1,710
Views
91
CrossRef citations to date
0
Altmetric
Original Articles

Phytomanagement of heavy metals in contaminated soils using sunflower: A review

, , , , , , & show all
Pages 1498-1528 | Published online: 11 Nov 2016

References

  • Adesodun, J. K., Atayese, M. O., Agbaje, T. A., Osadiaye, B. A., Mafe, O. F., and Soretire, A. A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water. Air. Soil Pollut., 207, 195–201. doi:10.1007/s11270-009-0128-3
  • Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., and Bharwana, S. A. (2015a). The effect of excess copper on growth and physiology of important food crops: a review. Environ. Sci. Pollut. Res., 22, 8148–8162. doi:10.1007/s11356-015-4496-5
  • Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., and Irshad, M. K. (2015b). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicol. Environ. Saf., 119, 186–197. doi:10.1016/j.ecoenv.2015.05.011
  • Afshan, S., Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Abbas, F., Ibrahim, M., Mehmood, M. A., and Abbasi, G. H. (2015). Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ. Sci. Pollut. Res., 22, 11679–11689. doi:10.1007/s11356-015-4396-8
  • Aggarwal, M., Luthra, Y. P., and Arora, S. K. (1995). The effect of Cd2+ on lipid components of sunflower (Helianthus annuus L.) seeds. Plant Foods Hum. Nutr., 47, 149–155.
  • Aghababaei, F., and Raiesi, F. (2015). Mycorrhizal fungi and earthworms reduce antioxidant enzyme activities in maize and sunflower plants grown in Cd-polluted soils. Soil Biol. Biochem., 86, 87–97. doi:10.1016/j.soilbio.2015.03.009
  • Ahmad, M. S. A., Ashraf, M., and Hussain, M. (2011). Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes. J. Hazard. Mater., 185, 1295–1303. doi:10.1016/j.jhazmat.2010.10.045
  • Ahmad, M. S. A., Lee, S. S., Lee, S. E., Al-wabel, M. I., Tsang, D. C. W., and Ok, Y. S. (2016). Biochar-induced changes in soil properties affected immobilization / mobilization of metals / metalloids in contaminated soils. J. Soils Sediments. doi:10.1007/s11368-015-1339-4
  • Ali, M., Ali, M., Ramezani, A., Far, S. M., Sadat, K., Moradi-ghahderijani, M., and Jamian, S. S. (2013). Application of silicon ameliorates salinity stress in sunflower (Helianthus annuus L.) plants. Int. J. Agric. Crop Sci., 6, 1367–1372.
  • Andrade, S. A. L., da Silveira, A. P. D., Jorge, R. A., and de Abreu, M. F. (2008). Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int. J. Phytoremediation, 10, 1–13. doi:10.1080/15226510701827002
  • Ansari, R., Kazi, T. G., Jamali, M. K., Arain, M. B., Wagan, M. D., Jalbani, N., Afridi, H. I., and Shah, A. Q. (2009). Variation in accumulation of heavy metals in different verities of sunflower seed oil with the aid of multivariate technique. Food Chem., 115, 318–323. doi:10.1016/j.foodchem.2008.11.051
  • Anwar, S., Nawaz, M. F., Gul, S., Rizwan, M., Ali, S., and Kareem, A. (2016). Uptake and distribution of minerals and heavy metals in commonly grown leafy vegetable species irrigated with sewage water. Environ. Monit. Assess., 188, 1–9. doi:10.1007/s10661-016-5560-4
  • Arias, M.S.B., Peña-Cabriales, J.J., Alarcón, A., Maldonado Vega, M., (2015). Enhanced Pb Absorption by Hordeum vulgare L. and Helianthus annuus L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium. Int. J. Phytorem. 17, 405–413. doi:10.1080/15226514.2014.898023
  • Ashrafi, A., Zahedi, M., and Soleimani, M. (2015). Effect of co-planted purslane (Portulaca Oleracea L.) on Cd accumulation by sunflower in different levels of Cd contamination and salinity: a pot study. Int. J. Phytoremediation, 17, 853–860. doi:10.1080/15226514.2014.981239
  • Aslam, U., Ahmad, I., Hussain, M., Khan, A., Ghani, A., Mustafa, I., Jalal, S., Aqeel, M. A., Asif, S., and Ahmed, H. (2014). Effect of heavy metal pollution on mineral absorption in sunflower (Helianthus annuus L.) hybrids. Acta Physiol. Plant., 36, 101–108. doi:10.1007/s11738-013-1390-y
  • Atta, M. I., Bokhari, T. Z., Malik, S. A., Wahid, A., Saeed, S., and Gulshan, A. B. (2013). Assessing some emerging effects of hexavalent chromium on leaf physiological performance in sunflower (Helianthus annuus L.). Int. J. Sci. Eng. Res., 4, 945–949.
  • Audet, P., and Charest, C. (2010). Determining the impact of the AM-mycorrhizosphere on “dwarf” sunflower Zn Uptake and soil-Zn bioavailability. J. Bot. 2010, Article 268540. doi:10.1155/2010/268540
  • Azad, N., Shiva, H., and Malekpour, R. (2011). Toxic effects of lead on growth and some biochemical and ionic parameters of sunflower (Helianthus annuus L.) seedlings. Curr. Res. J. Biol. Sci., 3, 398–403.
  • Azevedo, H., Gomes, C., Pinto, G., and Santos, C. (2005). Cadmium effects in sunflower: Membrane permeability and changes in catalase and peroxidase activity in leaves and calluses. J. Plant Nutr., 28, 2233–2241. doi:10.1080/01904160500324816
  • Azevedo, H., Pinto, C. G. G., Fernandes, J., Loureiro, S., and Santos, C. (2005). Cadmium effects in sunflower: Nutritional imbalances in plants and calluses. J. Plant Nutr., 28, 2221–2231. doi:10.1080/01904160500324808
  • Azpilicueta, C. E., Benavides, M. P., Tomaro, M. L., and Gallego, S. M. (2007). Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiol. Biochem., 45, 589–595. doi:10.1016/j.plaphy.2007.04.005
  • Boonyapookana, B., Parkpian, P., Techapinyawat, S., DeLaune, R. D., and Jugsujinda, A. (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng., 40, 117–137. doi:10.1081/ESE-200033621
  • Chae, M. J., Jung, G., Kang, S. S., Kong, M. S., Kim, Y. H., and Lee, D. B. (2014). Evaluation of the feasibility of phytoremediation of soils contaminated with Cd, Pb and Zn using sunflower, corn and castor plants. Korea J. Soil Sci. Fertilizer, 6315, 491–495.
  • Chaves, L. H. G., Estrela, M. A., and De Souza, M. S. (2011). Effect on plant growth and heavy metal accumulation by sunflower. J. Phytol., 3, 4–9.
  • Chen, H., and Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28. doi:10.1016/S0045-6535(01)00031-5
  • Chiang, P., Wang, M., Chiu, C., and Chou, S. (2006). Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ. Toxicol., 21, 479–488. doi:10.1002/tox
  • Cornu, J. Y., Bakoto, R., Bonnard, O., Bussière, S., Coriou, C., Sirguey, C., Sterckeman, T., Thunot, S., Visse, M. I., and Nguyen, C. (2016). Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics. Plant Soil. doi:10.1007/s11104-016-2839-8
  • Cutright, T., Gunda, N., and Kurt, F. (2010). Simultaneous hyperaccumulation of multiple heavy metals by helianthus annuus grown in a contaminated sandy- loam soil. Int. J. Phytoremediation, 12, 562–573. doi:10.1080/15226510903353146
  • Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., and Saraiva Grossi, J. A. (2001). Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol., 158, 777–786. doi:10.1078/0176-1617-00311
  • Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., and Saraiva Grossi, J. A. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. J. Plant Nutr., 25, 2389–2407. doi:10.1081/PLN-120014702
  • De Maria, S., Puschenreiter, M., and Rivelli, A. R. (2013). Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. J. Plant Soil Environ., 59, 254–261.
  • De Maria, S., and Rivelli, A. R. (2013). Trace element accumulation and distribution in sunflower plants at the stages of flower bud and maturity. Ital. J. Agron., 8, 65–72. doi:10.4081/ija.2013.e9
  • Di Cagno, R., Guidi, L., De Gara, L., and Soldatini, G. F. (2001). Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytol., 151, 627–636. doi:10.1046/j.1469-8137.2001.00217.x
  • Dimkpa, C. O., Merten, D., Svatoš, A., Büchel, G., and Kothe, E. (2009). Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J. Appl. Microbiol., 107, 1687–1696. doi:10.1111/j.1365-2672.2009.04355.x
  • Doncheva, S., Moustakas, M., Ananieva, K., Chavdarova, M., Gesheva, E., Vassilevska, R., and Mateev, P. (2013). Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus ?? H. argophyllus). Environ. Sci. Pollut. Res., 20, 823–833. doi:10.1007/s11356-012-1274-5
  • Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W., Shakoor, M. B., and Rizwan, M. (2014). Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol. Environ. Saf., 106, 164–172. doi:10.1016/j.ecoenv.2014.03.007
  • Eissa, M. A., Ghoneim, M. F., El-gharably, G. A., and El-razek, M. A. (2014). Phytoextraction of nickel, lead and cadmium from metals contaminated soils using different field crops and EDTA. World Appl. Sci. J., 32, 1045–1052. doi:10.5829/idosi.wasj.2014.32.06.912
  • El-Tayeb, M. A., El-Enany, A. E., and Ahmed, N. L. (2006). Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Int. J. Bot., 2, 372–379. doi:10.3923/ijb.2006.372.379
  • Faisal, M., and Hasnain, S. (2005). Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol. Lett., 27, 943–947. doi:10.1007/s10529-005-7188-2
  • Fassler, E., Evangelou, M. W., Robinson, B. H., and Schulin, R. (2010). Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere, 80, 901–907. doi:10.1016/j.chemosphere.2010.04.077
  • Gajdos, É., Lévai, L., Veres, S., Kovács, B., Eva, G., Levai, L., Szilvia, V., and Bela, K. (2012). Effects of biofertilizers on maize and sunflower seedlings under cadmium stress. Commun. Soil Sci. Plant Anal., 43, 272–279. doi:10.1080/00103624.2011.638591
  • Gallego, S. M., Benavídes, M. P., and Tomaro, M. L. (1996). Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci., 121, 151–159. doi:10.1016/S0168-9452(96)04528-1
  • Gallego, S. M., Benavides, M., and Tomaro, M. (1999). Effect of Cd ions ions on antioxidant defense system in sunflower cotyledons. Biol. Plantar., 42, 49–55.
  • Gallego, S. M., Benavides, M., and Tomaro, M. (2002). Involvement of an antioxidant defence system in the adaptive response to heavy metal ions in Helianthus annuus L. cells. Plant Growth Regul., 36, 267–274.
  • Gallego, S. M., Kogan, M. J., Azpilicueta, C. E., Peña, C., and Tomaro, M. L. (2005). Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annuus L.) cells in response to cadmium stress. Plant Growth Regul., 46, 267–276. doi:10.1007/s10725-005-0163-z
  • Garcia, J. S., Gratao, P. L., Azevedo, R. A., and Arruda, M. A. (2006). Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. J. Agric. Food. Chem., 54, 8623–8630. doi:10.1021/jf061593l
  • Gopal, R., and Khurana, N. (2011). Effect of heavy metal pollutants on sunflower. Afr. J. Plant. Sci., 5, 531–536.
  • Gopal, R., and Nautiyal, N. (2011). Phytotoxic effects of cadmium exposure and metal accumulation in sunflower. J. Plant Nutr., 34, 1616–1624. doi:10.1080/01904167.2011.592559
  • Groppa, M. D., Ianuzzo, M. P., Rosales, E. P., Vázquez, S. C., and Benavides, M. P. (2012). Cadmium modulates NADPH oxidase activity and expression in sunflower leaves. Biol. Plant., 56, 167–171. doi:10.1007/s10535-012-0036-z
  • Groppa, M. D., Ianuzzo, M. P., Tomaro, M. L., and Benavides, M. P. (2007). Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids, 32, 265–275. doi:10.1007/s00726-006-0343-9
  • Groppa, M. D., Zawoznik, M. S., Tomaro, M. L., and Benavides, M. P. (2008). Inhibition of root growth and polyamine metabolism in sunflower (helianthus annuus) seedlings under cadmium and copper stress. Biol. Trace Elem. Res., 126, 246–256. doi:10.1007/s12011-008-8191-y
  • Gunes, A., Pilbeam, D. J., Inal, A., and Coban, S. (2008). Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Commun. Soil Sci. Plant Anal., 39, 1885–1903. doi:10.1080/00103620802134651
  • Habiba, U., Ali, S., Farid, M., Shakoor, M. B., Rizwan, M., Ibrahim, M., Abbasi, G. H., Hayat, T., and Ali, B. (2015). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ. Sci. Pollut. Res., 22, 1534–1544. doi:10.1007/s11356-014-3431-5
  • Hammami, S., Chaffai, R., and El Ferjani, E. (2004). Effect of cadmium on sunflower growth, leaf pigment and photosynthetic enzymes. Pakistan J. Biol. Sci., 7, 1419–1426.
  • Hao, X. Z., Zhou, D. M., Li, D. D., and Jiang, P. (2012). Growth, cadmium and zinc accumulation of ornamental sunflower (Helianthus annuus L.) in contaminated soil with different amendments. Pedosphere, 22, 631–639. doi:10.1016/S1002-0160(12)60048-4
  • Hassan, S. E., Hijri, M., and St-Arnaud, M. (2013). Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. N. Biotechnol., 30, 780–787. doi:10.1016/j.nbt.2013.07.002
  • Hawrylak-Nowak, B., Dresler, S., and Matraszek, R. (2015). Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol. Biochem., 94, 225–234. doi:10.1016/j.plaphy.2015.06.012
  • Imran, M. A., Nawaz Ch, M., Khan, R. M., and Ali, Z. (2013). Toxicity of arsenic (As) on seed germination of sunflower (Helianthus annuus L.). Int. J. Phys. Sci., 8, 840–847. doi:10.5897/IJPS2013.3894
  • Jabeen, N., Abbas, Z., Iqbal, M., Rizwan, M., Jabbar, A., Farid, M., Ali, S., Ibrahim, M., and Abbas, F. (2016). Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch. Agron. Soil Sci., 62, 648–662. doi:10.1080/03650340.2015.1082032
  • January, M. C., Cutright, T. J., Van Keulen, H., and Wei, R. (2008). Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere, 70, 531–537. doi:10.1016/j.chemosphere.2007.06.066
  • Jarrah, M., Ghasemi-Fasaei, R., Karimian, N., Ronaghi, A., Zarei, M., and Mayel, S. (2014). Investigation of arbuscular mycorrhizal fungus and EDTA efficiencies on lead phytoremediation by sunflower in a calcareous soil. Bioremediat. J., 18, 71–79. doi:10.1080/10889868.2013.847401
  • Jiang, W., Liu, D., and Li, H. (2000). Effects of Cu2+ on root growth, cell division, and nucleolus of Helianthus annuus L. Sci. Total Environ., 256, 59–65. doi:10.1016/S0048-9697(00)00470-8
  • Jones, S., Bardos, R. P., Kidd, P. S., Mench, M., de Leij, F., Hutchings, T., Cundy, A., Joyce, C., Soja, G., Friesl-Hanl, W., Herzig, R., and Menger, P. (2016). Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J. Environ. Manage., 171, 101–112. doi:10.1016/j.jenvman.2016.01.024
  • Jouili, H., and Ferjani, E. (2004). Effect of copper excess on superoxide dismutase, catalase, and peroxidase activities in sunflower seedlings (Helianthus annuus L.). Acta Physiol. Plant., 26, 29–35. doi:10.1007/s11738-004-0041-8
  • Junior, C. A., Barbosa, H., de, S., Moretto Galazzi, R., Ferreira Koolen, H. H., Gozzo, F. C., and Arruda, M. A. Z. (2015). Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. Ecotoxicol. Environ. Saf., 119, 170–177. doi:10.1016/j.ecoenv.2015.05.016
  • Junior, C. A., Mazzafera, P., and Arruda, M. A. Z. (2014). A comparative ionomic approach focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environ. Exp. Bot., 107, 180–186. doi:10.1016/j.envexpbot.2014.06.002
  • Junior, C. A. L., Oliveira, S. R., Mazzafera, P., and Arruda, M. A. Z. (2016). Expanding the information about the influence of cadmium on the metabolism of sunflowers: Evaluation of total, bioavailable, and bioaccessible content and metallobiomolecules in sunflower seeds. Environ. Exp. Bot., 125, 87–97. doi:10.1016/j.envexpbot.2016.02.003
  • Kastori, R., Plesničar, M., Sakač, Z., Panković, D., and Arsenijević‐Maksimović, I. (1998). Effect of excess lead on sunflower growth and photosynthesis. J. Plant Nutr., 21, 75–85. doi:10.1080/01904169809365384
  • Kidd, P., Mench, M., Álvarez-López, V., Bert, V., Dimitriou, I., Friesl-Hanl, W., Herzig, R., Janssen, J. O., Kolbas, A., Müller, I., Neu, S., Renella, G., Ruttens, A., Vangronsveld, J., and Puschenreiter, M. (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int. J. Phytoremediation, 17, 1005–1037. doi:10.1080/15226514.2014.1003788
  • Kolbas, A., Kidd, P., Guinberteau, J., Jaunatre, R., Herzig, R., Mench, M., (2015). Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ. Sci. Pollut. Res. 22, 5370–5382. doi:10.1007/s11356-014-4006-1
  • Kolbas, A., Marchand, L., Herzig, R., Nehnevajova, E., and Mench, M. (2014). Phenotypic seedling responses of a metal-tolerant mutant line of sunflower growing on a Cu-contaminated soil series: potential uses for biomonitoring of Cu exposure and phytoremediation. Plant Soil, 376, 377–397. doi:10.1007/s11104-013-1974-8
  • Kötschau, A., Büchel, G., Einax, J. W., Fischer, C., von Tümpling, W., and Merten, D. (2013). Mapping of macro and micro elements in the leaves of sunflower (Helianthus annuus) by laser ablation-ICP-MS. Microchem. J., 110, 783–789. doi:10.1016/j.microc.2012.12.011
  • Kötschau, A., Buchel, G., Einax, J. W., von Tumpling, W., and Merten, D. (2014). Sunflower (Helianthus annuus): Phytoextraction capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environ. Earth Sci., 72, 2023–2031. doi:10.1007/s12665-014-3111-2
  • Krystofova, O., Shestivska, V., Galiova, M., Novotny, K., Kaiser, J., Zehnalek, J., Babula, P., Opatrilova, R., Adam, V., and Kizek, R. (2009). Sunflower plants as bioindicators of environmental pollution with lead (II) ions. Sensors, 9, 5040–5058. doi:10.3390/s90705040
  • Laporte, M. A., Denaix, L., Dauguet, S., and Nguyen, C. (2014). Longitudinal variation in cadmium influx in sunflower (Helianthus annuus L.) roots as depending on the growth substrate, root age and root order. Plant Soil, 381, 235–247. doi:10.1007/s11104-014-2123-8
  • Laporte, M. A., Sterckeman, T., Dauguet, S., Denaix, L., and Nguyen, C. (2015). Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environ. Exp. Bot., 109, 45–53. doi:10.1016/j.envexpbot.2014.07.020
  • Laspina, N. V., Groppa, M. D., Tomaro, M. L., and Benavides, M. P. (2005). Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci., 169, 323–330. doi:10.1016/j.plantsci.2005.02.007
  • Lee, K. K., Cho, H. S., Moon, Y. C., Ban, S. J., and Kim, J. Y. (2013). Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures. KSCE J. Civ. Eng., 17, 44–50. doi:10.1007/s12205-013-1633-x
  • Lesage, E., Meers, E., Vervaeke, P., Lamsal, S., Hopgood, M., Tack, F., and Verloo, M. (2005). Enhanced phytoextraction: ii. effect of edta and citric acid on heav. Int. J. Phytoremediation, 7, 143–152.
  • Li, Y. M., Chaney, R. L., Schneiter, A. A., Miller, J. F., Elias, E. M., and Hammond, J. J. (1997). Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica, 94, 23–30. doi:10.1023/A:1002996405463
  • Lin, C., Liu, J., Liu, L., Zhu, T., Sheng, L., and Wang, D. (2009). Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environ. Exp. Bot., 65, 410–416. doi:10.1016/j.envexpbot.2008.12.003
  • Lin, J., Jiang, W., Liu, D., (2003). Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Bioresour. Technol. 86, 151–155. doi:10.1016/S0960-8524(02)00152-9
  • Liphadzi, M. S., and Kirkham, M. B. (2006). Chelate-assisted heavy metal removal by sunflower to improve soil with sludge. J. Crop Improv., 16, 153–172. doi:10.1300/J411v16n01_11
  • Liphadzi, M. S., Kirkham, M. B., Mankin, K. R., and Paulsen, G. M. (2003). EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil, 257, 171–182. doi:10.1023/A:1026294830323
  • Lo, I. M. C., Tsang, D. C. W., Yip, T. C. M., Wang, F., and Zhang, W. (2011). Influence of injection conditions on EDDS-flushing of metal-contaminated soil. J. Hazard. Mater., 192, 667–675. doi:10.1016/j.jhazmat.2011.05.067
  • Lucchini, P., Quilliam, R. S., DeLuca, T. H., Vamerali, T., and Jones, D. L. (2014). Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environ. Sci. Pollut. Res., 21, 3230–3240. doi:10.1007/s11356-013-2272-y
  • Mani, D., Kumar, C., and Kumar, N. (2015). Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils. Ecotoxicol. Environ. Saf., 111, 86–95. doi:10.1016/j.ecoenv.2014.09.019
  • Mani, D., Sharma, B., and Kumar, C. (2007). Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Bull. Environ. Contam. Toxicol., 79, 71–79. doi:10.1007/s00128-007-9153-3
  • Marques, A.P.G.C., Moreira, H., Franco, A.R., Rangel, A.O.S.S., Castro, P.M.L. (2013). Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria - Effects on phytoremediation strategies. Chemosphere 92, 74–83. doi:10.1016/j.chemosphere.2013.02.055
  • Meers, E., Ruttens, A., Geebelen, W., Vangronsveld, J., Samson, R., Vanbroekhoven, K., Vandegehuchte, M., Diels, L., Tack, F. M. G. (2005a). Potential use of the plant antioxidant network for environmental exposure assessment of heavy metals in soils. Environ. Monit. Assess., 120, 243–67. doi:10.1007/s10661-005-9059-7
  • Meers, E., Ruttens, A., Hopgood, M. J., Samson, D., Tack, F. M. G. (2005b). Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58, 1011–1022. doi:10.1016/j.chemosphere.2004.09.047
  • Meers, E., Tack, F. M. G., Van Slycken, S., Ruttens, A., Du Laing, G., Vangronsveld, J., and Verloo, M. G. (2008). Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int. J. Phytoremediation, 10, 390–414. doi:10.1080/15226510802100515
  • Meighan, M.M., Fenus, T., Karey, E., MacNeil, J., (2011). The impact of EDTA on the rate of accumulation and root/shoot partitioning of cadmium in mature dwarf sunflowers. Chemosphere 83, 1539–1545. doi:10.1016/j.chemosphere.2011.01.035
  • Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., Witters, N., Thewys, T., and Tack, F. M. G. (2010). The use of bio-energy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: A field experiment. Chemosphere, 78, 35–41. doi:10.1016/j.chemosphere.2009.08.015
  • Moradkhani, S., Ali, R., Nejad, K., and Dilmaghani, K. (2012). Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem. 8, 78–89.
  • Moradkhani, S., Nejad, R. A., Dilmaghani, K., and Chaparzadeh, N. (2013). Salicylic acid decreases Cd toxicity in maize plants. Ann. Biol. Res., 4, 135–141.
  • Munn, J., January, M., and Cutright, T. J. (2008). Greenhouse evaluation of EDTA effectiveness at enhancing Cd, Cr, and Ni uptake in helianthus annuus and thlaspi caerulescens. J. Soils Sediments, 8, 116–122. doi:10.1065/jss2008.02.274
  • Nehnevajova, E., Herzig, R., Bourigault, C., Bangerter, S., and Schwitzguébel, J.-P. (2009). Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int. J. Phytoremediation, 11, 329–346. doi:10.1080/15226510802565394
  • Nehnevajova, E., Herzig, R., Federer, G., Erismann, K.-H., and Schwitzguébel, J.-P. (2005). Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int. J. Phytoremediation, 7, 337–349. doi:10.1080/16226510500327210
  • Nehnevajova, E., Lyubenova, L., Herzig, R., Schröder, P., Schwitzguébel, J. P., and Schmülling, T. (2012). Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ. Exp. Bot., 76, 39–48. doi:10.1016/j.envexpbot.2011.10.005
  • Niu, Z. X., Sun, L. N., Sun, T. H., Li, Y. S., and Wang, H. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J. Environ. Sci., 19, 961–967. doi:10.1016/S1001-0742(07)60158-2
  • Niu, Z. X., Li, X. D., Sun, L. N., and Sun, T. H. (2012). Changes of three organic acids in the process of Cd and Pb phytoextraction by Helianthus annuus L. Plant Soil Environ., 58, 487–494.
  • Ok, Y. S., Chang, S. X., Gao, B., and Chung, H. J. (2015). SMART biochar technology-A shifting paradigm toward advanced materials and healthcare research. Environ. Technol. Innov., 4, 206–209. doi:10.1016/j.eti.2015.08.003
  • Pankovic, D., Plesnicar, M., Rsenijevic, I., Petrovic, N., Sakac, Z., and Kastori, R. (2000). Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann. Bot., 86, 841–847. doi:10.1006/anbo.2000.1250
  • Park, J. H., Bolan, N., Megharaj, M., and Naidu, R. (2012). Relative value of phosphate compounds in reducing the bioavailability and toxicity of lead in contaminated soils. Water. Air Soil Pollut., 223, 599–608. doi:10.1007/s11270-011-0885-7
  • Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., and Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5, 65–75. doi:10.5194/se-5-65-2014
  • Pena, L. B., Pasquini, L. A., Tomaro, M. L., and Gallego, S. M. (2006). Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci., 171, 531–537. doi:10.1016/j.plantsci.2006.06.003
  • Prapagdee, B., Chanprasert, M., Mongkolsuk, S., (2013). Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92, 659–666. doi:10.1016/j.chemosphere.2013.01.082
  • Pritsa, T. S., Fotiadis, E. A., and Lolas, P. C. (2008). Corn tolerance to atrazine and cadmium and sunflower to cadmium in soil and hydroponic culture. Commun. Soil Sci. Plant Anal., 39, 1168–1182. doi:10.1080/00103620801925877
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C. W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N. S., and Sik, Y. (2016). Chemosphere engineered/designer biochar for contaminant removal / immobilization from soil and water: Potential and implication of biochar modi fi cation. Chemosphere, 148, 276–291. doi:10.1016/j.chemosphere.2016.01.043
  • Ramzani, P. M. A., Khan, W.-D., Iqbal, M., Kausar, S., Ali, S., Rizwan, M., and Virk, Z. A. (2016). Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environ. Sci. Pollut. Res. doi:10.1007/s11356-016-7038-x
  • Rehman, M. Z., Rizwan, M., Ghafoor, A., Naeem, A., Ali, S., Sabir, M., and Qayyum, M. F. (2015). Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ. Sci. Pollut. Res., 22, 16897–16906. doi:10.1007/s11356-015-4883-y
  • Rinklebe, J., Shaheen, S. M., and Frohne, T. (2016). Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere, 142, 41–47. doi:10.1016/j.chemosphere.2015.03.067
  • Rivelli, A. R., Puschenreiter, M., and De Maria, S. (2014). Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. Plant Soil Environ., 60, 80–86.
  • Rizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M. I., and Ok, Y. S. (2016a). Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf., 130, 43–53. doi:10.1016/j.ecoenv.2016.04.001
  • Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., Qayyum, M. F., Hafeez, F., and Ok, Y. S. (2016b). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ. Sci. Pollut. Res. doi:10.1007/s11356-016-6436-4
  • Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S. A., Zia-ur-Rehman, M., Qayyum, M. F., and Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ. Sci. Pollut. Res., 22, 15416–15431. doi:10.1007/s11356-015-5305-x
  • Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., and Ok, Y. S. (2016c). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res., 23, 2230–2248. doi:10.1007/s11356-015-5697-7
  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Zia-ur-Rehman, M., Abbas, Z., and Hannan, F. (2016d). Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ. Geochem. Health. doi:10.1007/s10653-016-9826-0
  • Rizwan, M., Meunier, J.-D., Davidian, J.-C., Pokrovsky, O. S., Bovet, N., and Keller, C. (2016e). Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ. Sci. Pollut. Res., 23, 1414–1427. doi:10.1007/s11356-015-5351-4
  • Rizwan, M., Meunier, J. D., Miche, H., and Keller, C. (2012). Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J. Hazard. Mater., 209-210, 326–334. doi:10.1016/j.jhazmat.2012.01.033
  • Robinson, B., Bañuelos, G., Conesa, H., Evangelou, M., and Schulin, R. (2009). The phytomanagement of trace elements in soil. Crit. Rev. Plant Sci., 28, 240–266. doi:10.1080/07352680903035424
  • Rojas-Tapias, D. F., Bonilla, R. R., and Dussán, J. (2012). Effect of inoculation with plant growth-promoting bacteria on growth and copper uptake by sunflowers. Water. Air. Soil Pollut., 223, 643–654. doi:10.1007/s11270-011-0889-3
  • Saber, N. E., Abdel-Moneim, A. M., and Barakat, S. Y. (1999). Role of organic acids in sunflower tolerance to heavy metals. Biol. Plant., 42, 65–73. doi:10.1023/A:1002115425544
  • Saidi, I., Chtourou, Y., and Djebali, W. (2014). Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J. Plant Physiol., 171, 85–91. doi:10.1016/j.jplph.2013.09.024
  • Saidi, I., Nawel, N., and Djebali, W. (2014). Role of selenium in preventing manganese toxicity in sunflower (Helianthus annuus) seedling. South African J. Bot., 94, 88–94. doi:10.1016/j.sajb.2014.06.005
  • Saleem, M., Asghar, H. N., Khan, M. Y., and Zahir, Z. A. (2015). Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium(VI)-contaminated soil. Environ. Sci. Pollut. Res., 22, 10610–10617. doi:10.1007/s11356-015-4275-3
  • Savic, J., and Marjanovic-Jeromela, A. (2013). Effect of silicon on sunflower growth and nutrient accumulation under low boron supply. Helia, 36, 61–68. doi:10.2298/HEL1358061S
  • Seth, C. S., Misra, V., Singh, R. R., and Zolla, L. (2011). EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil, 347, 231–242. doi:10.1007/s11104-011-0841-8
  • Sewalem, N., Elfeky, S., and Shintinawy, F. E. (2014). Phytoremediation of lead and cadmium contaminated soils using sunflower plant phytoremediation of lead and cadmium contaminated soils using sunflower plant. J. Stress Physiol. Biochem., 10, 122–134.
  • Shaheen, S. M., and Rinklebe, J. (2015). Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. Environ. Geochem. Health, 37, 953–967. doi:10.1007/s10653-015-9718-8
  • Simon, L., Biro, B., and Balazsy, S. (2008). Impact of pseudomonads and ethylene on the cadmium and nickel rhizofiltration of sunflower, squash, and Indian mustard. Commun. Soil Sci. Plant Anal., 39, 2440–2455. doi:10.1080/00103620802292806
  • Sinegani, A. A. S., and Khalilikhah, F. (2010). Effects of EDTA, sheep manure extract, and their application time on Cd uptake by Helianthus annuus from a calcareous mine soil. Soil Sediment Contam., 19, 378–390. doi:doi:10.1080/15320381003695199
  • Singh, S., Saxena, R., Pandey, K., Bhatt, K., and Sinha, S. (2004). Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: Its metal accumulation potential. Chemosphere, 57, 1663–1673. doi:10.1016/j.chemosphere.2004.07.049
  • Tack, F. M. G., and Meers, E. (2010). Assisted phytoextraction: Helping plants to help us. Elements, 6, 383–388. doi:10.2113/gselements.6.6.383
  • Tauqeer, H. M., Ali, S., Rizwan, M., Ali, Q., Saeed, R., Iftikhar, U., Ahmad, R., Farid, M., and Hassan, G. (2016). Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotoxicol. Environ. Saf., 126, 138–146. doi:10.1016/j.ecoenv.2015.12.031
  • Tsang, D. C. W., and Hartley, N. R. (2014). Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances. Environ. Sci. Pollut. Res., 21, 3987–3995. doi:10.1007/s11356-013-2300-y
  • Tsang, D. C. W., Lo, I., and Chen, K. (2007). Modeling the transport of metals with rate-limited EDTA-promoted extraction and dissolution during EDTA-flushing of copper-contaminated soils. Environ. Sci. Technol., 41, 3660–3666.
  • Tsang, D. C. W., Olds, W. E., and Weber, P. (2013). Residual leachability of CCA-contaminated soil after treatment with biodegradable chelating agents and lignite-derived humic substances. J. Soils Sediments, 13, 895–905. doi:10.1007/s11368-013-0662-x
  • Turgut, C., Babahan, I., Atatanir, L., and Cutright, T. J. (2010). Assessment of two new ligands for increasing the uptake of Cd, Cr, and Ni in helianthus annuus grown in a Sandy-Loam Soil. Water. Air. Soil Pollut., 210, 289–295. doi:10.1007/s11270-009-0250-2
  • Turgut, C., Katie Pepe, M., and Cutright, T. J. (2005). The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere, 58, 1087–1095. doi:10.1016/j.chemosphere.2004.09.073
  • Turgut, C., Katie Pepe, M., and Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut., 131, 147–154. doi:10.1016/j.envpol.2004.01.017
  • Yeh, T. Y., Lin, C. L., Lin, C. F., and Chen, C. C. (2012). Chelator-enhanced phytoextraction of copper and zinc by sunflower, Chinese cabbage, cattails and reeds. Int. J. Environ. Sci. Technol., 12, 327–340. doi:10.1007/s13762-014-0592-1
  • Zaccheo, P., Crippa, L., and Pasta, V. D. M. (2006). Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil, 283, 43–56. doi:10.1007/s11104-005-4791-x
  • Zadeh, B. M., Savaghebi-firozabadi, G. R., Alikhani, H. A., and Hosseini, H. M. (2008). Effect of sunflower and amaranthus culture and application of inoculants on phytoremediation of the soils contaminated with cadmium. Am. J. Agric. Environ. Sci., 4, 93–103.
  • Zaheer, I. E., Ali, S., Muhammad, R., Farid, M., Shakoor, M. B., Gill, R. A., Najeeb, U., Iqbal, N., and Ahmad, R. (2015). Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol. Environ. Saf., 120, 310–317. doi:10.1016/j.ecoenv.2014.03.007
  • Zhang, W., and Tsang, D. C. W. (2013). Conceptual framework and mathematical model for the transport of metal-chelant complexes during in situ soil remediation. Chemosphere, 91, 1281–1288. doi:10.1016/j.chemosphere.2013.02.034
  • Zhang, W., Tsang, D. C. W., Chen, H., and Huang, L. (2013). Remediation of an electroplating contaminated soil by EDTA flushing: Chromium release and soil dissolution. J. Soils Sediments, 13, 354–363. doi:10.1007/s11368-012-0616-8
  • Zhixin, N., Xiaodong, L., Lina, S., and Tieheng, S. (2013). Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead. Int. J. Phytoremediation, 15, 690–702. doi:10.1080/15226514.2012.723066
  • Zornoza, P., Robles, S., and Martin, N. (1999). Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil, 208, 221–226. doi:10.1023/A:1004517414730
  • Zou, J. I. N., Xu, P. U., Lu, X. I., Jiang, W., and Liu, D. (2008). Accumulation of cadmium in three sunflower (helianthus). Pakistan J. Bot., 40, 759–765.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.