6,708
Views
38
CrossRef citations to date
0
Altmetric
Articles

Pharmaceutical removal from water with iron- or manganese-based technologies: A review

, , &
Pages 1584-1621 | Published online: 07 Nov 2016

References

  • Ahmed, M.M., and Chiron, S. (2014). Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater. Water Res., 48, 229–236.
  • Anderson, R.T., Rooney-Varga, J.N., Gaw, C.V., and Lovley, D.R. (1998). Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environ. Sci. Technol., 32, 1222–1229.
  • Andreozzi, R., Campanella, L., Fraysse, B., Garric, J., Gonnella, A., Giudice, R.L., Marotta, R., Pinto, G., and Pollio, A. (2004). Effects of advanced oxidation processes (AOPs) on the toxicity of a mixture of pharmaceuticals. Water Sci. Technol., 50, 23–28.
  • Babuponnusami, A., and Muthukumar, K. (2012). Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chem. Eng. J., 183, 1–9.
  • Babuponnusami, A., and Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng., 2, 557–572.
  • Badawy, M.I., Wahaab, R.A., and El-Kalliny, A.S. (2009). Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. J. Hazard Mater., 167, 567–574.
  • Bae, S., Song, S.U., Kim, D., and Lee, W. (2012). Oxidative degradation of pharmaceutical by Fenton-like reaction using pyrite and H2O2. [abstract No. EVNR 203]. In: The 244th ACS National Meeting & Exposition, At Philadelphia, Pennsylvania, USA.
  • Bao, X., Qiang, Z., Ling, W., and Chang, J.H. (2013). Sonohydrothermal synthesis of MFe2O4 magnetic nanoparticles for adsorptive removal of tetracyclines from water. Sep. Purif. Technol., 117, 104–110.
  • Bautitz, I.R., Velosa, A.C., and Nogueira, R.F. (2012). Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88, 688–692.
  • Bellusci, M., La Barbera, A., Padella, F., Mancuso, M., Pasquo, A., Grollino, M.G., Leter, G., Nardi, E., Cremisini, C., Giardullo, P., and Pacchierotti, F. (2014). Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int. J. Nanomed., 9, 1919–1929.
  • Benjamin, M.M., and Lawler, D.F. (2013). Water quality engineering: Physical/chemical treatment processes. Hoboken, NJ: John Wiley & Sons, Inc.
  • Bernard, S., Chazal, P., and Mazet, M. (1997). Removal of organic compounds by adsorption on pyrolusite (β-MnO2). Water Res., 31, 1216–1222.
  • Betancur-Corredor, B., Soltan, J., and Peñuela, G.A. (2015). Mineralization of Ibuprofen and Humic Acid through Catalytic Ozonation. Ozone: Sci. Eng., 38, 203–210.
  • Bratby, J. (2006). Coagulation and flocculation in water and wastewater treatment. London: IWA Publishing.
  • Brillas, E., Sires, I., and Oturan, M.A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem. Rev., 109, 6570–6631.
  • Brooks, B.W., and Huggett, D.B. (2012). Human pharmaceuticals in the environment: Current and future perspectives. New York: Springer.
  • Budd, G.C., Hess, A.F., Shorney-Darby, H., Neemann, J.J., Spencer, C.M., Bellamy, J.D., and Hargette, P.H. (2004). Coagulation applications for new treatment goals. J. Am. Water Works Assoc., 96, 102–113.
  • Cao, L.T., Kodera, H., Abe, K., Imachi, H., Aoi, Y., Kindaichi, T., Ozaki, T., and Ohashi, A. (2015). Biological oxidation of Mn(II) coupled with nitrification for removal and recovery of minor metals by downflow hanging sponge reactor. Water Res., 68, 545–553.
  • Chelliapan, S., and Sallis, P.J. (2013). Removal of organic compound from pharmaceutical wastewater using advanced oxidation processes. J. Sci. Ind. Res., 72, 248–254.
  • Chen, M., Cao, F., Li, F., Liu, C., Tong, H., Wu, W., and Hu, M. (2013a). Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils. J. Agric. Food Chem., 61, 2224–2233.
  • Chen, W.-R., Ding, Y., Johnston, C.T., Teppen, B.J., Boyd, S.A., and Li, H. (2010). Reaction of Lincosamide Antibiotics with Manganese Oxide in Aqueous Solution. Environ. Sci. Technol., 44, 4486–4492.
  • Chen, W.R., and Huang, C.H. (2009). Transformation of tetracyclines mediated by Mn(II) and Cu(II) ions in the presence of oxygen. Environ. Sci. Technol., 43, 401–407.
  • Chen, Z., Wang, T., Jin, X., Chen, Z., Megharaj, M., and Naidu, R. (2013b). Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J. Colloid Interface Sci., 398, 59–66.
  • Chieng, N., Rades, T., and Aaltonen, J. (2011). An overview of recent studies on the analysis of pharmaceutical polymorphs. J. Pharm. Biomed. Anal., 55, 618–644.
  • Collado, S., Quero, D., Laca, A., and Diaz, M. (2010). Fe2+-catalyzed wet oxidation of phenolic acids under different pH values. Ind. Eng. Chem. Res., 49, 12405–12413.
  • Correia de Velosa, A., and Pupo Nogueira, R.F. (2013). 2,4-Dichlorophenoxyacetic acid (2,4-D) degradation promoted by nanoparticulate zerovalent iron (nZVI) in aerobic suspensions. J. Environ. Manage., 121, 72–79.
  • Crane, R.A., and Scott, T.B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater., 211–212, 112–125.
  • Cruz-Morato, C., Ferrando-Climent, L., Rodriguez-Mozaz, S., Barcelo, D., Marco–Urrea, E., Vicent, T., and Sarra, M. (2013). Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res., 47, 5200–5210.
  • Cruz, N.d.l., Esquius, L., Grandjean, D., Magnet, A., Tungler, A., Alencastro, L.F.d., and Pulgarin, C. (2013). Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res., 47, 5836–5845.
  • Cui, X.Y., Zeng, P., Qiu, G.L., Liu, Y.Q., Song, Y.H., Xie, X.L., and Han, L. (2015). Pilot-scale treatment of pharmaceutical berberine wastewater by Fenton oxidation. Environ. Earth Sci., 73, 4967–4977.
  • Cundy, A.B., Hopkinson, L., and Whitby, R.L. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci. Total Environ., 400, 42–51.
  • Deng, Y., and Ezyske, C.M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res., 45, 6189–6194.
  • Dorer, C., Vogt, C., Neu, T.R., Stryhanyuk, H., and Richnow, H.-H. (2016). Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis. Environ. Pollut., 211, 271–281.
  • Dougherty, J.A., Swarzenski, P.W., Dinicola, R.S., and Reinhard, M. (2010). Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington. J. Environ. Qual., 39, 1173–1180.
  • Feitosa-Felizzola, J., Hanna, K., and Chiron, S. (2009). Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides. Environ. Pollut., 157, 1317–1322.
  • Filip, J., Zboril, R., Schneeweiss, O., Zeman, J., Cernik, M., Kvapil, P., and Otyepka, M. (2007). Environmental applications of chemically pure natural ferrihydrite. Environ. Sci. Technol., 41, 4367–4374.
  • Forrez, I., Carballa, M., Verbeken, K., Vanhaecke, L., Ternes, T., Boon, N., and Verstraete, W. (2010). Diclofenac oxidation by biogenic manganese oxides. Environ. Sci. Technol., 44, 3449–3454.
  • Forrez, I., Carballa, M., Fink, G., Wick, A., Hennebel, T., Vanhaecke, L., Ternes, T., Boon, N., and Verstraete, W. (2011). Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Res., 45, 1763–1773.
  • Furgal, K.M., Meyer, R.L., and Bester, K. (2015). Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 136, 321–326.
  • Gao, A.F., Gao, H., Wan, J.M., and Wu, C.S. (2013). Treatment pharmaceutical wastewater using fenton oxidation, ultraviolet, and ultrasound processes. Fresenius Environ. Bull., 22, 449–454.
  • Gao, J., Hedman, C., Liu, C., Guo, T., and Pedersen, J.A. (2012). Transformation of sulfamethazine by manganese oxide in aqueous solution. Environ. Sci. Technol., 46, 2642–2651.
  • Gao, S., Zhao, Z., Xu, Y., Tian, J., Qi, H., Lin, W., and Cui, F. (2014). Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate–a comparative study. J. Hazard Mater., 274, 258–269.
  • Garrido-Ramirez, E.G., Sivaiah, M.V., Barrault, J., Valange, S., Theng, B.K.G., Ureta-Zanartu, M.S., and Mora, M.D. (2012). Catalytic wet peroxide oxidation of phenol over iron or copper oxide-supported allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio. Microporous and Mesoporous Mater., 162, 189–198.
  • Ghafoori, S., Shah, K.K., Mehrvar, M., and Chan, P.K. (2014). Pharmaceutical wastewater treatment using granular activated carbon and UV/H2O2 processes: Experimental analysis and modelling. Can. J. Chem. Eng., 92, 1163–1173.
  • Ghauch, A., Tuqan, A., and Assi, H.A. (2009). Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ. Pollut., 157, 1626–1635.
  • Ghauch, A., Ayoub, G., and Naim, S. (2013). Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chem. Eng. J., 228, 1168–1181.
  • Ghernaout, D., and Naceur, M.W. (2011). Ferrate(VI): In situ generation and water treatment - a review. Desalin. Water Treat., 30, 319–332.
  • Golan-Rozen, N., Chefetz, B., Ben-Ari, J., Geva, J., and Hadar, Y. (2011). Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: Role of cytochrome P450 monooxygenase and manganese peroxidase. Environ. Sci. Technol., 45, 6800–6805.
  • Gomez-Toribio, V., Garcia-Martin, A.B., Martinez, M.J., Martinez, A.T., and Guillen, F. (2009). Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl. Environ. Microbiol., 75, 3944–3953.
  • Gotvajn, A.Z., Zagorc-Koncan, J., and Tisler, T. (2007). Pretreatment of highly polluted pharmaceutical waste broth by wet air oxidation. J. Environ. Eng., 133, 89–94.
  • Grcic, I., Papic, S., Zizek, K., and Koprivanac, N. (2012). Zero-valent iron (ZVI) Fenton oxidation of reactive dye wastewater under UV–C and solar irradiation. Chem. Eng. J., 195, 77–90.
  • Gros, M., Cruz-Morato, C., Marco-Urrea, E., Longree, P., Singer, H., Sarra, M., Hollender, J., Vicent, T., Rodriguez-Mozaz, S., and Barcelo, D. (2014). Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Res., 60, 228–241.
  • Guan, X.H., He, D., Ma, J., and Chen, G.H. (2010). Application of permanganate in the oxidation of micropollutants: a mini review. Front. Environ. Sci. Eng. China 4, 405–413.
  • Han, Z., Sani, B., Akkanen, J., Abel, S., Nybom, I., Karapanagioti, H.K., and Werner, D. (2015). A critical evaluation of magnetic activated carbon's potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. J. Hazard Mater., 286, 41–47.
  • Hartmann, M., Kullmann, S., and Keller, H. (2010). Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J. Mater. Chem., 20, 9002–9017.
  • Hasan, Z., Jeon, J., and Jhung, S.H. (2012). Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J. Hazard Mater., 209–210, 151–157.
  • He, Y., Xu, J., Zhang, Y., Guo, C., Li, L., and Wang, Y. (2012). Oxidative transformation of carbamazepine by manganese oxides. Environ. Sci. Pollut. Res., 19, 4206–4213.
  • He, Y.J., Sutton, N.B., Rijnaarts, H.H.H., and Langenhoff, A.A.M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Appl. Catal. B Environ., 182, 132–141.
  • Hendratna, A. (2011). The application of MnO2 and KMnO4 for persistent organic compounds and COD removals in wastewater treatment process. Department of Land and Water Resources Engineering. STOCKHOLM: Royal Institute of Technology.
  • Hennebel, T., De Gusseme, B., Boon, N., and Verstraete, W. (2009). Biogenic metals in advanced water treatment. Trends Biotechnol., 27, 90–98.
  • Ho, L., Lambling, P., Bustamante, H., Duker, P., and Newcombe, G. (2011). Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Res., 45, 2954–2964.
  • Hosseini, A.M., Tungler, A., and Bakos, V. (2011). Wet oxidation properties of process waste waters of fine chemical and pharmaceutical origin. Reaction Kinet. Mech. Catal., 103, 251–260.
  • Hou, M., Tang, Y., Xu, J., Pu, Y., Lin, A., Zhang, L., Xiong, J., Yang, X.J., and Wan, P. (2015). Nitrate reduction in water by aluminum–iron alloy particles catalyzed by copper. J. Environ. Chem. Eng., 3, 2401–2407.
  • Hu, L., Martin, H.M., and Strathmann, T.J. (2010). Oxidation kinetics of antibiotics during water treatment with potassium permanganate. Environ. Sci. Technol., 44, 6416–6422.
  • Hu, L., Stemig, A.M., Wammer, K.H., and Strathmann, T.J. (2011). Oxidation of antibiotics during water treatment with potassium permanganate: reaction pathways and deactivation. Environ. Sci. Technol., 45, 3635–3642.
  • Huang, Y.X., and Keller, A.A. (2013). Magnetic nanoparticle adsorbents for emerging organic contaminants. Acs Sustain. Chem. Eng., 1, 731–736.
  • Huber, M.M., Canonica, S., Park, G.Y., and von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol., 37, 1016–1024.
  • Huerta-Fontela, M., Galceran, M.T., and Ventura, F. (2011). Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res., 45, 1432–1442.
  • Hug, S.J., and Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol., 37, 2734–2742.
  • Huguet, M., Simon, V., and Gallard, H. (2014). Transformation of paracetamol into 1,4-benzoquinone by a manganese oxide bed filter. J. Hazard Mater., 271, 245–251.
  • Huguet, M., Deborde, M., Papot, S., and Gallard, H. (2013). Oxidative decarboxylation of diclofenac by manganese oxide bed filter. Water Res., 47, 5400–5408.
  • Huo, S.H., and Yan, X.P. (2012). Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem., 22, 7449–7455.
  • Hussain, S., Shaikh, S., and Farooqui, M. (2013). COD reduction of waste water streams of active pharmaceutical ingredient - atenolol manufacturing unit by advanced oxidation-Fenton process. J. Saudi Chem. Soc., 17, 199–202.
  • Ikehata, K., and El-Din, M.G. (2006). Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J. Environ. Eng. Sci., 5, 81–135.
  • Ikehata, K., Naghashkar, N.J., and Ei-Din, M.G. (2006). Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Sci. Eng., 28, 353–414.
  • Isarain-Chavez, E., Arias, C., Cabot, P.L., Centellas, F., Rodriguez, R.M., Garrido, J.A., and Brillas, E. (2010). Mineralization of the drug beta-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl. Catal. B: Environ., 96, 361–369.
  • Jahn, M.K., Haderlein, S.B., and Meckenstock, R.U. (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl. Environ. Microbiol., 71, 3355–3358.
  • Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. Appl. Mater., 1, 011002.
  • Jamalluddin, N.A., and Abdullah, A.Z. (2011). Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature. Ultrason. Sonochem., 18, 669–678.
  • Javier Benitez, F., Acero, J.L., Real, F.J., and Roldan, G. (2009). Ozonation of pharmaceutical compounds: rate constants and elimination in various water matrices. Chemosphere 77, 53–59.
  • Jelić, A., Petrović, M., and Barceló, D. (2012). Pharmaceuticals in drinking water Emerging organic contaminants and human health (47–70). Berlin-Heidelberg: Springer.
  • Ji, Y., Ferronato, C., Salvador, A., Yang, X., and Chovelon, J.M. (2014). Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ., 472, 800–808.
  • Jia, Y., Aagaard, P., and Breedveld, G.D. (2007). Sorption of triazoles to soil and iron minerals. Chemosphere 67, 250–258.
  • Jiang, J.Q. (2007). Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard Mater., 146, 617–623.
  • Jiang, J.Q. (2014). Advances in the development and application of ferrate(VI) for water and wastewater treatment. J. Chem. Technol. Biotechnol., 89, 165–177.
  • Jiang, J.Q., and Zhou, Z. (2013). Removal of Pharmaceutical residues by ferrate(VI). Plos One 8, e55729.
  • Jiang, J.Q., Zhou, Z.W., Patibandla, S., and Shu, X.H. (2013). Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model. Microchem. J., 110, 239–245.
  • Kagle, J., Porter, A.W., Murdoch, R.W., Rivera-Cancel, G., and Hay, A.G. (2009). Chapter 3 Biodegradation of pharmaceutical and personal care products. Adv. Appl. Microbiol., 67, 65–108.
  • Kallel, M., Belaid, C., Mechichi, T., Ksibi, M., and Elleuch, B. (2009). Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chem. Eng. J., 150, 391–395.
  • Keenan, C.R., and Sedlak, D.L. (2008). Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol., 42, 6936–6941.
  • Keller, A.A., Garner, K., Miller, R.J., and Lenihan, H.S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. Plos One 7, e43983.
  • Khan, N.A., Hasan, Z., and Jhung, S.H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard Mater., 244–245, 444–456.
  • Kharisov, B.I., Dias, H.R., Kharissova, O.V., Jiménez-Pérez, V.M., Perez, B.O., and Flores, B.M. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. Rsc Adv., 2, 9325–9358.
  • Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., and Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy Environ. Sci., 5, 8075–8109.
  • Klavarioti, M., Mantzavinos, D., and Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int., 35, 402–417.
  • Kochi, J.K. (1967). Mechanisms of organic oxidation and reduction by metal complexes. Science 155, 415–424.
  • Komlos, J., Kukkadapu, R.K., Zachara, J.M., and Jaffe, P.R. (2007). Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction. Water Res., 41, 2996–3004.
  • Kong, L.N., Wei, W., Zhao, Q.F., Wang, J.Q., and Wan, Y. (2012). Active coordinatively unsaturated manganese monoxide-containing mesoporous carbon catalyst in wet peroxide oxidation. ACS Catal., 2, 2577–2586.
  • Kouraichi, R., Delgado, J.J., Lopez-Castro, J.D., Stitou, M., Rodriguez-Izquierdo, J.M., and Cauqui, M.A. (2010). Deactivation of Pt/MnOx-CeO2 catalysts for the catalytic wet oxidation of phenol: Formation of carbonaceous deposits and leaching of manganese. Catal. Today 154, 195–201.
  • Kowalski, K.P., and Sogaard, E.G. (2014). Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes. Chemosphere 117, 108–114.
  • Kuan, W.H., Hu, C.Y., Liu, B.S., and Tzou, Y.M. (2013). Degradation of antibiotic amoxicillin using 1×1 molecular sieve-structured manganese oxide. Environmental Technology 34, 2443–2451.
  • Kümmerer, K. (2004). Pharmaceuticals in the environment: Sources, fate, effects and risks; with 77 tables. Berlin-Heidelberg: Springer.
  • Laine, D.F., Blumenfeld, A., and Cheng, I.F. (2008). Mechanistic study of the ZEA organic pollutant degradation system: evidence for H2O2, HO•, and the homogeneous activation of O2 by FeIIEDTA. Ind. Eng. Chem. Res., 47, 6502–6508.
  • Langenhoff, A.A., Zehnder, A.J., and Schraa, G. (1996a). Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7, 267–274.
  • Langenhoff, A.A.M., Zehnder, A.J.B., and Schraa, G. (1996b). Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7, 267–274.
  • Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J., and Sedlak, D.L. (2008). Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environ. Sci. Technol., 42, 4927–4933.
  • Lee, Y., Zimmermann, S.G., Kieu, A.T., and Von Gunten, U. (2009). Ferrate (Fe(VI)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. Environ. Sci. Technol., 43, 3831–3838.
  • Levec, J., and Pintar, A. (2007). Catalytic wet-air oxidation processes: a review. Catalysis Today 124, 172–184.
  • Li, L., Fan, M.H., Brown, R.C., Van Leeuwen, J.H., Wang, J.J., Wang, W.H., Song, Y.H., and Zhang, P.Y. (2006). Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Critical Reviews in Environ. Sci. Technol., 36, 405–431.
  • Li, S.L., Wang, W., Liu, Y.Y., and Zhang, W.X. (2014). Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem. Eng. J., 254, 115–123.
  • Li, W., Nanaboina, V., Zhou, Q., and Korshin, G.V. (2012). Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Res., 46, 403–412.
  • Li, Y., Wei, D., and Du, Y. (2015a). Oxidative transformation of levofloxacin by δ-MnO2: Products, pathways and toxicity assessment. Chemosphere 119, 282–288.
  • Li, Z.H., Fitzgerald, N.M., Albert, Z., Schnabl, A., and Jiang, W.T. (2015b). Contrasting mechanisms of metoprolol uptake on kaolinite and talc. Chem. Eng. J., 272, 48–57.
  • Lima, D.R.S., Baeta, B.E.L., Aquino, S.F., Libanio, M., and Afonso, R.J.C.F. (2014). Removal of pharmaceuticals and endocrine disruptor compounds from natural waters by clarification associated with powdered activated carbon. Water Air Soil Pollut., 225, 2170.
  • Lin, K., Liu, W., and Gant, J. (2009). Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways. Environ. Sci. Technol., 43, 3860–3864.
  • Liu, C., He, Y., Li, F., and Wang, H. (2013). Preparation of poly ferric sulfate and the application in micro-polluted raw water treatment. J. Chin. Adv. Mater. Soc., 1, 210–218.
  • Lovley, D.R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev., 55, 259–287.
  • Lovley, D.R., and Phillips, E.J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol., 54, 1472–1480.
  • Lovley, D.R., Holmes, D.E., and Nevin, K.P. (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microbial. Physiol., 49, 219–286.
  • Lu, L., Li, J., Yu, J., Song, P., and Ng, D.H.L. (2016). A hierarchically porous MgFe2O4/γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water. Chem. Eng. J., 283, 524–534.
  • Lv, A.H., Hu, C., Nie, Y.L., and Qu, J.H. (2010). Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped gamma-Fe2O3. Appl. Catal. B: Environ., 100, 62–67.
  • Lv, A.H., Hu, C., Nie, Y.L., and Qu, J.H. (2012). Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl. Catal. B: Environ., 117, 246–252.
  • Ma, J., Sui, M.H., Chen, Z.L., and Wang, L.N. (2004). Degradation of refractory organic pollutants by catalytic ozonation - activated carbon and Mn-loaded activated carbon as catalysts. Ozone: Sci. Eng., 26, 3–10.
  • Mackulak, T., Mosny, M., Grabic, R., Golovko, O., Koba, O., and Birosova, L. (2015). Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater. Environ. Toxicol. Pharmacol., 39, 483–488.
  • Madhavan, J., Kumar, P.S., Anandan, S., Zhou, M., Grieser, F., and Ashokkumar, M. (2010). Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere 80, 747–752.
  • Mahmoodi, N.M. (2013). Manganese ferrite nanoparticle: Synthesis, characterization, and photocatalytic dye degradation ability. Desalin. Water Treat., 53, 84–90.
  • Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olive, C., Cartiser, N., Eudes, V., Bressy, A., Caupos, E., Moilleron, R., Chebbo, G., and Rocher, V. (2015). Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res., 72, 315–330.
  • Marco-Urrea, E., Perez-Trujillo, M., Vicent, T., and Caminal, G. (2009). Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74, 765–772.
  • Marco-Urrea, E., Radjenovic, J., Caminal, G., Petrovic, M., Vicent, T., and Barcelo, D. (2010). Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Res., 44, 521–532.
  • Martin, J., Camacho-Munoz, D., Santos, J.L., Aparicio, I., and Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard Mater., 239–240, 40–47.
  • Martins, R.C., Cardoso, M., Dantas, R.F., Sans, C., Esplugas, S., and Quinta-Ferreira, R.M. (2015). Catalytic studies for the abatement of emerging contaminants by ozonation. J. Chem. Technol. Biotechnol., 90, 1611–1618.
  • Matilainen, A., Vepsalainen, M., and Sillanpaa, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Adv. Colloid Interface Sci., 159, 189–197.
  • Meerburg, F., Hennebel, T., Vanhaecke, L., Verstraete, W., and Boon, N. (2012). Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver. Microbial. Biotechnol., 5, 388–395.
  • Melero, J.A., Martinez, F., Botas, J.A., Molina, R., and Pariente, M.I. (2009). Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water Res., 43, 4010–4018.
  • Meng, Y.T., Zheng, Y.M., Zhang, L.M., and He, J.Z. (2009). Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environ. Pollut., 157, 2577–2583.
  • Metcalf, L., Eddy, H.P., and Tchobanoglous, G. (2004). Wastewater engineering: Treatment, disposal, and reuse. New York [etc.]: McGraw-Hill.
  • Michael, I., Hapeshi, E., Michael, C., Varela, A.R., Kyriakou, S., Manaia, C.M., and Fatta-Kassinos, D. (2012). Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res., 46, 5621–5634.
  • Monteiro, S.C., and Boxall, A.B. (2010). Occurrence and fate of human pharmaceuticals in the environment. Rev. Environ. Contam. Toxicol., 202, 53–154.
  • Neta, P., Huie, R.E., and Ross, A.B. (1988). Rate constants for reactions of inorganic radicals in aqueous-solution. J. Phys. Chem. Ref. Data 17, 1027–1284.
  • Neyens, E., and Baeyens, J. (2003). A review of classic Fenton's peroxidation as an advanced oxidation technique. J. Hazard Mater., 98, 33–50.
  • Nfodzo, P., and Choi, H. (2011). Sulfate radicals destroy pharmaceuticals and personal care products. Environ. Eng. Sci., 28, 605–609.
  • Noubactep, C. (2008a). A critical review on the process of contaminant removal in Fe0-H2O systems. Environ. Technol., 29, 909–920.
  • Noubactep, C. (2008b). Comments on “Sorption of triazoles to soil and iron minerals”. by Y. Jia, et al. [ Chemosphere 67 (2007) 250–258]. Chemosphere 71, 802–806.
  • Noubactep, C. (2010). The fundamental mechanism of aqueous contaminant removal by metallic iron. Water Sa 36, 663–670.
  • Ogier, J. (2008). Fenton process for contaminant control: investigation of OH radical formation with two water types. Nieuwegein: KWR Watercycle Research Institute.
  • Olmez-Hanci, T., Arslan-Alaton, I., and Dursun, D. (2014). Investigation of the toxicity of common oxidants used in advanced oxidation processes and their quenching agents. J. Hazard Mater., 278, 330–335.
  • Olvera-Vargas, H., Oturan, N., Oturan, M.A., and Brillas, E. (2015). Electro-Fenton and solar photoelectro-Fenton treatments of the pharmaceutical ranitidine in pre-pilot flow plant scale. Sep. Purif. Technol., 146, 127–135.
  • Onesios, K.M., Yu, J.T., and Bouwer, E.J. (2009). Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20, 441–466.
  • Pantelidou, N.A., Theologides, C.P., Olympiou, G.G., Savva, P.G., Vasquez, M.I., and Costa, C.N. (2014). Catalytic removal of pharmaceutical compounds in water medium under an H2 stream over various metal-supported catalysts: a promising process. Desalin. Water Treat., 53, 3363–3370.
  • Park, H.S., Koduru, J.R., Choo, K.H., and Lee, B. (2015). Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J. Hazard Mater., 286, 315–324.
  • Phenrat, T., Long, T.C., Lowry, G.V., and Veronesi, B. (2009). Partial oxidation (“Aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol., 43, 195–200.
  • Pignatello, J.J., Oliveros, E., and MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol., 36, 1–84.
  • Pradyot, P. (2004). Preliminary separation methods Dean's Analytical Chemistry Handbook, Second Edition. McGraw Hill Professional, Access Engineering.
  • Pruden, A., Pei, R.T., Storteboom, H., and Carlson, K.H. (2006). Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol., 40, 7445–7450.
  • Qin, F.-X., Jia, S.-Y., Liu, Y., Li, H.-Y., and Wu, S.-H. (2014). Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks. Desalin. Water Treat., 1–10.
  • Quinlivan, P.A., Li, L., and Knappe, D.R. (2005). Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res., 39, 1663–1673.
  • Rao, Y.F., Qu, L., Yang, H., and Chu, W. (2014). Degradation of carbamazepine by Fe(II)-activated persulfate process. J. Hazard Mater., 268, 23–32.
  • Raychoudhury, T., and Scheytt, T. (2013). Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review. Water Sci. Technol., 68, 1425–1439.
  • Remucal, C.K., and Ginder-Vogel, M. (2014). A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci. Process. Impacts 16, 1247–1266.
  • Rey, A., Faraldos, M., Casas, J.A., Zazo, J.A., Bahamonde, A., and Rodriguez, J.J. (2009). Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Appl. Catal. B: Environ., 86, 69–77.
  • Rivera-Utrilla, J., Sanchez-Polo, M., Ferro-Garcia, M.A., Prados-Joya, G., and Ocampo-Perez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. a review. Chemosphere 93, 1268–1287.
  • Rodriguez-Alvarez, T., Rodil, R., Quintana, J.B., Trinanes, S., and Cela, R. (2013). Oxidation of non-steroidal anti-inflammatory drugs with aqueous permanganate. Water Res., 47, 3220–3230.
  • Rosenberg, E., DeLong, E., Lory, S., Stackebrandt, E., Thompson, F., and Lovley, D. (2013). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes The Prokaryotes, 287–308. Springer Berlin Heidelberg.
  • Ruamchat, T., Hayashi, R., Ngamprasertsith, S., and Oshima, Y. (2006). A novel on-site system for the treatment of pharmaceutical laboratory wastewater by supercritical water oxidation. Environ. Sci., 13, 297–304.
  • Salas, E.C., Berelson, W.M., Hammond, D.E., Kampf, A.R., and Nealson, K.H. (2009). The influence of carbon source on the products of dissimilatory iron reduction. Geomicrobiol. J., 26, 451–462.
  • Sanderson, H., Brain, R.A., Johnson, D.J., Wilson, C.J., and Solomon, K.R. (2004). Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology 203, 27–40.
  • Santiago, A.F., Sousa, J.F., Guedes, R.C., Jeronimo, C.E., and Benachour, M. (2006). Kinetic and wet oxidation of phenol catalyzed by non-promoted and potassium-promoted manganese/cerium oxide. J. Hazard Mater., 138, 325–330.
  • Santosa, I.J., Grossmana, M.J., Sartorattob, A., Ponezib, A.N., and Durranta, L.R. (2012). Degradation of the recalcitrant pharmaceuticals carbamazepine and 17α-ethinylestradiol by ligninolytic fungi. Chem. Eng., 27, 169–174.
  • Segura, Y., Martinez, F., and Melero, J.A. (2013). Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Appl. Catal. B: Environ., 136, 64–69.
  • Segura, Y., Martinez, F., Melero, J.A., and Fierro, J.L.G. (2015). Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. Chem. Eng. J., 269, 298–305.
  • Shah, N.S., He, X., Khan, H.M., Khan, J.A., O'Shea, K.E., Boccelli, D.L., and Dionysiou, D.D. (2013). Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study. J. Hazard Mater., 263 Pt 2, 584–592.
  • Sharma, V.K., Kazama, F., Jiangyong, H., and Ray, A.K. (2005). Ferrates (iron(VI) and iron(V)): environmentally friendly oxidants and disinfectants. J. Water Health 3, 45–58.
  • Shemer, H., Kunukcu, Y.K., and Linden, K.G. (2006). Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere 63, 269–276.
  • Shirazi, E., Torabian, A., and Nabi-Bidhendi, G. (2013). Carbamazepine removal from groundwater: effectiveness of the TiO2/UV, nanoparticulate zero-valent iron, and Fenton (nZVI/H2O2) processes. Clean-Soil Air Water 41, 1062–1072.
  • Singh, K.K., Senapati, K.K., Borgohain, C., and Sarma, K.C. (2015). Newly developed Fe3O4–Cr2O3 magnetic nanocomposite for photocatalytic decomposition of 4-chlorophenol in water. J. Environ. Sci. (China).
  • Sires, I., Garrido, J.A., Rodriguez, R.M., Brillas, E., Oturan, N., and Oturan, M.A. (2007). Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl. Catal. B Environ., 72, 382–394.
  • Sousa, J.M., Macedo, G., Pedrosa, M., Becerra-Castro, C., Castro-Silva, S., Pereira, M.F., Silva, A.M., Nunes, O.C., and Manaia, C.M. (2016). Ozonation and UV radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J. Hazard Mater.(at press)
  • Spasiano, D., Marotta, R., Di Somma, I., Andreozzi, R., and Caprio, V. (2013). Fe(III)-photocatalytic partial oxidation of benzyl alcohol to benzaldehyde under UV-solar simulated radiation. Photochem. Photobiol. Sci., 12, 1991–2000.
  • Srinivasan, R., and Sorial, G.A. (2011). Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: A critical review. J. Environ. Sci. (China) 23, 1–13.
  • Stumm, W., and Morgan, J.J. (2013). Aquatic chemistry: Chemical equilibria and rates in natural waters. Hoboken, NJ: Wiley-Interscience.
  • Sui, M., Xing, S., Sheng, L., Huang, S., and Guo, H. (2012). Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J. Hazard Mater., 227–228, 227–236.
  • Taylor, K.M., Rieter, W.J., and Lin, W. (2008). Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc., 130, 14358–14359.
  • Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R., and Webb, S.M. (2004). Biogenic manganese oxides: properties and mechanisms of formation. Ann. Rev. Earth Planet. Sci., 32, 287–328.
  • Tekin, H., Bilkay, O., Ataberk, S.S., Balta, T.H., Ceribasi, I.H., Sanin, F.D., Dilek, F.B., and Yetis, U. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard Mater., 136, 258–265.
  • Tiwari, D., and Lee, S.M. (2011). Ferrate(VI) in the treatment of wastewaters: a new generation green chemical. In F. S. García Einschlag (Eds.), Waste Water - Treatment and Reutilization (Chapter 12, pp. 241–276). InTech, Available from: http://www.intechopen.com/books/waste-watertreatment-and-reutilization/ferrate-vi-in-the-treatment-of-wastewaters-a-new-generation-green-chemical.
  • Tixier, C., Singer, H.P., Oellers, S., and Muller, S.R. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ. Sci. Technol., 37, 1061–1068.
  • Tratnyek, P.G., and Johnson, R.L. (2006). Nanotechnologies for environmental cleanup. Nano Today 1, 44–48.
  • Trovo, A.G., Nogueira, R.F., Aguera, A., Fernandez-Alba, A.R., Sirtori, C., and Malato, S. (2009). Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res., 43, 3922–3931.
  • Tu, J., Yang, Z., Hu, C., and Qu, J. (2014). Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation. J. Environ. Sci. (China) 26, 1154–1161.
  • Eurpoean Union (2013). Directive 2013/39/EU of the European Parliament and of the Council. Retrieved from Retrieved from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF
  • US Environmental Protection Agency (2015). Contaminant Candidate List 3 - CCL 3. Retrieved from http://www2.epa.gov/ccl/contaminant-candidate-list-3-ccl-3#main-content
  • Üzüm, Ç., Shahwan, T., Eroğlu, A.E., Hallam, K.R., Scott, T.B., and Lieberwirth, I. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu 2+ and Co 2+ ions. Appl. Clay Sci., 43, 172–181.
  • Veloutsou, S., Bizani, E., and Fytianos, K. (2014). Photo-Fenton decomposition of beta-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates. Chemosphere 107, 180–186.
  • Verma, A.K., Dash, R.R., and Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage., 93, 154–168.
  • Villacis-Garcia, M., Villalobos, M., and Gutierrez-Ruiz, M. (2015). Optimizing the use of natural and synthetic magnetites with very small amounts of coarse Fe(0) particles for reduction of aqueous Cr(VI). J. Hazard Mater., 281, 77–86.
  • Villalobos, M., Sposito, G., and Bargar, J.R. (2004). Pb(II) reactivity on a biogenic Mn oxide: Evidence of inner-sphere bonding at internal and external sites. Abstr. Pap. Am. Chem. Soc., 227, U1217–U1217.
  • Villatoro-Monzon, W.R., Mesta-Howard, A.M., and Razo-Flores, E. (2003). Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. Water Sci. Technol., 48, 125–131.
  • Wan, J., Deng, H.P., Shi, J., Zhou, L., and Su, T. (2014). Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal. Clean - Soil, Air, Water 42, 1199–1207.
  • Wang, C.C., Li, J.R., Lv, X.L., Zhang, Y.Q., and Guo, G.S. (2014). Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci., 7, 2831–2867.
  • Wang, H., Yao, H., Sun, P., Pei, J., Li, D., and Huang, C.H. (2015). Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation. Chemosphere 119, 1255–1261.
  • Wang, J., Sun, W., Zhang, Z., Jiang, Z., Wang, X., Xu, R., Li, R., and Zhang, X. (2008). Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation. J. Colloid Interface Sci., 320, 202–209.
  • Wang, L., Hung, Y.-T., Shammas, N., Zou, L., Li, Y., and Hung, Y.-T. (2007). Wet Air Oxidation for Waste Treatment Advanced Physicochemical Treatment Technologies (Handbook of Environmental Engineering, Ch. 13, 575–610). Totowa, NJ: Humana Press.
  • Wang, P., Shi, Q., Shi, Y., Clark, K.K., Stucky, G.D., and Keller, A.A. (2009). Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J. Am. Chem. Soc., 131, 182–188.
  • Wang, S., and Wang, X. (2015). Multifunctional metal-organic frameworks for photocatalysis. Small 11, 3097–3112.
  • Wang, Y.Q., Cheng, R.M., Wen, Z., and Zhao, L.J. (2011). Synthesis and characterization of single-crystalline MnFe2O4 ferrite nanocrystals and their possible application in water treatment. Eur. J. Inorganic Chem., 2011, 2942–2947.
  • Watts, R.J., Sarasa, J., Loge, F.J., and Teel, A.L. (2005). Oxidative and reductive pathways in manganese-catalyzed Fenton's reactions. J. Environ. Eng., 131, 158–164.
  • Wei, H., Hu, D., Su, J., and Li, K.B. (2015). Intensification of levofloxacin sono-degradation in a US/H2O2 system with Fe3O4 magnetic nanoparticles. Chin. J. Chem. Eng., 23, 296–302.
  • Wen, X., Jia, Y., and Li, J. (2010). Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J. Hazard Mater., 177, 924–928.
  • Wilde, M.L., Mahmoud, W.M., Kummerer, K., and Martins, A.F. (2013). Oxidation-coagulation of beta-blockers by K2FeVIO4 in hospital wastewater: assessment of degradation products and biodegradability. Sci. Total Environ., 452–453, 137–147.
  • World Health Organization (2012). Pharmaceuticals in drinking-water. Switzerland: WHO Press.
  • Xia, S., Gu, Z., Zhang, Z., Zhang, J., and Hermanowicz, S.W. (2014). Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles. Chem. Eng. J., 257, 98–104.
  • Xing, Z.P., and Sun, D.Z. (2009). Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process. J. Hazard Mater., 168, 1264–1268.
  • Yan, J., Lei, M., Zhu, L., Anjum, M.N., Zou, J., and Tang, H. (2011). Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J. Hazard Mater., 186, 1398–1404.
  • Yan, Q., Gao, X., Chen, Y.P., Peng, X.Y., Zhang, Y.X., Gan, X.M., Zi, C.F., and Guo, J.S. (2014). Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area. Sci. Total Environ., 470–471, 618–630.
  • Yang, B., Ying, G.G., Zhao, J.L., Liu, S., Zhou, L.J., and Chen, F. (2012). Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents. Water Res., 46, 2194–2204.
  • Yang, L., Hu, C., Nie, Y., and Qu, J. (2009). Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide. Environ. Sci. Technol., 43, 2525–2529.
  • Yao, Y., Cai, Y., Lu, F., Wei, F., Wang, X., and Wang, S. (2014). Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. Hazard Mater., 270, 61–70.
  • Zelmanov, G., and Semiat, R. (2008). Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Water Res., 42, 492–498.
  • Zelmanov, G., and Semiat, R. (2009). Iron (2,3) oxides based nano-particles as catalysts in advanced organic aqueous oxidation. Desalin. Water Treat., 6, 190–191.
  • Zhan, W., Wang, X., Li, D., Ren, Y., Liu, D., and Kang, J. (2013). Catalytic wet air oxidation of high concentration pharmaceutical wastewater. Water Sci. Technol., 67, 2281–2286.
  • Zhang, H., and Huang, C.H. (2003). Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ. Sci. Technol., 37, 2421–2430.
  • Zhang, H., and Huang, C.H. (2005). Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ. Sci. Technol., 39, 4474–4483.
  • Zhang, H., and Huang, C.H. (2007). Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 66, 1502–1512.
  • Zhang, H., Chen, W.R., and Huang, C.H. (2008). Kinetic modeling of oxidation of antibacterial agents by manganese oxide. Environ. Sci. Technol., 42, 5548–5554.
  • Zhang, L., Tu, J., Lyu, L., and Hu, C. (2016). Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres. Appl. Catal. B: Environ., 181, 561–569.
  • Zhang, Y., Yang, Y., Zhang, Y., Zhang, T., and Ye, M. (2012). Heterogeneous oxidation of naproxen in the presence of α-MnO 2 nanostructures with different morphologies. Appl. Catal. B: Environ., 127, 182–189.
  • Zhao, H., Cui, H.-J., and Fu, M.-L. (2014). Synthesis of core–shell structured Fe3O4@α-MnO2microspheres for efficient catalytic degradation of ciprofloxacin. Rsc Adv., 4, 39472.
  • Zheng, Y. (2011). Pretreatment of pharmaceutical wastewater by catalytic wet air oxidation(CWAO) C3 - ISWREP 2011 - Proceedings of 2011 International Symposium on Water Resource and Environmental Protection, 1316–1318.
  • Zhou, M., Yu, J., and Cheng, B. (2006). Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard Mater., 137, 1838–1847.
  • Zhou, T., Lim, T.T., Li, Y., Lu, X., and Wong, F.S. (2010). The role and fate of EDTA in ultrasound-enhanced zero-valent iron/air system. Chemosphere 78, 576–582.
  • Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., and Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour. Technol., 152, 538–542.
  • Zouboulis, A.I., Moussas, P.A., and Vasilakou, F. (2008). Polyferric sulphate: preparation, characterisation and application in coagulation experiments. J. Hazard Mater., 155, 459–468.