daud, W.M.A.W., Houshmand, A., and Arami-Niya, A. (2011). Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Appl. Surf. Sci., 257(9), 3936–3942.
  • Aguilar-Chávez, Á., Díaz-Rojas, M., Cárdenas-Aquino, M.D.R., Dendooven, L., and Luna-Guido, M. (2012). Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol. Biochem., 52, 90–95.
  • Cayuela, M., Van Zwieten, L., Singh, B., Jeffery, S., Roig, A., and Sánchez-Monedero, M. (2014). Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ., 191, 5–16.
  • Taghizadeh-Toosi, A., Clough, T.J., Sherlock, R.R., and Condron, L.M. (2012). Biochar adsorbed ammonia is bioavailable. Plant Soil, 350(1–2), 57–69.
  • Mandal, S., Thangarajan, R., Bolan, N.S., Sarkar, B., Khan, N., Ok, Y.S., and Naidu, R. (2016). Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere, 142, 120–127.
  • Case, S.D.C., McNamara, N.P., Reay, D.S., and Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil – The role of soil aeration. Soil Biol. Biochem., 51, 125–134.
  • Ding, Y., Liu, Y.X., Wu, W.X., Shi, D.Z., Yang, M., and Zhong, Z.K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut., 213(1–4), 47–55.
  • Beck, D.A., Johnson, G.R., and Spolek, G.A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ. Pollut., 159(8–9), 2111–2118.
  • Singh, B.P., Hatton, B.J., Singh, B., Cowie, A.L., and Kathuria, A. (2010). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual., 39(4), 1224–1235.
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., and Ok, Y.S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95, 433–441.
  • Mohan, D., Sarswat, A., Ok, Y.S., and Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour. Technol., 160, 191–202.
  • Rajapaksha, A.U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S.X., and Ok, Y.S. (2014). Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere 111, 500–504.
  • Vithanage, M., Rajapaksha, A.U., Tang, X., Thiele-Bruhn, S., Kim, K.H., Lee, S.E., and Ok, Y.S. (2014). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J. Environ. Manage., 141, 95–103.
  • Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Aust. J. Soil Res., 46(5), 437–444.
  • Laird, D.A., Fleming, P., Davis, D.D., Horton, R., Wang, B., and Karlen, D.L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158(3–4), 443–449.
  • Chen, C.R., Phillips, I.R., Condron, L.M., Goloran, J., Xu, Z.H., and Chan, K.Y. (2013). Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand. Plant Soil 367(1–2), 301–312.
  • Slavich, P.G., Sinclair, K., Morris, S.G., Kimber, S.W.L., Downie, A., and Van Zwieten, L. (2013). Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil 366(1–2), 213–227.
  • Almaroai, Y.A., Usman, A.R., Ahmad, M., Moon, D.H., Cho, J.S., Joo, Y.K., and Ok, Y.S. (2014). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ. Earth Sci., 71(3), 1289–1296.
  • Moon, D.H., Park, J.W., Chang, Y.Y., Ok, Y.S., Lee, S.S., Ahmad, M., and Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res., 20(12), 8464–8471.
  • Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., and Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour. Technol., 152, 538–542.
  • Martin, S.M., Kookana, R.S., Van Zwieten, L., and Krull, E. (2012). Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J. Hazard. Mater., 231, 70–78.
  • Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., and Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol., 130, 457–462.
  • Clough, T.J., Condron, L.M., Kammann, C., and Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy (Basel) 3, 275–293.
  • Day, D., Evans, R.J., Lee, J.W., and Reicosky, D. (2005). Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30(14), 2558–2579.
  • Novak, J.M., and Busscher, W.J. (2009). Evaluation of designer biochars to ameliorate select chemical and physical characteristics of degraded soils. AIChE Annual Meeting, Nashville. 2009. (conference paper).
  • IPCC. (2007). Climate Change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ Pr.
  • Kalnay, E., and Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 423(6939), 528–531.
  • EPA. (1997). Environmental guidelines, use and disposal of biosolid products. NSW: NSW, Environmental Protection Authority, in NSW, Environmental Protection Authority.
  • Shahabadi, M.B., Yerushalmi, L., and Haghighat, F. (2009). Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Res., 43(10), 2679–2687.
  • IPCC. (1996). Climate Change 1995, the science of climate change. contribution of Working Group I to the second assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
  • Frolking, S., Li, C., Braswell, R., and Fuglestvedt, J. (2004). Short- and long-term greenhouse gas and radiative forcing impacts of changing water management in Asian rice paddies. Global Change Biol., 10(7), 1180–1196.
  • Burgos, M., Sierra, A., Ortega, T., and Forja, J.M. (2015). Anthropogenic effects on greenhouse gas (CH4 and N2O) emissions in the Guadalete River Estuary (SW Spain). Sci. Total Environ., 503, 179–189.
  • Lemke, R.L., Zhong, Z., Campbell, C.A., and Zentner, R. (2007). Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agron. J., 99(6), 1719–1725.
  • Jones, C.A., and Sands, R.D. Impact of agricultural productivity gains on greenhouse gas emissions: A global analysis. Am. J. Agric. Econ., aat035.
  • Papageorgiou, A., Barton, J., and Karagiannidis, A. (2009). Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England. J. Environ. Manage., 90(10), 2999–3012.
  • Havlík, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M.C., and Frank, S. (2014). Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci., 111(10), 3709–3714.
  • Burney, J., and Ramanathan, V. (2014). Recent climate and air pollution impacts on Indian agriculture. Proc. Natl. Acad. Sci., 111(46), 16319–16324.
  • Gosain, A., Rao, S., and Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Curr. Sci., 90(3), 346–353.
  • van Groenigen, K.J., Osenberg, C.W., and Hungate, B.A. (2011). Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475(7355), 214–216.
  • Weber, C.L., and Matthews, H.S. (2008). Food-miles and the relative climate impacts of food choices in the United States. Environ. Sci. Technol., 42(10), 3508–3513.
  • Brandao, M., i Canals, L.M., and Clift, R. (2011). Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 35(6), 2323–2336.
  • Jabro, J.D., Sainju, U., Stevens, W.B., and Evans, R.G. (2008). Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J. Environ. Manage., 88(4), 1478–1484.
  • Al-Kaisi, M.M., and Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J. Environ. Qual., 34(2), 437–445.
  • Syakila, A., and Kroeze, C. (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measur. Manage., 1(1), 17–26.
  • Lehmann, J. (2007). A handful of carbon. Nature 447.7141, 143–144.
  • Kole, C. (2013). Genomics and breeding for climate-resilient crops: Vol. 2. Target Traits.
  • Paustian, K., Cole, C.V., Sauerbeck, D., and Sampson, N. (1998). CO2 mitigation by agriculture: An overview. Clim. Change 40(1), 135–162.
  • Wheeler, T., and Von Braun, J. (2013). Climate change impacts on global food security. Science 341(6145), 508–513.
  • Schimel, D.S. (1995). Terrestrial biogeochemical cycles: Global estimates with remote sensing. Remote Sens. Environ., 51(1), 49–56.
  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science 304(5677), 1623–1627.
  • Cayuela, M.L., Jeffery, S., and van Zwieten, L. (2015). The molar H: COrg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric. Ecosyst. Environ., 202, 135–138.
  • Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. Royal Soc. B: Biol. Sci., 368(1621), 20130122.
  • Van Zwieten, L., Singh, B.P., Kimber, S.W.L., Murphy, D.V., Macdonald, L.M., Rust, J., and Morris, S. (2014). An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agric. Ecosyst. Environ., 191(0), 53–62.
  • Keith, A., Singh, B., and Singh, B.P. (2011). Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ. Sci. Technol., 45(22), 9611–9618.
  • Whitman, T., Singh, B.P., and Zimmerman, A.R. (2015). Priming effects in biochar-amended soils: implications of biochar-soil organic matter interactions for carbon storage. Biochar. Environ. Manage.: Sci. Technol. Implement., 455–488.
  • Sarmah, A.K., Srinivasan, P., Smernik, R.J., Manley-Harris, M., Antal, M.J., Downie, A., and van Zwieten, L. (2010). Retention capacity of biochar-amended New Zealand dairy farm soil for an estrogenic steroid hormone and its primary metabolite. Soil Res., 48(7), 648–658.
  • Rogovska, N., Laird, D., Cruse, R., Fleming, P., Parkin, T., and Meek, D. (2011). Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J., 75(3), 871–879.
  • Quin, P.R., Cowie, A.L., Flavel, R.J., Keen, B.P., Macdonald, L.M., Morris, S.G., Van Zwieten, L. (2014). Oil mallee biochar improves soil structural properties—a study with x-ray micro-CT. Agriculture, Ecosystems & Environment, 191, 142–149.
  • Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T., Shitumbanuma, V., O'Toole, A., Sundqvist, K.L., Arp, H.P., and Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol., 46(5), 2830–2838.
  • Hilber, I., Blum, F., Leifeld, J., Schmidt, H.P., and Bucheli, T.D. (2012). Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. J. Agric. Food Chem., 60(12), 3042–3050.
  • Maliszewska-Kordybach, B., Klimkowicz-Pawlas, A., Smreczak, B., and Janusauskaite, D. (2007). Ecotoxic effect of phenanthrene on nitrifying bacteria in soils of different properties. J. Environ. Qual., 36(6), 1635–1645.
  • Guo, G.X., Deng, H., Qiao, M., Yao, H.Y., and Zhu, Y.G. (2013). Effect of long-term wastewater irrigation on potential denitrification and denitrifying communities in soils at the watershed scale. Environ. Sci. Technol., 47(7), 3105–3113.
  • Spokas, K.A. (2010). Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manage., 1(2), 289–303.
  • Shi, Y., Zhang, L., and Zhao, M. (2015). Effect of biochar application on the efficacy of the nitrification inhibitor dicyandiamide in soils. BioResources 10(1), 1330–1345.
  • Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A., Lehmann, J. (2013). Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci. Rep., 3, 1732.
  • Li, Y., Yu, S., Strong, J., and Wang, H. (2012). Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? J. Soils Sediments 12(5), 683–693.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., and Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2), 235–246.
  • DeLuca, T.H., and Aplet, G.H. (2008). Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ., 6(1), 18–24.
  • Spokas, K.A., Koskinen, W.C., Baker, J.M., and Reicosky, D.C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77(4), 574–581.
  • Case, S.D., McNamara, N.P., Reay, D.S., and Whitaker, J. (2014). Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy 6(1), 76–89.
  • Wu, F., Jia, Z., Wang, S., Chang, S.X., and Startsev, A. (2013). Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fertil. Soils 49(5), 555–565.
  • Singh, B.P., Cowie, A.L., and Smernik, R.J. (2012). Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol., 46(21), 11770–11778.
  • Lehmann, J., and Solomon, D. (2010). Organic carbon chemistry in soils observed by synchrotron-based spectroscopy. Developments in Soil Science, 34, 289–312.
  • Clough, T.J., and Condron, L.M. (2010). Biochar and the nitrogen cycle: Introduction. J. Environ. Qual., 39(4), 1218–1223.
  • Spokas, K.A., et al. (2012). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual., 41(4), 973–989.
  • Ahmad, M., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33.
  • Zhou, Y., et al. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem. Eng. J., 231, 512–518.
  • Mandal, S., Sarkar, B., Bolan, N., Ok, Y.S., & Naidu, R. (2016). Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manage., In press. doi: 10.1016/j.jenvman.2016.05.034.
  • Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nat. Commun., 1(5), 1–9.
  • Mukherjee, A., and Zimmerman, A.R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 193–194, 122–130.
  • Gundale, M.J., and DeLuca, T.H. (2007). Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biol. Fertil. Soils 43(3), 303–311.
  • Solomon, D., Lehmann, J., Thies, J., Schäfer, T., Liang, B., Kinyangi, J., and Skjemstad, J. (2007). Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochimica et Cosmochimica Acta 71(9), 2285–2298.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., and Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biol. Biochem., 43(9), 1812–1836.
  • Lee, J.W., and Li, R. (2002). Method for reducing CO2, CO, NOX and SOX emission. United States, U.S. Patent No. 6,447,437.
  • Zimmerman, A.R., Gao, B., and Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem., 43(6), 1169–1179.
  • Fuwape, J.A. (1993). Charcoal and fuel value of agroforestry tree crops. Agrofor. Syst., 22(3), 175–179.
  • Oyedun, A.O., Lam, K.L., and Hui, C.W. (2012). Charcoal production via multistage pyrolysis. Chin. J. Chem. Eng., 20(3), 455–460.
  • Foley, G. (1986). Charcoal making in developing countries, Earthscan, UK: International Institute for Environmental and Development. p. 124.
  • Streubel, J.D., Collins, H.P., Garcia-Perez, M., Tarara, J., Granatstein, D., and Kruger, C.E. (2011). Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J., 75(4), 1402–1413.
  • Zimmerman, A.R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol., 44(4), 1295–1301.
  • Díaz-Rojas, M., Aguilar-Chávez, Á., del Rosario Cárdenas-Aquino, M., Ruíz-Valdiviezo, V.M., Hernández-Valdez, E., Luna-Guido, M., and Dendooven, L. (2014). Effects of wastewater sludge, urea and charcoal on greenhouse gas emissions in pots planted with wheat. Appl. Soil Ecol., 73, 19–25.
  • Rashidi, N.A., Yusup, S., and Hameed, B.H. (2013). Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon. Energy 61, 440–446.
  • Isoda, N., Rodrigues, R., Silva, A., Goncalves, M., Mandelli, D., Figueiredo, F.C.A., and Carvalho, W.A. (2014). Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design. Powder Technol., 256, 175–181.
  • Ioannidou, O., and Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev., 11(9), 1966–2005.
  • Moreno-Castilla, C., Carrasco-Marín, F., Lopez-Ramon, M.V., and Alvarez-Merino, M.A. (2001). Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon 39(9), 1415–1420.
  • Pevida, C., Plaza, M.G., Arias, B., Fermoso, J., Rubiera, F., and Pis, J.J. (2008). Surface modification of activated carbons for CO2 capture. Appl. Surf. Sci., 254(22), 7165–7172.
  • Plaza, M.G., Pevida, C., Arias, B., Fermoso, J., Arenillas, A., Rubiera, F., and Pis, J.J. (2008). Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. J. Therm. Anal. Calorim., 92(2), 601–606.
  • Kuzyakov, Y., Friedel, J.K., and Stahr, K. (2000). Review of mechanisms and quantification of priming effects. Soil Biol. Biochem., 32(11–12), 1485–1498.
  • Kuzyakov, Y. (2010). Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem., 42(9), 1363–1371.
  • Whitman, T., Singh, B.P., Zimmerman, A.R., Lehmann, J., & Joseph, S. (2015). Priming effects in biochar-amended soils: Implications of biochar-soil organic matter interactions for carbon storage. Biochar Environ. Manage.: Sci. Technol. Implement, 455–488.
  • Chowdhury, S. (2013). Nutrient amendment and carbon sequestration in soil. University of South Australia, Doctoral dissertation. p. 144.
  • Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., and Brookes, P.C. (2011). Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem., 43(11), 2304–2314.
  • Singh, B.P., and Cowie, A.L. (2014). Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep., 4, 3687.
  • Fang, Y., Singh, B., and Singh, B.P. (2015). Effect of temperature on biochar priming effects and its stability in soils. Soil Biol. Biochem., 80, 136–145.
  • Maestrini, B., Nannipieri, P., and Abiven, S. (2014). A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy, 7(4), 577–590.
  • Atkinson, C.J., Fitzgerald, J.D., and Hipps, N.A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337(1–2), 1–18.
  • Jeffery, S., Verheijen, F.G., Van Der Velde, M., and Bastos, A.C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ., 144(1), 175–187.
  • Ippolito, J.A., Spokas, K.A., Novak, J.M., Lentz, R.D., and Cantrell, K.B. (2015). Biochar elemental composition and factors influencing nutrient retention. Biochar Environ. Manage.: Sci. Technol. Implement., 139.
  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., and Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70(5), 1719–1730.
  • Laird, D.A., Brown, R.C., Amonette, J.E., and Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod. Biorefin., 3(5), 547–562.
  • Wardle, D.A., Nilsson, M.C., and Zackrisson, O. (2008). Response to comment on “fire-derived charcoal causes loss of forest humus”. Science 321(5894).
  • Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., and Krull, E. (2008). Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci., 1(12), 832–835.
  • Joseph, S., Graber, E.R., Chia, C., Munroe, P., Donne, S., Thomas, T., and Li, L. (2013). Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manage., 4(3), 323–343.
  • Novak, J.M., Cantrell, K.B., Watts, D.W., Busscher, W.J., and Johnson, M.G. (2014). Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. J. Soils Sediments 14(2), 330–343.
  • Chen, B., Chen, Z., and Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol., 102(2), 716–723.
  • Jing, X.R., Wang, Y.Y., Liu, W.J., Wang, Y.K., and Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem. Eng. J., 248, 168–174.
  • Paajanen, A., Lehto, J., Santapakka, T., and Morneau, J.P. (1997). Sorption of cobalt on activated carbons from aqueous solutions. Sep. Sci. Technol., 32(1–4), 813–826.
  • Rehrah, D., Reddy, M.R., Novak, J.M., Bansode, R.R., Schimmel, K.A., Yu, J., and Ahmedna, M. (2014). Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 108, 301–309.
  • Novak, J., Cantrell, K., and Watts, D. (2013). Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis. Bioenergy Res., 6(1), 114–130.
  • Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680.
  • Lourie, O., and Wagner, H.D. (1998). Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res., 13(9), 2418–2422.
  • Johns, M.M., Marshall, W.E., and Toles, C.A. (1999). The effect of activation method on the properties of pecan shell-activated carbons. J. Chem. Technol. Biotechnol., 74(11), 1037–1044.
  • Kim, J.W., Sohn, M.H., Kim, D.S., Sohn, S.M., and Kwon, Y.S. (2001). Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu2+ ion. J. Hazard. Mater., 85(3), 301–315.
  • Atkinson, J.D., Fortunato, M.E., Dastgheib, S.A., Rostam-Abadi, M., Rood, M.J., and Suslick, K.S. (2011). Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis. Carbon 49(2), 587–598.
  • Agrafioti, E., Bouras, G., Kalderis, D., and Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 101, 72–78.
  • Agrafioti, E., Kalderis, D. and Diamadopoulos, E. (2014). Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J. Environ. Manage., 146, 444–450.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., and Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard. Mater., 190(1–3), 501–507.
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A.R., Pullammanappallil, P., and Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol., 110, 50–56.
  • Wang, M.C., Sheng, G.D., and Qiu, Y.P. (2014). A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. Int. J. Environ. Sci. Technol., 1–8.
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., and Huhnke, R. (2015). Recent advances in utilization of biochar. Renew. Sustain. Energy Rev., 42(0), 1055–1064.
  • Tsang, S.C., Chen, Y.K., Harris, P.J., and Green, M.L. (1994). A simple chemical method of opening and filling carbon nanotubes. Nature 372(6502), 159–162.
  • Satishkumar, B.C., Govindaraj, A., Mofokeng, J., Subbanna, G.N., and Rao, C.N.R. (1996). Novel experiments with carbon nanotubes: Opening, filling, closing and functionalizing nanotubes. J. Phys. B: Atom. Mol. Opt. Phys., 29(21), 4925–4934.
  • Yu, Z., and Brus, L.E. (2000). Reversible oxidation effect in raman scattering from metallic single-wall carbon nanotubes. J. Phys. Chem. A, 104(47), 10998–10999.
  • Hernadi, K., Siska, A., Thien-Nga, L., Forro, L., and Kiricsi, I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion., 141–142, 203–209.
  • Martínez-Hernández, A.L., Velasco-Santos, C., and Castaño, V.M. (2010). Carbon nanotubes composites: Processing, grafting and mechanical and thermal properties. Curr. Nanosci., 6(1), 12–39.
  • Lou, X., Detrembleur, C., Sciannamea, V., Pagnoulle, C., and Jérôme, R. (2004). Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes. Polymer 45(18), 6097–6102.
  • Paul, A., Grady, B.P., and Ford, W.T. (2012). Polystyrene composites of single-walled carbon nanotubes-graft-polystyrene. Polym. Int., 61(11), 1603–1610.
  • Yong, S.K., Bolan, N.S., Lombi, E., Skinner, W., and Guibal, E. (2013). Sulfur-containing chitin and chitosan derivatives as trace metal adsorbents: A review. Crit. Rev. Environ. Sci. Technol., 43(16), 1741–1794.
  • Liu, P. (2005). Modifications of carbon nanotubes with polymers. Eur. Polym. J., 41(11), 2693–2703.
  • Olek, M., Hilgendorff, M., and Giersig, M. (2007). A simple route for the attachment of colloidal nanocrystals to noncovalently modified multiwalled carbon nanotubes. Colloids Surf. A: Physicochem. Eng. Aspects 292(1), 83–85.
  • Chatterjee, S., Lim, S.R., and Woo, S.H. (2010). Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chem. Eng. J., 160(1), 27–32.
  • Yao, Y., Gao, B., Zhang, M., Inyang, M., and Zimmerman, A.R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89(11), 1467–1471.
  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., and Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J., 200–202, 673–680.
  • Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., and Lehmann, J. (2010). An investigation into the reactions of biochar in soil. Aust. J. Soil Res., 48(6–7), 501–515.
  • Lehmann, J., and Joseph, S. (eds.) (2009). Biochar for environmental management; science, technology and implementation. Routledge, 2015.
  • Antal, M.J., and Grønli, M. (2003). The art, science, and technology of charcoal production. Ind. Eng. Chem. Res., 42(8), 1619–1640.
  • Glaser, B., Lehmann, J., and Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol. Fertil. Soils 35(4), 219–230.
  • Gómez-Luna, B.E., Rivera-Mosqueda, M.C., Dendooven, L., Vázquez-Marrufo, G., and Olalde-Portugal, V. (2009). Charcoal production at kiln sites affects C and N dynamics and associated soil microorganisms in Quercus spp. temperate forests of central Mexico. Appl. Soil Ecol., 41(1), 50–58.
  • Vazquez-Marrufo, G., Serrato-Flores, R., Frias-Hernandez, J.T., Jimenez-Magdaleno, L., and Olalde-Portugal, V. (2003). Microsite soil changes associated with traditional charcoal production in Quercus temperate forest in central Mexico. Phyton 72, 85–99.
  • Czakkel, O., Székely, E., Koczka, B., Geissler, E., and László, K. (2012). Drying of resorcinol-formaldehyde gels with CO2 medium. Micropor. Mesopor. Mater., 148(1), 34–42.
  • Di Lonardo, S., Vaccari, F.P., Baronti, S., Capuana, M., Bacci, L., Sabatini, F., and Miglietta, F. (2013). Biochar successfully replaces activated charcoal for in vitro culture of two white poplar clones reducing ethylene concentration. Plant Growth Regul., 69(1), 43–50.
  • Foo, K., and Hameed, B. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. J. Hazard. Mater., 171(1), 54–60.
  • Awadallah-F, A., and Al-Muhtaseb, S.A. (2013). Carbon dioxide sequestration and methane removal from exhaust gases using resorcinol-formaldehyde activated carbon xerogel. Adsorption 19(5), 967–977.
  • Masiello, C., and Druffel, E. (1998). Black carbon in deep-sea sediments. Science 280(5371), 1911–1913.
  • Ni, M., Huang, J., Lu, S., Li, X., Yan, J., and Cen, K. (2014). A review on black carbon emissions, worldwide and in China. Chemosphere 107, 83–93.
  • Koelmans, A.A., Jonker, M.T., Cornelissen, G., Bucheli, T.D., Van Noort, P.C., and Gustafsson, Ö. (2006). Black carbon: The reverse of its dark side. Chemosphere 63(3), 365–377.
  • Cheng, C.H., Lehmann, J., Thies, J.E., Burton, S.D., and Engelhard, M.H. (2006). Oxidation of black carbon by biotic and abiotic processes. Org. Geochem., 37(11), 1477–1488.
  • Mukherjee, A., Lal, R., and Zimmerman, A.R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci. Total Environ., 487(0), 26–36.
  • Nelissen, V., Saha, B.K., Ruysschaert, G., and Boeckx, P. (2014). Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem., 70(0), 244–255.
  • Verhoeven, E., and Six, J. (2014). Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agric. Ecosyst. Environ., 191(0), 27–38.
  • Harter, J., Krause, H.M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., and Behrens, S. (2014). Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J., 8(3), 660–674.
  • Fungo, B., Guerena, D., Thiongo, M., Lehmann, J., Neufeldt, H., and Kalbitz, K. (2014). N2O and CH4 emission from soil amended with steam-activated biochar. J. Plant Nutrit. Soil Sci., 177(1), 34–38.
  • Case, S.D., McNamara, N.P., Reay, D.S., Stott, A.W., Grant, H.K., and Whitaker, J. (2015). Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol. Biochem., 81, 178–185.
  • Lin, X.W., Xie, Z.B., Zheng, J.Y., Liu, Q., Bei, Q.C., and Zhu, J.G. (2015). Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Euro. J. Soil Sci., 66(2), 329–338.
  • Van Zwieten, L., Kimber, S.W.L., Morris, S.G., Singh, B.P., Grace, P.R., Scheer, C., and Cowie, A.L. (2013). Pyrolysing poultry litter reduces N2O and CO2 fluxes. Sci. Total Environ., 465(0), 279–287.
  • Angst, T.E., Six, J., Reay, D.S., and Sohi, S.P. (2014). Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California. Agric. Ecosyst. Environ., 191(0), 17–26.
  • Shen, J., Tang, H., Liu, J., Wang, C., Li, Y., Ge, T., and Wu, J. (2014). Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric. Ecosyst. Environ., 188(0), 264–274.
  • Watanabe, A., Ikeya, K., Kanazaki, N., Makabe, S., Sugiura, Y., and Shibata, A. (2014). Five crop seasons' records of greenhouse gas fluxes from upland fields with repetitive applications of biochar and cattle manure. J. Environ. Manage., 144(0), 168–175.
  • Zhu, K., Christel, W., Bruun, S., and Jensen, L.S. (2014). The different effects of applying fresh, composted or charred manure on soil N2O emissions. Soil Biol. Biochem., 74, 61–69.
  • Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., and Kammann, C. (2014). Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ., 191(0), 39–52.
  • Castaldi, S., Riondino, M., Baronti, S., Esposito, F.R., Marzaioli, R., Rutigliano, F.A., and Miglietta, F. (2011). Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85(9), 1464–1471.
  • Xie, Z., Xu, Y., Liu, G., Liu, Q., Zhu, J., Tu, C., and Hu, S. (2013). Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil 370(1–2), 527–540.
  • Sackett, T.E., Basiliko, N., Noyce, G.L., Winsborough, C., Schurman, J., Ikeda, C., and Thomas, S.C. (2015). Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy, 7(5), 1062–1074.
  • Bell, M.J., and Worrall, F. (2011). Charcoal addition to soils in NE England: A carbon sink with environmental co-benefits? Sci. Total Environ., 409(9), 1704–1714.
  • Kimetu, J.M., Hill, J.M., Husein, M., Bergerson, J., and Layzell, D.B. (2014). Using activated biochar for greenhouse gas mitigation and industrial water treatment. Mitigation Adapt. Strat. Global Change 1–17.
  • Hosseini, S., Bayesti, I., Marahel, E., Babadi, F.E., Abdullah, L.C., and Choong, T.S.Y. (2015). Adsorption of carbon dioxide using activated carbon impregnated with Cu promoted by zinc. J. Taiwan Inst. Chem. Eng., 52, 109–117.
  • Heidari, A., Younesi, H., Rashidi, A., and Ghoreyshi, A.A. (2014). Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem. Eng. J., 254, 503–513.
  • Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M. (2012). Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci. Total Environ., 435–436, 567–572.
  • Rajapaksha, A.U., Vithanage, M., Ahmad, M., Seo, D.C., Cho, J.S., Lee, S.E., and Ok, Y.S. (2015). Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater., 290, 43–50.
  • Vithanage, M., Rajapaksha, A.U., Zhang, M., Thiele-Bruhn, S., Lee, S.S., and Ok, Y.S. (2015). Acid-activated biochar increased sulfamethazine retention in soils. Environ. Sci. Pollut. Res., 22(3), 2175–2186.
  • Shen, B., Li, G., Wang, F., Wang, Y., He, C., Zhang, M., and Singh, S. (2015). Elemental mercury removal by the modified bio-char from medicinal residues. Chem. Eng. J., 272, 28–37.
  • Yang, G.-X., and Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res., 48, 396–405.
  • Liu, P., Liu, W.J., Jiang, H., Chen, J.J., Li, W.W., and Yu, H.Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol., 121, 235–240.
  • Jung, K.W., Hwang, M.J., Jeong, T.U., and Ahn, K.H. (2015). A novel approach for preparation of modified-biochar derived from marine macroalgae: Dual purpose electro-modification for improvement of surface area and metal impregnation. Bioresour. Technol., 191, 342–345.
  • Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A.R., Ma, L.Q., and Migliaccio, K.W. (2015). Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresour. Technol., 181, 13–17.
  • Zhang, M.M., Liu, Y.G., Li, T.T., Xu, W.H., Zheng, B.H., Tan, X.F., and Wang, S.F. (2015). Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr(vi) from aqueous solution. RSC Adv., 5(58), 46955–46964.
  • Lee, B.-K., and Nguyen, M.-V. (2014). Cu2+ ion adsorption from aqueous solutions by amine activated poultry manure biochar. J. Selcuk Univ. Natl. Appl. Sci., 877–884.
  • Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., and Al-Wabel, M.I. (2016). Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environ. Geochem. Health, 38(2), 511–521.
  • De, M., Azargohar, R., Dalai, A.K., and Shewchuk, S.R. (2013). Mercury removal by bio-char based modified activated carbons. Fuel 103, 570–578.
  • Dastgheib, S.A., and Rockstraw, D.A. (2001). Pecan shell activated carbon: synthesis, characterization, and application for the removal of copper from aqueous solution. Carbon 39(12), 1849–1855.
  • Puziy, A.M., Poddubnaya, O.I., Martınez-Alonso, A., Suárez-Garcıa, F., and Tascón, J.M.D. (2002). Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon 40(9), 1493–1505.
  • Vargas, A.M., Cazetta, A.L., Garcia, C.A., Moraes, J.C., Nogami, E.M., Lenzi, E., and Almeida, V.C. (2011). Preparation and characterization of activated carbon from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods. J. Environ. Manage., 92(1), 178–184.
  • Park, J., Hung, I., Gan, Z., Rojas, O.J., Lim, K.H., and Park, S. (2013). Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour. Technol., 149, 383–389.
  • Król, M., Gryglewicz, G., and Machnikowski, J. (2011). KOH activation of pitch-derived carbonaceous materials—Effect of carbonization degree. Fuel Process. Technol., 92(1), 158–165.
  • Zhang, M., and Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem. Eng. J., 226, 286–292.
  • Bolan, N.S., Wong, L., and Adriano, D. (2004). Nutrient removal from farm effluents. Bioresour. Technol., 94(3), 251–260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.