893
Views
26
CrossRef citations to date
0
Altmetric
ARTICLES

Phthalate contamination in aquatic environment: A critical review of the process factors that influence their removal in conventional and advanced wastewater treatment

&
Pages 1402-1439 | Published online: 11 Nov 2016

References

  • Abdel daiem, M. M., Rivera-Utrilla, J., Ocampo-Pérez, R., Méndez-Díaz, J. D., and Sánchez-Polo, M. (2012). Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies–a review. J. Environ. Manage. 109, 164–178. doi:10.1016/j.jenvman.2012.05.014
  • Adams, W. J., Biddinger, G. R., Robillard, K. A., and Gorsuch, J. W. (1995). A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ. Toxicol. Chem., 14, 1569–1574.
  • Aleboyeh, A., Moussa, Y., and Aleboyeh, H. (2005). The effect of operational parameters on UV/H2O2 decolourisation of acid blue 74. Dyes Pigments, 66, 129–134.
  • Andreozzi, R., Caprio, V., Insola, A., and Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today, 53, 51–59.
  • Api, A. M. (2001). Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem. Toxicol., 39, 97–108. doi:10.1016/S0278-6915(00)00124-1
  • Astill, B. D., Gingell, R., Guest, D., Hellwig, J., Hodgson, J. R., Kuettler, K., Mellert, W., Murphy, S. R., Sielken, R. L. Jr., and Tyler, T. R. (1996). Oncogenicity testing of 2-ethylhexanol in Fischer 344 rats and B6C3F1 mice. Fund. Appl. Toxicol., 31, 29–41.
  • Axel Clausen, P., Lindeberg Bille, R. L., Nilsson, T., Hansen, V., Svensmark, B., and Bøwadt, S. (2003). Simultaneous extraction of di(2-ethylhexyl) phthalate and nonionic surfactants from house dust. J. Chromatogr. A, 986, 179–190. doi:10.1016/S0021-9673(02)02007-1
  • Ayranci, E., and Bayram, E. (2005). Adsorption of phthalic acid and its esters onto high-area activated carbon-cloth studied by in situ UV-spectroscopy. J. Hazard. Mater., 122, 147–153. doi:10.1016/j.jhazmat.2005.03.022
  • Bagó, B., Martín, Y., Mejía, G., Broto-Puig, F., Díaz-Ferrero, J., Agut, M., and Comellas, L. (2005). Di-(2-ethylhexyl)phthalate in sewage sludge and post-treated sludge: quantitative determination by HRGC-MS and mass spectral characterization. Chemosphere, 59, 1191–1195. doi:10.1016/j.chemosphere.2004.11.077
  • Barnabé, S., Beauchesne, I., Cooper, D. G., Nicell, J. A. (2008). Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Res., 42, 153–162.
  • Bauer, M. J., and Herrmann, R. (1997). Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci. Tot. Environ., 208, 49–57. doi:10.1016/S0048-9697(97)00272-6
  • Behnke, W., Nolting, F., and Zetzsch, C. (1987). An aerosol smog chamber for testing abiotic degradation. In R. Greenhalgh and T. R. Roberts (Eds.), Pesticide science and biotechnology, proceedings of the International Congress of Pesticide Chemistry, (401–404). Oxford, England: Blackwell.
  • Benson, R. (2009). Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate. Regul. Toxicol. Pharmacol., 53, 90–101.
  • Bette, H. (2007). California bans phthalates in toys for children. Chem. Eng. News, 12.
  • Blount, B. C., Silva, M. J., Caudill, S. P., Needham, L. L., Pirkle, J. L., Sampson, E. J., Lucier, G. W., Jackson, R. J., and Brock, J. W. (2000). Levels of seven urinary phthalate metabolites in a human reference population. Environ. Health Perspect., 108, 979–982. doi:10.1289/ehp.00108979
  • Bolong, N., Ismail, A. F., Salim, M. R., and Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246.
  • Bornehag, C.-G., Sundell, J., Weschler, C. J., Sigsgaard, T., Lundgren, B., Hasselgren, M., and Hägerhed-Engman, L. (2004). The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ. Health Perspect., 112, 1393–1397. doi:10.1289/ehp.7187
  • Burbano, A. A., Dionysiou, D. D., Suidan, M. T., and Richardson, T. L. (2005). Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res., 39, 107–118.
  • Caliman, F. A., and Gavrilescu, M. (2009). Pharmaceuticals, personal care products and endocrine disrupting agents in the environment - a review. CLEAN - Soil, Air, Water, 37, 277–303. doi:10.1002/clen.200900038
  • Call, D. J., Markee, T. P., Geiger, D. L., Brooke, L. T., VandeVenter, F. A., Cox, D. A., Genisot, K. I., Robillard, K. A., Gorsuch, J. W., Parkerton, T. F., Reiley, M. C., Ankley, G. T., and Mount, D. R. (2001). An assessment of the toxicity of phthalate esters to freshwater benthos. 1. Aqueous exposures. Environ. Toxicol. Chem., 20, 1798–1804.
  • Cao, X., Ai, N., and Meng, X. (2014). Simultaneous removal of di-(2-ethylhexyl) phthalate and nitrogen in a laboratory-scale pre-denitrification biofilter system. Bioresour. Technol., 156, 29–34. doi:10.1016/j.biortech.2013.12.128
  • Chang, B. V., Liao, G. S., and Yuan, S. Y. (2005). Anaerobic degradation of di-n-butyl phthalate and di-(2-ethylhexyl) phthalate in sludge. Bull. Environ. Sci. Toxicol., 75, 775–782.
  • Chang, B. V, Yang, C. M., Cheng, C. H., and Yuan, S. Y. (2004). Biodegradation of phthalate esters by two bacteria strains. Chemosphere, 55, 533–538. doi:10.1016/j.chemosphere.2003.11.057
  • Chatterjee, S., and Dutta, T. K. (2008). Metabolic cooperation of Gordonia sp. strain MTCC 4818 and Arthrobacter sp. strain WY in the utilization of butyl benzyl phthalate: effect of a novel co-culture in the degradation of a mixture of phthalates. Microbiology, 154, 3338–3346.
  • Chen, C. Y., and Chung, Y. C. (2007). Removal of phthalate esters from aqueous solution by molybdate impregnated chitosan beads. Environ. Eng. Sci., 24, 834–841.
  • Chen, J.-A., Li, X., Li, J., Cao, J., Qiu, Z., Zhao, Q., Xu, C., and Shu, W. (2007). Degradation of environmental endocrine disrup tor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y. Appl. Microbiol. Biotechnol., 74, 676–682. doi:10.1007/s00253-006-0700-3
  • Chen, R. Z., and Pignatello, J. J. (1997). Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidation of aromatic compounds. Environ. Sci. Technol., 31, 2345–2349
  • Chen, Y., Hsieh, D., and Shang, N. (2011). Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst. J. Hazard. Mater., 192, 1017–1025.
  • Chen, Y., Shang, N., and Hsieh, D. (2008). Decomposition of dimethyl phthalate in an aqueous solution by ozonation with high silica zeolites and UV radiation. J. Hazard. Mater., 157, 260–268.
  • Cheng, H., Chen, S., and Lin, J. (2000). Biodegradation of di-(2-ethylhexyl) phthalate in sewage sludge. Water Sci. Technol., 41, 1–6.
  • Chung, Y. C., and Chen, C. Y. (2009). Degradation of di-(2-ethylhexyl) phthalate (DEHP) by TiO2 photocatalysis. Water Air Soil Pollut., 200, 191–198.
  • Clara, M., Windhofer, G., Hartl, W., Braun, K., Simon, M., Gans, O., Scheffknecht, C., and Chovanec, A. (2010). Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere, 78, 1078–1084. doi:10.1016/j.chemosphere.2009.12.052
  • Clark, K. E., David, R. M., Guinn, R., Kramarz, K. W., Lampi, M. A., and Staples, C. A. (2011). Modeling human exposure to phthalate esters: a comparison of in- direct and biomonitoring estimation methods. Hum. Ecol. Risk Assess., 17, 923–965.
  • Dargnat, C., Teil, M.-J., Chevreuil, M., and Blanchard, M. (2009). Phthalate removal throughout wastewater treatment plant: case study of Marne Aval station (France). Sci. Tot. Environ., 407, 1235–1244. doi:10.1016/j.scitotenv.2008.10.027
  • Das, M. T., Ghosh, P., and Thakur, I. S. (2014). Intake estimates of phthalate esters for South Delhi population based on exposure media assessment. Environ. Pollut., 189, 118–125. doi:10.1016/j.envpol.2014.02.021
  • De Laat, J., and Gallard, H. (1999). Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol., 33, 2726–2732.
  • De Oliveira, T. F., Chedeville, O., Cagnon, B., Fauduet, H. (2011a). Degradation kinetics of DEP in water by ozone/activated carbon process: Influence of pH. Desalination, 269, 271–275.
  • De Oliveira, T. F., Chedeville, O., Fauduet, H., Cagnon, B. (2011b). Use of ozone/activated carbon coupling to remove diethyl phthalate from water: influence of activated carbon textural and chemical properties. Desalination, 276, 359–365.
  • Domínguez-Morueco, N., González-Alonso, S., and Valcárcel, Y. (2014). Phthalate occurrence in rivers and tap water from central Spain. Sci. Tot. Environ., 500, 139–146.
  • European Council for Plasticizers and Intermediates. (1994). Phthalate esters used in PVC -Assessment of the release, occurrence and possible effects of plasticizers in the environment., Brussels, Belgium: ECPI.
  • European Union. (2000). EU risk assessment report on benzyl butyl phthalate. CAS-No. 85-68-7.,
  • European Union. (2001). EU risk assessment report on bis (2-ethylhexyl) phthalate. CAS-No. 117-81-7.,
  • Fan, Y., Wang, Y., Qian, P.-Y., and Gu, J.-D. (2004). Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modelling degradation. Int. Biodeterior. Biodegrad., 53, 57–63. doi:10.1016/j.ibiod.2003.10.001
  • Fang, C.-R., Yao, J., Zheng, Y.-G., Jiang, C.-J., Hu, L.-F., Wu, Y.-Y., and Shen, D.-S. (2010). Dibutyl phthalate degradation by Enterobacter sp. T5 isolated from municipal solid waste in landfill bioreactor. Int. Biodeterior. Biodegrad., 64, 442–446. doi:10.1016/j.ibiod.2010.04.010
  • Fang, H. H. P., Liang, D., and Zhang, T. (2007). Aerobic degradation of diethyl phthalate by Sphingomonas sp. Bioresour. Technol., 98, 717–720. doi:10.1016/j.biortech.2006.02.010
  • Fang, Z. Q., and Huang, H. J. (2009). Adsorption of di-n-butyl phthalate onto nutshell- based activated carbon. Equilibrium, kinetics and thermodynamics. Adsorpt. Sci. Technol., 27, 685–700.
  • Fauser, P., Vikelsøe, J., Sørensen, P. B., and Carlsen, L. (2003). Phthalates, nonylphenols and LAS in an alternately operated wastewater treatment plant–fate modelling based on measured concentrations in wastewater and sludge. Water Res., 37, 1288–1295. doi:10.1016/S0043-1354(02)00482-7
  • Fromme, H., Küchler, T., Otto, T., Pilz, K., Müller, J., and Wenzel, A. (2002). Occurrence of phthalates and bisphenol A and F in the environment. Water Res., 36, 1429–1438. doi:10.1016/S0043-1354(01)00367-0
  • Gani, K. M., Rajpal, A., and Kazmi, A. A. (2016). Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems. Environ. Sci. Processes Impacts, 18, 406–416. doi: 10.1039/C5EM00583C
  • Gani, K. M., Singh, J., Singh, N. K., Ali, M., Rose, V., and Kazmi, A. A. (2015). Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system. Water Sci. Technol., 73, 1511–1519. doi: 10.2166/wst.2015.631
  • Gao, D., Li, Z., Wen, Z., and Ren, N. (2014). Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere, 95, 24–32. doi:10.1016/j.chemosphere.2013.08.009
  • Gavala, H. N., Alatriste-Mondragon, F., Iranpour, R., and Ahring, B. K. (2003). Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge. Chemosphere, 52, 673–682. doi:10.1016/S0045-6535(03)00126-7
  • Gernjak, W., Fuerhacker, M., Fernández-Ibañez, P., Blanco, J., and Malato, S. (2006). Solar photo-Fenton treatment—process parameters and process control. Applied Catalysis B: Environmental, 64(1), 121-130.
  • Ghorpade, N., Mehta, V., Khare, M., Sinkar, P., Krishnan, S., and Rao, C. V. (2002). Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala. Ecotoxicol. Environ. Saf., 53, 255–258. doi:10.1006/eesa.2002.2212
  • Gibbons, J. A. and Alexander, M. (1989). Microbial degradation of sparingly soluble organic chemicals: Phthalate esters. Environ. Toxicol. Chem., 8, 283–291. doi: 10.1002/etc.5620080404
  • Gibson, D. T., Koch, J. R., Schuld, C. L., and Kallio, R. E. (1968). Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry, 7, 3795–3802. doi:10.1021/bi00851a003
  • Göbel, A., McArdell, C. S., Joss, A., Siegrist, H., and Giger, W. (2007). Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Tot. Environ., 372, 361–371. doi:10.1016/j.scitotenv.2006.07.039
  • Gogate, P. R. (2002). Cavitation: an auxiliary technique in wastewater treatment schemes. Adv. Environ. Res., 6, 335–358.
  • Hamid, H., and Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Res., 46, 5813–5833. doi:10.1016/j.watres.2012.08.002
  • Hashizume, K., Nanya, J., Toda, C., Yasui, T., Nagano, H., and Kojima, N. (2002). Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water. Biol. Pharm. Bull., 25, 209–214.
  • He, H., Hu, G.-J., Sun, C., Chen, S.-L., Yang, M.-N., Li, J., Zhao, Y., and Wang, H. (2011). Trace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, China. Environ. Sci. Pollut. Res. Int., 18, 638–648. doi:10.1007/s11356-010-0414-z
  • He, Z., Xiao, H., Tang, L., Min, H., and Lu, Z. (2013). Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge. Bioresour. Technol., 128, 526–532. doi:10.1016/j.biortech.2012.10.107
  • He, J., Yang, X., Men, B., Yu, L., and Wang, D. (2015). EDTA enhanced heterogeneous Fenton oxidation of dimethyl phthalate catalyzed by Fe3O4: Kinetics and interface mechanism. Journal of Molecular Catalysis A: Chemical, 408, 179-188.
  • Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev., 95, 69–96.
  • Hoigne, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozone and advanced oxidation processes. In J. Hrubec (Ed.), The handbook of environmental chemistry, vol. 5, part C. Quality and Ttreatment of drinking water, part II., Berlin: Springer.
  • Horn, O., Nalli, S., Cooper, D., and Nicell, J. (2004). Plasticizer metabolites in the environment. Water Res., 38, 3693–3698.
  • Huang, M., Li, Y., and Gu, G. (2008). The effects of hydraulic retention time and sludge retention time on the fate of di-(2-ethylhexyl) phthalate in a laboratory-scale anaerobic-anoxic-aerobic activated sludge system. Bioresour. Technol., 99, 8107–8111. doi:10.1016/j.biortech.2008.03.031
  • Ince, N. H., Tezcanli, G., Belen, R. K., and Apikyan, I. G. (2001). Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B: Environ., 29, 167–176.
  • International Agency for Research on Cancer. (2000). Monographs on the evaluation of carcinogenic risks to humans. Some industrial chemicals., Lyon, France: IARC.
  • Jacobs, L. W., Zabik, M. J., & Phillips, J. H. (1981). Toxic organic chemicals and elements in Michigan sewage sludges–significance for application to crop land, In Proc. Fourth Annual Conference of Applied Research and Practice on Municipal and Industrial Waste, Sept (pp. 28–30).
  • Jin, D., Bai, Z., Chang, D., Hoefel, D., Jin, B., Wang, P., Wei, D., and Zhuang, G. (2012). Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11: Genetic identification and degradation kinetics. J. Hazard. Mater., 221–222, 80–85. doi:10.1016/j.jhazmat.2012.04.010
  • Julinova, M., and Slavík, R. (2012). Removal of phthalates from aqueous solution by different adsorbents: a short review. J. Environ. Manage., 94, 13–24. doi:10.1016/j.jenvman.2011.09.006
  • Kamrin, M. A., and Mayor, G. H. (1991). Diethyl phthalate: a perspective. J. Clin Pharmacol, 31, 484–489.
  • Keith, Y., Cornu, M. C., Canning, P. M., Foster, J., Lhuguenot, J. C., Elcombe, C. R. (1992). Peroxisome proliferation due to bis(2-ethylhexyl) adipate, 2-ethylhexanol and 2-ethylhexa- noic acid. Arch. Toxicol., 66, 321–326.
  • Khan, M. H., and Jung, J. Y. (2008). Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase. Chemosphere, 72, 690–696.
  • Klavarioti, M., Mantzavinos, D., Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int., 35, 402–417.
  • Kolarik, B., Naydenov, K., Larsson, M., Bornehag, C.-G., and Sundell, J. (2008). The association between phthalates in dust and allergic diseases among Bulgarian children. Environ. Health Perspect., 116, 98–103. doi:10.1289/ehp.10498
  • Kong, X.-J., Li, D., Cao, L.-Q., Zhang, X.-M., Zhao, Y., Lv, Y., and Zhang, J. (2008). Evaluation of municipal sewage treatment systems for pollutant removal efficiency by measuring levels of micropollutants. Chemosphere, 72, 59–66. doi:10.1016/j.chemosphere.2008.02.005
  • Langford, K., Scrimshaw, M., and Lester, J. (2007). The impact of process variables on the removal of PBDEs and NPEOs during simulated activated sludge treatment. Arch. Environ. Contam. Toxicol., 53, 1–7. doi:10.1007/s00244-006-0052-0
  • Lassen, C., Maag, J., Hubschmann, J. B., Hansen, E., Searl, A., Doust, E., and Corden, C. (2009). Data on manufacture, import, export, uses and releases of Bis (2-ethylhexyl) phthalate (DEHP) as well as information on potential alternatives to its use. COWI, IOM and Entec report to ECHA.,
  • Lau, T. K., Chu, W., & Graham, N. (2005). The degradation of endocrine disrup tor di-n-butyl phthalate by UV irradiation: a photolysis and product study. Chemosphere, 60, 1045–1053.
  • Law, R. J., Fileman, T. W., and Matthiessen, P. (1991). Phthalate esters and other industrial organic chemicals in the North and Irish Seas. Water Sci. Technol., 24, 127–134.
  • Lhuguenot, J. C., Mitchell, A. M., Milner, G., Lock, E. A., and Elcombe, C. R. (1985). The metabolism of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP) in rats: in vivo and in vitro dose and time dependency of metabolism. Toxicol. Appl. Pharmacol., 80, 11–22.
  • Li, H. Y., Qu, J. H., and Liu, H. J. (2006). Removal of a type of endocrine disrup tors—di-n-butyl phthalate from water by ozonation. J. Environ. Sci., 18, 845–851.
  • Li, J., and Gu, J. D. (2007). The interactions between sediments and water., Dordrecht, the Netherlands: Springer.
  • Li, J., Gu, J.-D., and Pan, L. (2005). Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus rubber Sa and modeling the processes using the modified Gompertz model. Int. Biodeterior. Biodegrad., 55, 223–232. doi:10.1016/j.ibiod.2004.12.003
  • Liang, D.-W., Zhang, T., and Fang, H. H. P. (2007). Anaerobic degradation of dimethyl phthalate in wastewater in a UASB reactor. Water Res., 41, 2879–2884. doi:10.1016/j.watres.2007.03.043
  • Liao, C.-S., Chen, L.-C., Chen, B.-S., and Lin, S.-H. (2010). Bioremediation of endocrine disrup tor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri. Chemosphere, 78, 342–346. doi:10.1016/j.chemosphere.2009.10.020
  • Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M., and Andersson, B. A. (2006). Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ. Sci. Technol., 40, 1042–1048.
  • Liou, S.-H., Yang, G. C. C., Wang, C.-L., and Chiu, Y.-H. (2014). Monitoring of PAEMs and beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects. J. Hazard. Mater., 277, 169–179. doi:10.1016/j.jhazmat.2014.02.024
  • Liu, Y., Chen, Z., and Shen, J. (2013). Occurrence and removal characteristics of phthalate esters from typical water sources in northeast china. J. Anal. Methods Chem., 2013, Article 419349. doi:10.1155/2013/419349
  • Loraine, G. A., and Pettigrove, M. E. (2006). Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California. Environ. Sci. Technol., 40, 687–695. doi:10.1021/es051380x
  • Lu, Y., Tang, F., Wang, Y., Zhao, J., Zeng, X., Luo, Q., and Wang, L. (2009). Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge. J. Hazard. Mater., 168, 938–943. doi:10.1016/j.jhazmat.2009.02.126
  • Luks-Betlej, K., Popp, P., Janoszka, B., and Paschke, H. (2001). Solid-phase microextraction of phthalates from water. J. Chromatogr. A, 938, 93–101. doi:10.1016/S0021-9673(01)01363-2
  • Magliozzi, R., Nardacci, R., Scarsella, G., Di Carlo, V., and Stefanini, S. (2003). Effects of the plasticiser DEHP on lung of newborn rats: catalase immunocytochemistry and morphometric analysis. Histochem. Cell Biol., 120, 41–49. doi:10.1007/s00418-003-0543-2
  • Mailhot, G., Sarakha, M., Lavedrine, B., Cáceres, J., and Malato, S. (2002). Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions. Chemosphere, 49, 525–532. doi:10.1016/S0045-6535(02)00418-6
  • Main, K. M., Mortensen, G. K., Kaleva, M. M., Boisen, K. A., Damgaard, I. N., Chellakooty, M., Schmidt, I. M., Suomi, A.-M., Virtanen, H. E., Petersen, J. H., Andersson, A.-M., Toppari, J., and Skakkebæk, N. E. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ. Health Perspect., 114, 270–276.
  • Marr, E. K., and Stone, R. W. (1961). Bacterial oxidation of benzene. J. Bacteriol., 81, 425–430.
  • Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., and Rintala, J. A. (2003). Removal of bis (2-ethylhexyl) phthalate at a sewage treatment plant. Water Res., 37, 1385–1393.
  • McCullagh, C., Robertson, J. M. C., Bahnemann, D. W., and Robertson, P. K. J. (2007). The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Res. Chem. Intermed., 33, 359–375.
  • Medellin-Castillo, N. A., Ocampo-Pérez, R., Leyva-Ramos, R., Sanchez-Polo, M., Rivera-Utrilla, J., Méndez-Díaz, J. D. (2013). Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H 2 O 2, O 3/H 2 O 2 and O 3/activated carbon). Sci. Tot. Environ., 442, 26–35.
  • Méndez-Díaz, J. D., Prados-Joya, G., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez-Polo, M., Ferro-García, M. A., and Medellín-Castillo, N. A. (2010). Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. J. Colloid Interface Sci., 345, 481–490. doi:10.1016/j.jcis.2010.01.089
  • Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42, 83–94. doi:10.1016/j.carbon.2003.09.022
  • Muneer, M., Theurich, J., and Bahnemann, D. (2001). Titanium dioxide mediated photocatalytic degradation of 1, 2-diethyl phthalate. J. Photochem. Photobiol. A Chem., 143, 213–219.
  • Munter, R. (2001). Advanced oxidation processes — current status and prospects. Proc. Estonian Acad. Sci. Chem., 50, 59–80.
  • Na, S., Jinhua, C., Mingcan, C., and Khim, J. (2012). Sonophotolytic diethyl phthalate (DEP) degradation with UVC or VUV irradiation. Ultrason. Sonochem., 19, 1094–1098.
  • Nalli, S., Cooper, D. G., and Nicell, J. A. (2002). Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation, 13, 343–352.
  • Nalli, S., Cooper, D. G., and Nicell, J. A. (2006). Metabolites from the biodegradation of di-ester plasticizers. Sci. Tot. Environ., 366, 286–294.
  • Legrini, O., Oliveros, E., and Braun, A. M. (1993). Photochemical processes for water treatment. Chem. Rev., 93, 671–698.
  • O'Connor, O. A., Rivera, M. D., and Young, L. Y. (1989). Toxicity and biodegradation of phthalic acid esters under methanogenic conditions. Environ. Toxicol. Chem., 8, 569–576.
  • Oh, B. S., Jung, Y. J., Oh, Y. J., Yoo, Y. S., and Kang, J. (2006). Application of ozone, UV and ozone/UV processes to reduce diethyl phthalate and its estrogenic activity. Sci. Tot. Environ., 367, 681–693.
  • Oliveira, C., Alves, A., and Madeira, L. M. (2014). Treatment of water networks (waters and deposits) contaminated with chlorfenvinphos by oxidation with Fenton's reagent. Chem. Eng. J., 241, 190–199.
  • Oliver, R., May, E., and Williams, J. (2005). The occurrence and removal of phthalates in a trickle filter STW. Water Res., 39, 4436–4444. doi:10.1016/j.watres.2005.08.011
  • Parker, W. J., Monteith, H. D., and Melcer, H. (1994). Estimation of anaerobic biodegradation rates for toxic organic compounds in municipal sludge digestion. Water Res., 28, 1779–1789. doi:10.1016/0043-1354(94)90251-8
  • Peijnenburg, W. J. G. M., and Struijs, J. (2006). Occurrence of phthalate esters in the environment of the Netherlands. Ecotoxicol. Environ. Saf., 63, 204–215. doi:10.1016/j.ecoenv.2005.07.023
  • Pereira, V. J., Weinberg, H. S., Linden, K. G., and Singer, P. C. (2007). UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environ. Sci. Technol., 41, 1682–1688.
  • Prasad, B., and Suresh, S. (2012). Biodegradation of phthalate esters by Variovorax sp. Apcbee Procedia, 1, 16–21.
  • Psillakis, E., and Kalogerakis, N. (2003). Hollow-fibre liquid-phase microextraction of phthalate esters from water. J. Chromatogr. A, 999, 145–153.
  • Ribeiro, A. R., Nunes, O. C., Pereira, M. F., and Silva, A. M. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int., 75, 33–51.
  • Roslev, P., Vorkamp, K., Aarup, J., Frederiksen, K., and Nielsen, P. H. (2007). Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Res., 41, 969–976. doi:10.1016/j.watres.2006.11.049
  • Rostamkolahi, A., Rostami, A., Koohyar, F., and Kiani, F. (2013). Thermodynamic properties of dimethyl phthalate+ vinyl acetate, diethyl phthalate+ vinyl acetate or bromocyclohexane, and dibutyl phthalate+ vinyl acetate or 1, 2-dichlorobenzene at T= 298.15–308.15 K. Chem. Papers, 67, 1433–1441.
  • Roth, B., Herkenrath, P., Lehmann, H.-J., Ohles, H.-D., Hmig, H. J., Benz-Bohm, G., Kreuder, J., and Younossi-Hartenstein, A. (1988). Di-(2-ethylhexyl)-phthalate as plasticizer in PVC respiratory tubing systems: indications of hazardous effects on pulmonary function in mechanically ventilated, preterm infants. Eur. J. Pediatr., 147, 41–46. doi:10.1007/BF00442609
  • Roy, S., and Kalita, J. C. (2011). Determination of endocrine disrupting compounds in water bodies around Guwahati city, Assam, India through gas chromatography/mass spectrometry. Int. J. Chemtech Res., 3, 1840–1844.
  • Roy, W. R. (2004). The environmental fate of plasticizers. In G. Wypych (Ed.), Handbook of plasticizers, (pp. 591–613). Toronto, Canada: ChemTec.
  • Saeger, V. W., Kalley, R. G., Hicks, O., Tucker, E. S., and Mieure, J. P. (1976). Activated sludge degradation of adipic acid esters. Appl. Environ. Microbiol., 31, 746–749.
  • Salazar, V., Castillo, C., Ariznavarreta, C., Campón, R., and Tresguerres, J. A. F. (2004). Effect of oral intake of dibutyl phthalate on reproductive parameters of Long Evans rats and pre-pubertal development of their offspring. Toxicology, 205, 131–137. doi:10.1016/j.tox.2004.06.045
  • Salim, C. J., Liu, H., and Kennedy, J. F. (2010). Comparative study of the adsorption on chitosan beads of phthalate esters and their degradation products. Carbohydr. Polym., 81, 640–644. doi:10.1016/j.carbpol.2010.03.024
  • Santhi, V. A., and Mustafa, A. M. (2013). Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environ. Monit. Assess., 185, 1541–1554. doi:10.1007/s10661-012-2649-2
  • Saquib, M., Vinckier, C., and Van der Bruggen, B. (2010). The effect of UF on the efficiency of O3/H2O2 for the removal of organics from surface water. Desalination, 260, 39–42.
  • Saritha, P., Aparna, C., Himabindu, V., and Anjaneyulu, Y. (2007). Comparison of various advanced oxidation processes for the degradation of 4-chloro-2nitrophenol. J. Hazard. Mater., 149, 609–614.
  • Selvaraj, K. K., Sundaramoorthy, G., Ravichandran, P. K., Girijan, G. K., Sampath, S., and Ramaswamy, B. R. (2015). Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations. Environ. Geochem. Health, 37, 83–96.
  • Semblante, G. U., Faisal, I., Hai, X. H., Ball, A. S., Price, W. E., and Nghiem, L. D. (2015). Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives. J. Hazard. Mater., 300, 1–17.
  • Shelton, D. R., Boyd, S. A., and Tiedje, J. M. (1984). Anaerobic biodegradation of phthalic acid esters in sludge. Environ. Sci. Technol., 18, 93–97.
  • Sheng, G. P., Yu, H. Q., and Li, X. Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol. Adv., 28, 882–894.
  • Shi, W., Hu, X., Zhang, F., Hu, G., Hao, Y., Zhang, X., Liu, H., Wei, S., Wang, X., Giesy, J. P., and Yu, H. (2012). Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters. Environ. Sci. Technol., 46, 1811–1818. doi:10.1021/es202625r
  • Shneider, B., Cronin, J., Van Marter, L., Mailer, E., Truog, R., Jacobson, M., and Kevy, S. (1991). A prospective analysis of cholestasis in infants supported with extracorporeal membrane oxygenation. J. Pediatr. Gastroenterol. Nutr., 13, 285–289. doi:10.1097/00005176-199110000-00008
  • Singh, S., and Li, S. S.-L. (2012). Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int. J. Mol. Sci., 13, 10143–10153.
  • Stales, C. A., Peterson, D. R., Parkerton, T. F., and Adams, W. J. (1997). The environmental fate of phthalate esters: A literature review. Chemosphere, 35, 667–749. doi: 10.1016: 10.1016/S0045-6535(97)00195-1
  • Staples, C. A. (2003). Phthalate esters., Berlin: Springer.
  • Staples, C. A., Peterson, D. R., Parkerton, T. F., and Adams, W. J. (1997). The environmental fate of phthalate esters: a literature review. Chemosphere, 35, 667–749.
  • Stevens-Garmon, J., Drewes, J. E., Khan, S. J., McDonald, J. A., and Dickenson, E. R. V. (2011). Sorption of emerging trace organic compounds onto wastewater sludge solids, Water Res. 45, 3417–3426.
  • Sullivan, K. F., Atlas, E. L., and Giam, C. S. (1982). Adsorption of phthalic acid esters from seawater. Environ. Sci. Technol., 16, 428–432.
  • Suzuki, T., Yaguchi, K., Suzuki, S., and Suga, T. (2001). Monitoring of phthalic acid monoesters in river water by solid-phase extraction and GC– MS determination. Environ. Sci. Technol., 35, 3757–3763.
  • Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., and Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: the role of molecular properties. Water Res., 45, 2439–2451. doi:10.1016/j.watres.2011.01.023
  • Tan, B. L. L., Hawker, D. W., Müller, J. F., Leusch, F. D. L., Tremblay, L. A., and Chapman, H. F. (2007). Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environ. Int., 33, 654–669. doi:10.1016/j.envint.2007.01.008
  • Teijon, G., Candela, L., Tamoh, K., Molina-Díaz, A., and Fernández-Alba, A. R. (2010). Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci. Tot. Environ., 408, 3584–3595. doi:10.1016/j.scitotenv.2010.04.041
  • Tekin, H., Bilkay, O., Ataberk, S. S., Balta, T. H., Ceribasi, I. H., Sanin, F. D., Dilek, F. B., and Yetis, U. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater., 136, 258–265.
  • Ternes, T. A., Joss, A., and Siegrist, H. (2004). Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 38, 392A–399A. doi:10.1021/es040639t
  • Thompson, L. H., and Doraiswamy, L. K. (1999). Sonochemistry: science and engineering. Ind. Eng. Chem. Res., 38, 1215–1249.
  • Tran, B. C., Teil, M. J., Blanchard, M., Alliot, F., and Chevreuil, M. (2015). BPA and phthalate fate in a sewage network and an elementary river of France. Influence of hydroclimatic conditions. Chemosphere, 119, 43–51. doi:10.1016/j.chemosphere.2014.04.036
  • U.S. Agency for Toxic Substances and Disease Registry. (1995). Toxicological profile for diethyl phthalate. Retrieved from http://www.atsdr.cdc.gov/toxprofiles/tp73.html
  • U.S. Environmental Protection Agency. (1980). Ambient water quality criteria document: Phthalate esters. EPA 440/5-80-067. Washington, DC: U.S. EPA.
  • U.S. Environmental Protection Agency. (1990). Integrated risk information system (IRIS): Dibutyl phthalate. Retrieved from http://www.epa.gov/iris/subst/0038.html
  • U.S. Environmental Protection Agency. (1997). Special report on environmental endocrine disruption: An effects assessment and analysis. Report No. EPA/630/R-96/012, Washington, DC: U.S. EPA.
  • U.S. National Toxicology Program, Center for the Evaluation of Risks to Human Reproduction. (2007). NTP-CERHR reports and monographs. Retrieved from http://cerhr.niehs.nih.gov/reports/index.html
  • Venkata Mohan, S., Chandrasekhar Rao, N., Krishna Prasad, K., and Karthikeyan, J. (2002). Treatment of simulated reactive yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manage., 22, 575–582. doi:10.1016/S0956-053X(02)00030-2
  • Venkata Mohan, S., Shailaja, S., Rama Krishna, M., and Sarma, P. N. (2007). Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study. J. Hazard. Mater., 146, 278–282. doi:10.1016/j.jhazmat.2006.12.020
  • Vethaak, A. D., Lahr, J., Schrap, S. M., Belfroid, A. C., Rijs, G. B. J., Gerritsen, A., de Boer, J., Bulder, A. S., Grinwis, G. C. M., Kuiper, R. V, Legler, J., Murk, T. A. J., Peijnenburg, W., Verhaar, H. J. M., and de Voogt, P. (2005). An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere, 59, 511–524. doi:10.1016/j.chemosphere.2004.12.053
  • Vikelsøe, J., Thomsen, M., and Johansen, E. (1998). Sources of phthalates and nonylphenols in municipal waste water. NERI Technical Report No. 225., Copenhagen, Denmark: National Environmental Research Institute, Denmark.
  • Wang, H., Sun, D.-Z., and Bian, Z.-Y. (2010). Degradation mechanism of diethyl phthalate with electro generated hydroxyl radical on a Pd/C gas-diffusion electrode. J. Hazard. Mater., 180, 710–715. doi:10.1016/j.jhazmat.2010.04.095
  • Wang, J., Liu, P., and Qian, Y. (1995). Microbial degradation of di-n butyl phthalate. Chemosphere, 31, 4051–4056.
  • Watts, R. J., Stanton, P. C., Howsawkeng, J., and Teel, A. L. (2002). Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Res., 36, 4283–4292.
  • Wen, G., Ma, J., Liu, Z.-Q., and Zhao, L. (2011). Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2. J. Hazard. Mater., 195, 371–377. doi:10.1016/j.jhazmat.2011.08.054
  • Wolfe, N. L., Burns, L. A., and Steen, W. C. (1980). Use of linear free energy relationships and an evaluative model to assess the fate and transport of phthalate esters in the aquatic environment. Chemosphere, 9, 393–402.
  • World Health Organization. (2004). Guidelines for drinking-water quality: recommendations (Vol. 1)., Geneva, Switzerland: WHO.
  • Wu, X., Liang, R., Dai, Q., Jin, D., Wang, Y., and Chao, W. (2010). Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge. J. Hazard. Mater., 176, 262–268. doi:10.1016/j.jhazmat.2009.11.022
  • Wu, X., Wang, Y., Liang, R., Dai, Q., Jin, D., and Chao, W. (2011). Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Agrobacterium sp. and the biochemical pathway. Process Biochem., 46, 1090–1094. doi:10.1016/j.procbio.2011.01.031
  • Xu, B., Gao, N., Cheng, H., Xia, S., Rui, M., and Zhao, D. (2009). Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process. J. Hazard. Mater., 162, 954–959.
  • Xu, B., Gao, N., Sun, X., Xia, S., Rui, M., Simonnot, M., Causserand, C., and Zhao, J. (2007). Photochemical degradation of diethyl phthalate with UV/H2O2. J. Hazard. Mater., 139, 132–139.
  • Xu, X., Li, S., Li, X., Gu, J., Chen, F., Li, X., and Li, H. (2009). Degradation of n-butyl benzyl phthalate using TiO2/UV. J. Hazard. Mater., 164, 527–532.
  • Xu, Z., Zhang, W., Pan, B., Hong, C., Lv, L., Zhang, Q., Pan, B., and Zhang, Q. (2008). Application of the Polanyi potential theory to phthalates adsorption from aqueous solution with hyper-cross-linked polymer resins. J. Colloid Interface Sci., 319, 392–397. doi:10.1016/j.jcis.2007.12.015
  • Yang, G., Zhao, X., Sun, X., and Lu, X. (2005). Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. J. Hazard. Mater., 126, 112–118. doi:10.1016/j.jhazmat.2005.06.014
  • Yang, G. C. C., Yen, C- H., and Wang, C. L. (2014). Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan. J. Hazard. Mater., 277, 53–61.
  • Yen, T.-H., Lin-Tan, D.-T., and Lin, J.-L. (2011). Food safety involving ingestion of foods and beverages prepared with phthalate-plasticizer-containing clouding agents. J. Formos. Med. Assoc., 110, 671–684. doi:10.1016/j.jfma.2011.09.002
  • Yuan, B. L., Li, X. Z., and Graham, N. (2008). Aqueous oxidation of dimethyl phthalate in a Fe (VI)-TiO 2-UV reaction system. Water Res., 42, 1413–1420.
  • Yuan, B. L., Li, X., Li, K., and Chen, W. (2011). Degradation of dimethyl phthalate (DMP) in aqueous solution by UV/SieFeOOH/H2O2. Colloids Surf. A. Physicochem. Eng. Aspects, 379, 157–162.
  • Yuan, B. L., Li, X., and Graham, N. (2008). Aqueous oxidation of dimethyl phthalate in a Fe (VI)/TiO2/UV reaction system. Water Res., 42, 1413–1420.
  • Yuan, S.-Y., Huang, I.-C., and Chang, B.-V. (2010). Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment. J. Hazard. Mater., 184, 826–831. doi:10.1016/j.jhazmat.2010.08.116
  • Zeng, F., Cui, K., Li, X., Fu, J., and Sheng, G. (2004). Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process Biochem., 39, 1125–1129. doi:10.1016/S0032-9592(03)00226-7
  • Zeng, F., Wen, J., Cui, K., Wu, L., Liu, M., Li, Y., Lin, Y., Zhu, F., Ma, Z., and Zeng, Z. (2009). Seasonal distribution of phthalate esters in surface water of the urban lakes in the subtropical city, Guangzhou, China. J. Hazard. Mater., 169, 719–725. doi:10.1016/j.jhazmat.2009.04.006
  • Zhang, L., Wang, F., Ji, Y., Jiao, J., Zou, D., Liu, L., Shan, C., Bai, Z., and Sun, Z. (2014). Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China. Atmos. Environ., 85, 139–146.
  • Zhao, X. K., Yang, G. P., Wang, Y. J., and Gao, X. C. (2004). Photochemical degradation of dimethyl phthalate by Fenton reagent. J. Photochem. Photobiol. A: Chem., 161, 215–220.
  • Zheng, Z., He, P.-J., Shao, L.-M., and Lee, D.-J. (2007). Phthalic acid esters in dissolved fractions of landfill leachates. Water Res., 41, 4696–4702. doi:10.1016/j.watres.2007.06.040
  • Zhou, L.-J., Ying, G.-G., Zhao, J.-L., Yang, J.-F., Wang, L., Yang, B., and Liu, S. (2011). Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut., 159, 1877–1885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.