772
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Bacterial chromate reduction: A review of important genomic, proteomic, and bioinformatic analysis

, , &
Pages 1659-1703 | Published online: 21 Dec 2016

References

  • Ackerley, D. F., Gonzalez, C. F., Keyhan, M., Blake, R. II, and Matin, A. (2004b). Mechanism of chromate reduction by the E. coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol, 6, 851–860.
  • Ackerley, D. F., Gonzalez, C. F., Park, C. H., Blake, R., Keyhan, M., and Matin, A. (2004a). Chromate reducing properties of soluble flavoproteins from Pseudomonas putida and E. coli. Appl Environ Microbiol, 70, 873–882.
  • Aguilar-Barajas, E., Paluscio, E., Cervantes, C., and Rensing, C. (2008). Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett, 285, 97–100.
  • Alvarez, A. H., Moreno-Sanchez, R., and Cervantes, C. (1999). Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol, 18, 7398–7400.
  • American Conference of Governmental Industrial Hygienists. (2004). Threshold limit values for chemical and physical agents and biological exposure indices. Cincinnati, OH: ACGIH.
  • Assfalg, M., Bertini, I., Bruschi, M., Michel, C., and Turano, P. (2002). The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium(VI) to chromium(III) by cytochrome c(7). Proc Natl Acad Sci USA, 99, 9750–9754.
  • Bae, W. C., Lee, H. K., Choe, Y. C., Jahng, D. J., Lee, S. H., Kim, S. J., Lee, J. H., and Jeong, B. C. (2005). Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol, 43, 21–27.
  • Barak, Y., Ackerley, D. F., Dodge, C. J., Banwari, L., Alex, C., Francis, A. J., and Matin, A. (2006). Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl Environ Microbiol, 72, 7074–7082.
  • Bartlett, R. J., and Kimble, J. M. (1976a). Behaviour of chromium in soils: I. Trivalent forms. J Environ Qual, 5, 379–383.
  • Bartlett, R. J., and Kimble, J. M. (1976b). Behaviour of chromium in soils: II. Hexavalent forms. J Environ Qual, 5, 383–386.
  • Belchik, S. M., Kennedy, D. W., Dohnalkova, A. C., Wang, Y., Sevinc, P. C., Wu, H., Lin, Y., Lu, P. H., Fredrickson, J. K., and Shi, L. (2011). Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol, 77, 4035–4041.
  • Bopp, L. H., and Ehrlich, H. L. (1988). Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol, 150, 426–431.
  • Branco, R., Chung, A. P., Johnston, T., Gurel, V., Morais, P., and Zhitkovich, A. (2008). The chromate inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol, 190, 6996–7003.
  • Brown, S. D., Martin, M., Deshpande, S., Seal, S., Huang, K., Alm, E., Yang, Y., Wu, L., Yan, T., Liu, X., Arkin, A., Chourey, K., Zhou, J., and Thompson, D. K. (2006). Cellular response of Shewanella oneidensis to strontium stress. Appl Environ Microbiol, 72, 890–900.
  • Calder, L. M. (1988). Chromium contamination of groundwater. In: J. O. Nriagu and E. Nieboer (Eds.), Chromium in the natural and human environments (pp. 215–231). New York: Wiley.
  • Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J. C., and Moreno-Sanchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev, 25, 335–347.
  • Cervantes, C., Ohtake, H., Chu, L., Misra, T. K., and Silver, S. (1990). Cloning, nucleotide sequence and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol, 172, 287–291.
  • Cervantes, C., and Silver, S. (1992). Plasmid chromate resistance and chromate reduction. Plasmid, 27, 65–71.
  • Chardin, B., Giudici-Orticoni, M. T., De Luca, G., Guigliarelli, B., and Bruschi, M. (2003). Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol, 63, 315–321.
  • Cheung, K. H., Lai, H. Y., and Gu, J. D. (2006). Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol, 16, 855–862.
  • Chourey, K., Thompson, M. R., Morrell-Falvey, J., VerBerkmoes, N. C., Brown, S. D., Shah, M., Zhou, J. Z., Doktycz, M., Hettich, R. L., and Thompson, D. K. (2006). Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. Appl Environ Microbiol, 72, 6331–6344.
  • Clark, D. P. (1994). Chromate reductase activity of Enterobacter aerogenus is induced by nitrite. FEMS Microbiol Lett, 122, 233–238.
  • Codd, R., Dillon, C. T., Levina, A., and Lay, P. A. (2001). Studies on the genotoxicity of chromium: from the test tube to the cell. Coord Chem Rev, 216, 537–82.
  • Coleman, R. N. (1988). Chromium toxicity: effects on microorganisms with special reference to the soil matrix. In J. O. Nriagu and E. Nieboer (Eds.), Chromium in the natural and human environments (pp. 335–368). New York: Wiley.
  • Czakó-Vér, K., Batiè, M., Raspor, P., Sipiczki, M., and Pesti, M. (1999). Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiol Lett, 178, 109–115.
  • Czjzek, M., Arnoux, P., Haser, R., and Shepard, W. (2001). Structure of cytochrome c7 from Desulfuromonas acetoxidans at 1.9° resolution. Acta Crystallogr Sect D: Biol Crystallogr, 57, 670–678.
  • Das, S., Mishra, J., Das, S. K., Pandey, S., Rao, D. S., Chakraborty, A., Sudarshan, M., Das, N. N., and Thatoi, H. N. (2014). Investigation on mechanism of Cr(VI) reduction and removalby Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere, 96, 112–121.
  • Department for Environment, Food and Rural Affairs. (2002). Soil guideline values for chromium contamination. R&D Publication SGV 4. Bristol, UK: Environment Agency.
  • Dhal, B., Thatoi, H. N., Das, N. N., and Pandey, B. D. (2010). Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol, 85, 1471–1479.
  • Diaz-Perez, C., Cervantes, C., Campos-Garcia, J., Julian-Sanchez, A., and Riveros-Rosas, H. (2007). Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J., 274, 6215–6227.
  • Dillon, C. T., Lay, P. A., Cholewa, M., Legge, GJF, Bonin, A. M., Collins, T. J., Kostka, K. L., and SheaMcCarthy, G. (1997). Microprobe X-ray absorption spectroscopic determination of the oxidation state of intracellular chromium following exposure of V79 Chinese hamster lung cells to genotoxic chromium complexes. Chem Res Toxicol, 10, 533–535.
  • Efstathiou, J. D., and McKay, L. L. (1977). Inorganic salts resistance associated with a lactose fermenting plasmid in Streptococcus lactis. J Bacteriol, 130, 257–265.
  • Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., and Chandraraj, K. (2006). Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett, 28, 247–252.
  • Elangovan, R., Philip, L., and Chandraraj, K. (2010). Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol, 160, 81–97.
  • Ellis, L. B., Hershberger, C. D., Bryan, E. M., and Wackett, L. P. (2001). The University of Minnesota Biocatalysis/Biodegradation Database: emphasizing enzymes. Nucleic Acids Res, 29, 340–343.
  • Emsley, J. (2001). “Chromium.” nature's building blocks: An A-Z guide to the elements. Oxford, UK: Oxford University Press.
  • Eswaramoorthy, S., Poulain, S., Hienerwadel, R., Bremond, N., Sylvester, M. D., Zhang, Y. B., Berthomieu, C., Van Der Lelie, D., and Matin, A. (2012). Crystal structure of ChrR-a quinone reductase with the capacity to reduce chromate. PLoS One, 7, e36017.
  • Flores-Alvarez, L. J., Corrales-Escobosa, A. R., Cortes-Penagos, C., Martinez-Pacheco, M., Wrobel-Zasada, K., Wrobel-Kaczmarczyk, K., Cervantes, C., and Gutierrez-Corona, F. (2012). The Neurospora crass a chr-1 gene is up-regulated by chromate and its encoded CHR-1 protein causes chromate sensitivity and chromium accumulation. Curr Genet, 58, 281–290.
  • Francisco, R., Alpoim, M. C., and Morais, P. V. (2002). Diversity of chromium-resistant and -reducing bacteria in a chromium contaminated activated sludge. J Appl Microbiol, 92, 837–843.
  • Fredrickson, J. K., Kostandarithes, H. M., Li, S. W., Plymale, A. E., and Daly, M. J. (2000). Reduction of Fe(III), Cr(VI), U(VI), and TC (VII) by Deinococcus radiodurans R1. Appl Environ Microbiol, 66, 2006–2011.
  • Friello, D. A., and Chakrabarty, A. M. (1980). Transposable mercury resistance in Pseudomonas putida. In C. Stuttard and K. R. Rozee (Eds.), Plasmids and transposons: environmental effects and maintenance mechanisms (pp. 249–260). New York: Academic Press.
  • Gadd, G. M. (1992). Metals and microorganisms: a problem of definition. FEMS Microbiol Lett, 100, 197–203.
  • Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol, 156, 609–643.
  • Ganguli, A., and Tripathi, A. K. (1999). Survival and Chromate reducing ability of Pseudomonas aeruginosa in tannery effluent. Lett Appl Microbiol, 28, 76–80.
  • Garbisu, C., Alkorta, I., Llama, M. J., and Serra, J. L. (1998). Aerobic chromate reduction by Bacillus subtilis. Biodegr, 9, 133–141.
  • Gonzalez, C. F., Ackerley, D. F., Lynch, S. V., and Matin, A. (2005). ChrR a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem, 280, 22590–22595.
  • Gutiérrez-Mañero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F. R., and Talon, M. (2001). The plant growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant, 111, 206–211.
  • Handa, B. K. (1988). Occurrence and distribution of chromium in natural waters of India. In J. O. Nriagu and E. Nieboer (Eds.), Chromium in the natural and human environments (pp. 189–215). New York: Wiley.
  • Hauser, L. J., Miriam, L., Brown, S. D., Larimer, F., Keller, K. L., Rapp-Giles, B. J., et al. (2011). Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol, 193, 4268–4269.
  • Higuchi, Y., Kusunoki, M., Matsuura, Y., Yasuoka, N., and Kakudo, M. (1984). Refined structure of cytochrome c3 at 1.8° resolution. J Mol Biol, 172, 109–139.
  • Hu, P., Brodie, E. L., Suzuki, Y., McAdams, H. H., and Andersen, G. L. (2005). Whole-Genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol, 187, 8437–8449.
  • Ishibashi, Y., Cervantes, C., and Silver, S. (1990). Chromium reduction in Pseudomonas putida. Appl Environ Microbiol, 56, 2268–2270.
  • James, B. R. (1996). The challenge of remediation chromium-contaminated soil. Environ Sci Technol, 30, 248–251.
  • Jin, H., Zhang, Y., Buchko, G. W., Varnum, S. M., Robinson, H., Squier, T. C., and Long, P. E. (2012). Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii. PLoS One, 7, e42432.
  • Juhnke, S., Peitzsch, N., Hubener, N., Grobe, C., and Nies, D. H. (2002). New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol, 179, 15–25.
  • Kanmani, P., Aravind, J., and Preston, D. (2012). Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol, 9, 183–193.
  • Kanojia, R. K., Junaid, M., and Murthy, R. C. (1998). Embryo and fetotoxicity of hexavalent chromium: a long-term study. Toxicol Lett, 95, 165–172.
  • Kiilunen, M. (1994). Occupational exposure to chromium and nickel in Finland-analysis of registries of hygienic measurements and biological monitoring. Ann Occup Hyg, 38, 171–187.
  • Kobori, H., Harrison-Bernard, L. M., and Navar, L. G. (2001). Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J American Soc Nephrol, 12, 431–439.
  • Kwak, Y. H., Lee, D. S., and Kim, H. B. (2003). Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol, 69, 4390–4395.
  • Li, X., and Krumholz, L. R. (2009). Thioredoxin is involved in U(VI) and Cr(VI) reduction in Desulfovibrio desulfuricans G20. J Bacteriol, 191, 4924–4933.
  • Liu, G., Zhou, J., Lv, H., Xiang, X., Wang, J., Zhou, M., and Qv, Y. (2007). Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol, 76, 1271–1279.
  • Lloyd, J. R., Ridley, J., Khizniak, T., Lyalikova, N. N., and Macaskie, L. E. (1999). Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol, 65, 2691–2696.
  • Lovely, D. R. (1995). Bioremediation of organic and metal contaminates with dissimilatory metal reduction. J Indust Microbiol, 14, 85–93.
  • Lovley, D. R., and Phillips, J. P. E. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol, 60, 726–728.
  • Lu, Y. L., and Yang, J. L. (1995). Long term exposure to chromium(VI) oxide leads to defects in sulfate transport system in Chinese hamster ovary cells. J Cell Biochem, 57, 655–665.
  • Magnuson, T. S., Swenson, M. W., Paszczynski, A. J., Deobald, L. A., Kerk, D., and Cummings, D. E. (2010). Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile. Biometals, 23, 1129–1138.
  • Matin, A. C. (2006). Development of combinatorial bacteria for metal and radionuclide bioremediation. Grant No. ER63627-1021953-0009581, Final Technical Report, Reporting period: 09/15/2003-06/15/2006.
  • Michel, C., Brugna, M., Aubert, C., Bernadac, A., and Bruschi, M. (2001). Enzymatic reduction of chromate: comparative studies using sulfate reducing bacteria. Appl Microbiol Biotechnol, 55, 95–100.
  • Miranda, A. T., González, M. V., González, G, Vargas, E., Campos-García, J., and Cervantes, C. (2005). Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res, 578, 202–209.
  • Mishra, R. R., Dhal, B., Dutta, S. K., Dangar, T. K., Das, N. N., and Thatoi, H. N. (2012). Optimization and characterization of chromium (VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J Hazard Mater, 227, 219–226.
  • Morais, P. V., Branco, R., and Francisco, R. (2011). Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals, 24, 401–410.
  • Morokutti, A., Lyskowski, A., Sollner, S., Pointner, E., Fitzpatrick, T. B., Kratky, C., Gruber, K., and Macheroux, P. (2005). Structure and function of YcnD from Bacillus subtilis, a flavin containing oxidoreductase. J Biochem, 44, 13724–13733.
  • Nepple, B. B., Kessi, J., and Bachofen, R. (2000). Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotechnol, 25, 198–203.
  • Nies, A., Nies, D. H., and Silver, S. (1990). Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem, 265, 5648–5653.
  • Nies, D. H., Koch, S., Wachi, S., Peitzsch, N., and Saier, M. H. (1998). CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/ sulfate antiporters. J Bacteriol, 180, 5799–5802.
  • Opperman, D. J., Piater, L. A., and van Heerden, E. (2008). A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol, 190, 3076–3082.
  • Opperman, D. J., Sewell, B. T., Litthauer, D., Isupov, M. N., Littlechild, J. A., and van Heerden, E. (2010). Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem Biophys Res Commun, 393, 426–431.
  • Ortega, R., Fayard, B., Salome, M., Deves, G., and Susini, J. (2005). Chromium oxidation state imaging in mammalian cells exposed in vitro to soluble or particulate chromate compounds. Chem Res Toxicol, 18, 1512–1519.
  • Park, C.-H, Gonzalez, D., Ackerley, D., Keyhan, M., and Matin, A. (2002). Molecular engineering of soluble bacterial proteins with chromate reductase activity. In M. Pellei, A. Porta, and R. E. Hinchee (Eds.), Remediation and beneficial reuse of contaminated sediments (pp.. Columbus, OH: Batelle Press.
  • Park, C. H., Keyhan, M., Wielinga, B., Fendorf, S., and Matin, A. (2000). Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol, 66, 1788–1795.
  • Pesti, M., Gazdag, Z., Emri, T., Farkas, N., Koosz, Z., Belagy, J., and Pocsi, I. (2002). Chromate sensitivity in fission yeast is caused by increased glutathione reductase activity and peroxide overproduction. J Basic Microbiol, 42, 408–419.
  • Philip, L., Iyengar, L., and Venkobacchar, C. (1998). Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng, 124, 1165–1170.
  • Pimentel, B. E., Moreno-Sanchez, R., and Cervantes, C. (2002). Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett, 212, 249–254.
  • Plaper, A., Jenko-Brinovec, S., Premzl, A., Kos, J., and Raspor, P. (2002). Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chem Res Toxicol, 15, 943–949.
  • Poljsak, B., Pocsi, I., Raspor, P., and Pesti, M. (2010). Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol, 50, 21–36.
  • Prosser, G. A., Copp, J. N., Syddall, S. P., Williams, E. M., Smaill, J. B., Wilson, W. R., and Patterson, A. V. (2010). Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954. Biochem Pharmacol, 79, 678–687.
  • Puzon, G. J., Petersen, J. N., Roberts, A. G., Kramer, D. B., and Xun, L. (2002). A bacterial flavin reductase system reduces chromate to a soluble chromium (III)–NAD(+) complex. J Biochem Biophys Res Commun, 294, 76–81.
  • Rajkumar, M., Nagendran, R., Lee, K. J., and Lee, W. H. (2005). Characterization of a novel Cr(VI) reducing Pseudomonas sp. with plant growth-promoting potential. Current Microbiol, 50, 266–271.
  • Ramirez-Diaz, M. I., Diaz-Perez, C., Vargas, E., Riveros-Rosas, H., Campos-Garcia, J., and Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. Biometals, 21, 321–332.
  • Rath, B. P., Das, S., Mohapatra, P. K. D., and Thatoi, H. (2014). Optimization of extracellular chromate reductase production by Bacillus amyloliquefaciens (CSB 9) isolated from chromite mine environment. Biocatal Agri Biotechnol, 3, 35–41.
  • Reardon, C. L., Dohnalkova, A. C., Nachimuthu, P., Kennedy, D. W., Saffarini, D. A., Arey, B. W., Shi, L., Wang, Z., Moore, D., McLean, L. S., Moyles, D., Marshall, M. J., Zachara, J. M., Fredrickson, J. K., Beliaev, A. S. (2010). Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1. Geobiol, 8, 56–68.
  • Reynolds, M. F., Peterson-Roth, E. C., Bespalov, I. A., Johnston, T., Gurel, V. M., Menard, H. L., and Zhitkovich, A. (2009). Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers. Cancer Res, 69, 1071–1079.
  • Robins, K. J., Hooks, D. O., Rehm, B. H. A., and Ackerley, D. F. (2013). Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized toprovide a cell free system for remediation of hexavalent chromium. PLoS One, 8, e59200.
  • Romanenko, V. I., and Korenkov, V. N. (1975). Bacterial reduction of ions. Inform Byul In-ta Biol Vnutr Vod Akad Nauk SSR, 25, 8.
  • Ross, D. S., Sjogren, R. E., and Bartlett, R. J. (1981). Behavior of chromium in soils: IV. Toxicity to microorganisms. J Environ Qual, 2, 145–168.
  • Saito, K., Thiele, D. J., Davio, M., Lockridge, O., and Massey, V. (1991). The cloning and expression of a gene encoding old yellow enzyme from Saccharomyces carlsbergensis. J Biol Chem, 266, 20720–20724.
  • Salnikow, K., and Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic and chromium. Chem Res Toxicol, 21, 28–44.
  • Sass, B. M., and Rai, D. (1987). Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg Chem, 26, 2228–2232.
  • Sedláček, V., Klumpler, T., Marek, J., and Kučera, I. (2014). The structural and functional basis of catalysis mediated by NAD(P)H:acceptor oxidoreductase (FerB) of Paracoccus denitrificans. PLoS One, 9, e96262.
  • Shen, H., and Wang, Y. T. (1993). Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol, 59, 3771–3777.
  • Shi, L., Chen, B., Wang, Z., Elias, D. A., Mayer, M. U., and Gorby, Y. A. (2006). Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol, 188, 4705–4714.
  • Shi, X. L., and Dalal, N. S. (1990). Evidence for a fenton-type mechanism for the generation of OH radicals in the reduction of Cr(VI) in cellular media. Arch Biochem Biophys, 281, 90–95.
  • Suzuki, T., Miyata, N., Horitsu, H., Kawai, K., Takamizawa, K., Tai, Y., and Okazaki, M. (1992). NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol, 174, 5340–5345.
  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596–1599. (Publication PDF at http://www.kumarlab.net/publications).
  • Thacker, N. (2007). Research in pediatric practice: an untapped arena. Indian Pediatr, 44, 811–812.
  • Thacker, U., and Madamwar, D. (2005). Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J Microbiol Biotechnol, 21, 891–899.
  • Thacker, U., Parikh, R., Shouche, Y., and Madamwar, D. (2006). Hexavalent chromium reduction by Providencia sp. Proc Biochem, 41, 1332–1337.
  • Thatoi, H., Das, S., Mishra, J., Rath, B. P., and Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage, 146, 383–399.
  • Thompson, M. R., Verberkmoes, N. C., Chourey, K., Shah, M., Thompson, D. K., and Hettich, R. L. (2007). Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. J Proteome Res, 6, 1745–1757.
  • Tucker, M. D., Barton, L. L., and Thomson, B. M. (1998). Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol, 20, 13–19.
  • Viti, C., and Giovannetti, L. (2001). Characterization of cultivable heterotrophic bacterial communities in Cr-polluted and unpolluted soils using Biolog and ARDRA approaches. Appl Soil Ecol, 28, 101–112.
  • Viti, C., Pace, A., and Giovannetti, L. (2003). Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol, 46, 1–5.
  • Wang, P. C., Mori, T., Komori, K., Sasatsu, M., Toda, K., and Ohtake, H. (1989). Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol, 55, 1665–1669.
  • Wang, P. C., Toda, K., Ohtake, H., Kusaka, I., and Yabe, I. (1991). Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate. FEMS Microbiol Lett, 78, 11–15.
  • Zahoor, A., and Rehman, A. (2009). Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci, 21, 814–820.
  • Zenno, S., Saigo, K., Kanoh, H., and Inouye, S. (1994). Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744. J Bacteriol, 176, 3536–3543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.