549
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Improvement in performance of sludge-based adsorbents by controlling key parameters by activation/modification: A critical review

&
Pages 1704-1743 | Published online: 21 Dec 2016

References

  • Abrego, J., Arauzo, J., Sanchez, J. L., Gonzalo, A., Cordero, T., and Rodriguez-Mirasol, J. (2009). Structural changes of sewage sludge char during fixed-bed pyrolysis. Ind. Eng. Chem. Res., 48, 3211–3221.
  • Agrafioti, E., Bouras, G., Kalderis, Z., and Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrol., 101, 72–78.
  • Agrafioti, E., Kalderis, D., and Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manage., 133, 309–314.
  • Almquist, C., and Qin, N. (2013). Pyrolysis of deinked paper sludge to synthesize adsorbents for elemental Hg vapors. Environ. Progress Sustain. Energy, 32, 524–534.
  • Ando, T., Sakamoto, T., Sugiyama, O., Hiyoshi, K., Matsue, N., and Henmi, T. (2004). Adsorption mechanism of Pb on paper sludge ash treated by NaOH hydrothermal reaction. Clay Sci., 12, 243–248.
  • Anfruns, A., Martin, M. J., and Montes-Morán, M. A. (2011). Removal of odourous VOCs using sludge-based adsorbents. Chem. Eng. J., 166, 1022–1031.
  • Ansari, A., Bagreev, A., and Bandosz, T. J. (2005). Effect of adsorbent composition on H2S removal on sewage sludge-based materials enriched with carbonaceous phase. Carbon, 43, 1039–1048.
  • Ansari, A., and Bandosz, T. J. (2005). Inorganic-organic phase arrangement as a factor affecting gas-phase desulfurization on catalytic carbonaceous adsorbents. Environ. Sci. Technol., 39, 6217–6224.
  • Auta, M., and Hameed, B. H. (2013). Optimized and functionalized paper sludge activated with potassium fluoride for single and binary adsorption of reactive dyes. J. Ind. Eng. Chem., 20, 830–840.
  • Aydin, S., Guneysu, S., and Arayici, S. (2005). Carbonization and reuse possibilities of domestic and industrial sewage sludge. J. Residuals Sci. Tech., 2, 215–220.
  • Bagreev, A., and Bandosz, T. J. (2004). Efficient hydrogen sulfide adsorbents obtained by pyrolysis of sewage sludge derived fertilizer modified with spent mineral oil. Environ. Sci. Technol., 38, 345–351.
  • Bagreev, A., Bandosz, T. J., and Locke, D. C. (2001a). Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39, 1971–1979.
  • Bagreev, A., Bashkova, S., Locke, D. G., and Bandosz, T. J. (2001b). Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide. Environ. Sci. Technol., 35, 1537–1543.
  • Bagreev, A., Bashkova, S., Reznik, B., Zibat, V., and Bandosz, T. J. (2002). Heterogeneity of sewage sludge derived materials as a factor governing their performance as adsorbents of acidic gases. Stud. Surf. Sci. Catal., 144, 217–224.
  • Bagreev, A., Locke, D. C., and Bandosz, T. J. (2001c). H2S adsorption/oxidation on adsorbents obtained from pyrolysis of sewage-sludge-derived fertilizer using zinc chloride activation. Ind. Eng. Chem. Res., 40, 3502–3510.
  • Bandosz, T. J., and Block, K. (2006a). Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. Appl. Catal. B, 67, 77–85.
  • Bandosz, T. J., and Block, K. (2006b). Municipal sludge-industrial sludge composite desulfurization adsorbents: Synergy enhancing the catalytic properties. Environ. Sci. Technol., 40, 3378–3383.
  • Bashkova, S., Bagreev, A., Locke, D. C., and Bandosz, T. J. (2001). Adsorption of SO2 on sewage sludge-derived materials. Environ. Sci. Technol., 35, 3263–3269.
  • Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., and Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresour. Technol., 99, 8441–8444.
  • Bhatnagar, A., and Jain, A. K. (2005). A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci., 281, 49–55.
  • Bhatnagar, A., Minocha, A. K., Pudasainee, D., Chung, H., Kim, S., Kim, H., and Jeon, B. (2008). Vanadium removal from water by waste metal sludge and cement immobilization. Chem. Eng. J., 144, 197–204.
  • Bhatnagar, A., and Minocha, A. K. (2009). Utilization of industrial waste for cadmium removal from water and immobilization in cement. Chem. Eng. J., 150, 145–151.
  • Bousba, S., and Meniai, A. H. (2013). Adsorption of 2-chlorophenol onto sewage sludge based adsorbent: Equilibrium and kinetic study. Chem. Eng. Trans., 35, 859–864.
  • Bouzid, J., Elouear, Z., Ksibi, M., Feki, M., and Montiel, A. (2008). A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J. Hazard. Mater., 152, 838–845.
  • Chen, C., Wang, P., and Zhuang, Y. Y. (2005). Dye removal from wastewater using the adsorbent developed from sewage sludge. J. Environ. Sci. (China), 17, 1018–1021.
  • Chen, K., Zhao, K., Zhang, H., Sun, Q., Wu, Z., Zhou, Y., and Ke, F. (2013). Phosphorus removal from aqueous solutions using a synthesized adsorbent prepared from mineralized refuse and sewage sludge. Environ. Technol., 34, 1489–1496.
  • Chen, X., Jeyaseelan, S., and Graham, N. (2002). Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Manage., 22, 755–760.
  • Chen, Y., Jiang, W., Jiang, L., and Ji, X. (2012). Treatment of dyeing wastewater by activated carbons derived from municipal sewage sludge. Environ. Prog. Sustain. Energy, 31, 585–590.
  • Chiang, H., Choa, C., Chen, S., and Tsai, M. (2003). The reuse of biosludge as an adsorbent from a petrochemical wastewater treatment plant. J. Air Waste Manage. Assoc., 53, 1042–1051.
  • Chiang, H., Lin, K., Chen, C., Choa, C., Hwu, C., and Lai, N. (2006). Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons. J. Air Waste Manage. Assoc., 56, 591–600.
  • Chiang, H., Lin, K., and Chiu, H. (2012). Exhaust characteristics during the pyrolysis of ZnCl2 immersed biosludge. J. Hazard. Mater., 229–230, 233–244.
  • Chun, Y. N., Ji, D. W., and Yoshikawa, K. (2013). Pyrolysis and gasification characterization of sewage sludge for high quality gas and char production. J. Mech. Sci. Technol., 27, 263–272.
  • Cui, M., Jang, M., Cannon, F. S., Na, S., Khim, J., and Park, J. K. (2013). Removal of dissolved Zn(II) using coal mine drainage sludge: Implications for acidic wastewater treatment. J. Environ. Manage., 116, 107–112.
  • De Filippis, P., Di Palma, L., Petrucci, E., Scarsella, M., and Verdone, N. (2013). Production and characterization of adsorbent materials from sewage sludge by pyrolysis. Chem. Eng.Trans., 32, 205–210.
  • Devi, P., and Saroha, A. K. (2014a). Synthesis of magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour. Technol., 169, 525–531.
  • Devi, P., and Saroha, A. K. (2014b). Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability & eco-toxicity of heavy metals. Bioresour. Technol., 162, 308–315.
  • Devi, P., and Saroha, A. K. (2015). Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chem. Eng. J., 271, 195–203.
  • Dhaouadi, H., and M'Henni, F. (2008). Textile mill effluent decolorization using crude dehydrated sewage sludge. Chem. Eng. J., 138, 111–119.
  • Dhaouadi, H., and M'Henni, F. (2009). Vat dye sorption onto crude dehydrated sewage sludge. J. Hazard. Mater., 164, 448–458.
  • Ding, R., Zhang, P., Seredych, M., and Bandosz, T. J. (2012). Removal of antibiotics from water using sewage sludge and waste oil sludge-derived adsorbents. Water Res., 46, 4081–4090.
  • Fan, X., and Zhang, X. (2008). Adsorption properties of activated carbon from sewage sludge to alkaline-black. Mater. Lett., 62, 1704–1706.
  • Fang, P., Cen, C., Chen, D., and Tang, Z. (2010). Carbonaceous adsorbents prepared from sewage sludge and its application for Hg0 adsorption in simulated flue gas. Chin. J. Chem. Eng., 18, 231–238.
  • Gasco, G., Blanco, C. G., Guerrero, F., and Lazaro, A. M. M. (2005a). The influence of organic matter on sewage sludge pyrolysis. J. Anal. Appl. Pyrol., 74, 413–420.
  • Gasco, G., Mendez, A., and Gasco, J. M. (2005b). Preparation of carbon-based adsorbents from sewage sludge pyrolysis to remove metals from water. Desalination, 180, 245–251.
  • Geethakarthi, A., and Phanikumar, B. R. (2011). Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies. Int. J. Environ. Sci. Technol., 8, 561–570.
  • Geethakarthi, A., and Phanikumar, B. R. (2012). Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye. Environ. Sci. Pollut. Res., 19, 656–665.
  • Golder, A. K., Samanta, A. N., and Ray, S. (2006). Anionic reactive dye removal from aqueous solution using a new adsorbent-sludge generated in removal of heavy metal by electrocoagulation. Chem. Eng. J., 122, 107–115.
  • Gomez-Pacheco, C. V., Rivera-Utrilla, J., Sánchez-Polo, M., and Lopez-Penalver, J. J. (2012). Optimization of the preparation process of biological sludge adsorbents for application in water treatment. J. Hazard. Mater., 217–218, 76–84.
  • Gorzin, F., and Ghoreyshi, A. A. (2013). Synthesis of a new low-cost activated carbon from activated sludge for the removal of Cr (VI) from aqueous solution: Equilibrium, kinetics, thermodynamics and desorption studies. Korean J. Chem. Eng., 30, 1594–1602.
  • Gu, L., Huang, S., Zhu, N., Zhang, D., Yuan, H., and Lou, Z. (2013a). Influence of generated intermediates' interaction on heterogeneous Fenton's degradation of an azo dye 1-diazo-2-naphthol-4-sulfonic acid by using sludge based carbon as catalyst. J. Hazard. Mater., 263, 450–457.
  • Gu, L., Wang, Y., Zhu, N., Zhang, D., Huang, S., Yuan, H., Lou, Z., and Wang, M. (2013d). Preparation of sewage sludge based activated carbon by using Fenton's reagent and their use in 2-naphthol adsorption. 146, 779–784.
  • Gu, L., Zhu, N., Guo, H., Huang, S., Lou, Z., and Yuan, H. (2013c). Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon. J. Hazard. Mater., 246–247, 145–153.
  • Gu, L., Zhu, N., and Zhou, P. (2013b). Preparation of sludge derived magnetic porous carbon and their application in Fenton-like degradation of 1-diazo-2-naphthol-4-sulfonic acid. Bioresour. Technol., 118, 638–642.
  • Gupta, A., Yadav, R., and Devi, P. (2011). Removal of hexavalent chromium using activated coconut shell and activated coconut coir as low cost adsorbent. IIOAB J., 2, 8–12.
  • Gupta, V. K., Ali, I., Suhas,  , and Saini, V. K. (2006). Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes. J. Colloid Interface Sci., 299, 556–563.
  • Gutierrez-Segura, E., Colin-Cruz, A., Fall, C., Solache-Rios, M., and Balderas-Hernández, P. (2009a). Comparison of Cd-Pb adsorption on commercial activated carbon and carbonaceous material from pyrolysed sewage sludge in column system. Environ. Technol., 30, 455–461.
  • Gutiérrez-Segura, E., Solache-Ríos, M., and Colín-Cruz, A. (2009b). Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge. J. Hazard. Mater., 170, 1227–1235.
  • Gutiérrez-Segura, E., Solache-Ríos, M., Colín-Cruz, A., and Fall, C. (2012). Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge. J. Environ. Manage., 97, 6–13.
  • Hameed, B. H., Din, A. T. M., and Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J. Hazard. Mater., 141, 819–825.
  • Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D. J., and Eshtiaghi, N. (2014). A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour. Technol., 155, 289–299.
  • Hofman, M., and Pietrzak, R. (2012). NO2 removal by adsorbents prepared from waste paper sludge. Chem. Eng. J., 183, 278–283.
  • Hoshikawa, H., Hayakawa, T., and Yamasaki, N. (2006). Recycling of organic waste sludge by hydrothermal dry steam aiming for adsorbent. AIP Conf. Proc., 833, 19–22.
  • Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., and Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ, Manage., 92, 223–228.
  • Hsieh, C., Lo, S., Kuan, W., and Chen, C. (2006). Adsorption of copper ions onto microwave stabilized heavy metal sludge. J. Hazard. Mater., 136, 338–344.
  • Hsiu-Mei, C., Ting-Chien, C., San-De, P., and Chiang, H. (2009). Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers. J. Hazard. Mater., 161, 1384–1390.
  • Hu, S., and Hu, S. (2013). Kinetics of ionic dyes adsorption with magnetic-modified sewage sludge. Environ. Prog. Sustain. Energy, 33, 905–912.
  • Hunsom, M., and Autthanit, C. (2013). Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H3PO4, K2CO3 and KOH. Chem. Eng. J., 229, 334–343.
  • Hwang, H., Choi, W., Kim, T., Kim, J., and Oh, K. (2008). The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent. J. Anal. Appl. Pyrol., 83, 220–226.
  • Jain, A. K., Gupta, V. K., Bhatnagar, A., and Suhas,  . (2003). Utilization of industrial waste products as adsorbents for the removal of dyes. J. Hazard. Mater., 101, 31–42.
  • Jain, A. K., Suhas, and Bhatnagar, A. (2002). Methylphenols removal from water by low-cost adsorbents. J. Colloid Interface Sci., 251, 39–45.
  • Jaria, G., Calisto, V., Gil, M. V., Otero, M., and Esteves, V. I. (2015). Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge. J. Colloid Interface Sci., 448, 32–40.
  • Jindarom, C., Meeyoo, V., Kitiyanan, B., Rirksomboon, T., and Rangsunvigit, P. (2007). Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chem. Eng. J., 133, 239–246.
  • Kacan, E., and Kutahyali, C. (2012). Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J. Anal. Appl. Pyrol., 97, 149–157.
  • Kannan, N., and Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigments, 51, 25–40.
  • Kante, K., Qiu, J., Zhao, Z., Cheng, Y., and Bandosz, T. J. (2008). Development of surface porosity and catalytic activity in metal sludge/waste oil derived adsorbents: Effect of heat treatment. Chem. Eng. J., 138, 155–165.
  • Kargi, F., and Cikla, S. (2006a). Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme Microb. Technol., 38, 705–710.
  • Kargi, F., and Cikla, S. (2006b). Zinc (II) ion recovery by biosorption onto powdered waste sludge (PWS): Effects of operating conditions. J. Chem. Technol. Biotechnol., 81, 1661–1668.
  • Kayranli, B. (2011). Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chem. Eng. J., 173, 782–791.
  • Khalili, N. R., Campbell, M., Sandi, G., and Golas, J. (2000). Production of micro- and meso- porous activated carbon from paper mill sludge. I. Effect of zinc chloride activation. Carbon, 38, 1905–1915.
  • Khalili, N. R., Vyas, J. D., Weangkaew, W., Westfall, S. J., Parulekar, S. J., and Sherwood, R. (2002). Synthesis and characterization of activated carbon and bioactive adsorbent produced from paper mill sludge. Sep. Purif. Technol., 26, 295–304.
  • Kong, L., Tian, S., Luo, R., Liu, W., Tu, Y., and Xiong, Y. (2013). Demineralization of sludge-based adsorbent by post-washing for development of porosity and removal of dyes. J. Chem. Technol. Biotechnol., 88, 1473–1480.
  • Kong, L., Xiong, Y., Suna, L., Tiana, S., Xu, X., Zhao, C., Luo, R., Yang, X., Shih, K., and Liu, H. (2014). Sorption performance and mechanism of a sludge-derived char as porous carbon-based hybrid adsorbent for benzene derivatives in aqueous solution. J. Hazard. Mater., 274, 205–211.
  • Li, W., Yue, Q., Gao, B., Wang, X., Qi, Y., Zhao, Y., and Li, Y. (2011b). Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment. Desalination, 278, 179–185.
  • Li, W., Yue, Q., Tu, P., Ma, Z., Gao, B., Li, J., and Xu, X. (2011a). Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chem. Eng. J., 178, 197–203.
  • Lillo-Rodenas, M. A., Ros, A., Fuente, E., Montes-Morán, M. A., Martin, M. J., and Linares-Solano, A. (2008). Further insights into the activation process of sewage sludge-based precursors by alkaline hydroxides. Chem. Eng. J., 142, 168–174.
  • Lin, Q. H., Cheng, H., and Chen, G. Y. (2012). Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. J. Anal. Appl. Pyrol., 93, 113–119.
  • Liu, C., Tang, Z., Chen, Y., Su, S., and Jiang, W. (2010). Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite. Bioresour. Technol., 101, 1097–1101.
  • Liu, D., Tao, Y., Li, K., and Yu, J. (2012). Influence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge. Bioresour. Technol., 126, 56–63.
  • Lu, G. Q., and Lau, D. D. (1996). Characterization of sewage sludge-derived adsorbents for H2S removal. Part 2: surface and pore structural evolution in chemical activation. Gas Sep. Purif., 10, 103–111.
  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., and Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res., 46, 854–862.
  • Martin, M. J., Artola, A., Balaguer, M. D., and Rigola, M. (2003). Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem. Eng. J., 94, 231–239.
  • Martin, M. J., Serra, E., Ros, A., Balaguer, M. D., and Rigola, M. (2004). Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon (AS-PAC) treatment. Carbon, 42, 1383–1388.
  • Méndez, A., Barriga, S., Fidalgo, J. M., and Gascó, G. (2009). Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water. J. Hazard. Mater., 165, 736–743.
  • Méndez, A., Barriga, S., Saa, A., and Gascó, G. (2010). Removal of malachite green by adsorbents from paper industry waste materials: Thermal analysis. J. Therm. Anal. Calorim., 99, 993–998.
  • Méndez, A., and Gasco, G. (2005). Optimization of water desalination using carbon-based adsorbents. Desalination, 183, 249–255.
  • Méndez, A., Gasco, G., Freitas, M. M. A., Siebielec, G., Stuczynski, T., and Figueiredo, J. L. (2005). Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges. Chem. Eng. J., 108, 169–177.
  • Méndez, A., Terradillos, M., and Gascó, G. (2013). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrol., 102, 124–130.
  • Monsalvo, V. M., Mohedano, A. F., and Rodriguez, J. J. (2011). Activated carbons from sewage sludge. application to aqueous-phase adsorption of 4-chlorophenol. Desalination, 277, 377–382.
  • Monsalvo, V. M., Mohedano, A. F., and Rodriguez, J. J. (2012). Adsorption of 4-chlorophenol by inexpensive sewage sludge-based adsorbents. Chem. Eng. Res. Des., 90, 1807–1814.
  • Naiya, T. K., Bhattacharya, A. K., and Das, S. K. (2008). Removal of Cd(II) from aqueous solutions using clarified sludge. J. Colloid Interface Sci., 325, 48–56.
  • Naiya, T. K., Bhattacharya, A. K., and Das, S. K. (2009). Clarified sludge (basic oxygen furnace sludge) - an adsorbent for removal of Pb(II) from aqueous solutions - kinetics, thermodynamics and desorption studies. J. Hazard. Mater., 170, 252–262.
  • Nielsen, L., Zhang, P., and Bandosz, T. J. (2015). Adsorption of carbamazepine on sludge/fish waste derived adsorbents: Effect of surface chemistry and texture. Chemical Eng. J., 267, 170–181.
  • Nunthaprechachan, T., Pengpanich, S., and Hunsom, M. (2013). Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon. Chem. Eng. J., 228, 263–271.
  • Ocampo-Pérez, R., Rivera-Utrilla, J., Gómez-Pacheco, C., Sánchez-Polo, M., and Oh, T., Choi, B., Shinogi, Y., and Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut., 223, 3729–3738.
  • Oh, T., Choi, B., Shinogi, Y., and Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut, 223, 3729–3738.
  • Otero, M., Rozada, F., Morán, A., Calvo, L. F., and García, A. I. (2009). Removal of heavy metals from aqueous solution by sewage sludge based sorbents: Competitive effects. Desalination, 238, 46–57.
  • Pamukoglu, M. Y., and Kargi, F. (2006). Removal of copper(II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochem., 41, 1047–1054.
  • Pamukoglu, M. Y., and Kargi, F. (2007). Biosorption of copper(II) ions onto powdered waste sludge in a completely mixed fed-batch reactor: Estimation of design parameters. Bioresour. Technol., 98, 1155–1162.
  • Pan, Z., Tian, J., Xu, G., Li, J., and Li, G. (2011). Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment. Water Res., 45, 819–827.
  • Pietrzak, R., and Bandosz, T. J. (2007). Reactive adsorption of NO2 at dry conditions on sewage sludge-derived materials. Environ. Sci. Technol., 41, 7516–7522.
  • Pietrzak, R., and Bandosz, T. J. (2008). Interactions of NO2 with sewage sludge based composite adsorbents. J. Hazard. Mater., 154, 946–953.
  • Pokorna, E., Postelmans, N., Jenicek, P., Schreurs, S., Carleer, R., and Yperman, J. (2009). Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel, 88, 1344–1350.
  • Qian, Q., Mochidzuki, K., Fujii, T., and Sakoda, A. (2009). Removal of copper from aqueous solution using iron-containing adsorbents derived from methane fermentation sludge. J. Hazard. Mater., 172, 1137–1144.
  • Ren, X., Liang, B., Liu, M., Xu, X., and Cui, M. (2012). Effects of pyrolysis temperature, time and leaf litter and powder coal ash addition on sludge-derived adsorbents for nitrogen oxide. Bioresour. Technol., 125, 300–304.
  • Rio, S., Faur-Brasquet, C., Le Coq, L., Courcoux, P., and Cloirec, P. L. (2005b). Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation - application to air and water treatments. Chemosphere, 58, 423–437.
  • Rio, S., Faur-Brasquet, C., Le Coq, L., and Le Cloirec, P. (2005a). Production and characterization of adsorbent materials from an industrial waste. Adsorption, 11, 793–798.
  • Rio, S., Le Coq, L., Faur, C., Lecomte, D., and Le Cloirec, P. (2006). Preparation of adsorbents from sewage sludge by steam activation for industrial emission treatment. Process Saf. Environ. Prot., 84, 258–264.
  • Ros, A., Lillo-roadenas, M. A., Canals-Batlle, C., Fuente, E., Montes-Moraän, M. A., Martin, M. J., and Linares-Solano, A. (2007). A new generation of sludge-based adsorbents for H2S abatement at room temperature. 41, 4375–4381.
  • Ros, A., Lillo-Ródenas, M. A., Fuente, E., Montes-Morán, M. A., Martín, M. J., and Linares-Solano, A. (2006a). High surface area materials prepared from sewage sludge-based precursors. Chemosphere, 65, 132–140.
  • Ros, A., Montes-Moran, M. A., Fuente, E., Nevskaia, D. M., and Martin, M. J. (2006b). Dried sludges and sludge-based chars for H2S removal at low temperature: Influence of sewage sludge characteristics. Environ. Sci. Technol., 40, 302–309.
  • Rozada, F., Calvo, L. F., García, A. I., Martín-Villacorta, J., and Otero, M. (2003). Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour. Technol., 87, 221–230.
  • Samolada, M. C., and Zabaniotou, A. A. (2014). Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manage., 34, 411–420.
  • Sayed, S. A., and Zayed, A. M. (2006). Investigation of the effectiveness of some adsorbent materials in oil spill clean-ups. Desalination, 194, 90–100.
  • Selvaraj, K., Manonmani, S., and Pattabhi, S. (2003). Removal of hexavalent chromium using distillery sludge. Bioresour. Technol., 89, 207–211.
  • Seredych, M., and Bandosz, T. J. (2006). Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: The role of surface chemistry. J. Colloid Interface Sci., 302, 379–388.
  • Seredych, M., and Bandosz, T. J. (2007a). Desulfurization of digester gas on industrial-sludge-derived adsorbents. Energy Fuels, 21, 858–866.
  • Seredych, M., and Bandosz, T. J. (2007b). Tobacco waste/industrial sludge based desulfurization adsorbents: Effect of phase interactions during pyrolysis on surface activity. Environ. Sci. Technol., 41, 3715–3721.
  • Seredych, M., and Bandosz, T. J. (2007c). Removal of cationic and ionic dyes on industrial-municipal sludge based composite adsorbents. Ind. Eng. Chem. Res., 46, 1786–1793.
  • Seredych, M., and Bandosz, T. J. (2007d). Sewage sludge as a single precursor for development of composite adsorbents/catalysts. Chem. Eng. J., 128, 59–67.
  • Seredych, M., Strydom, C., and Bandosz, T. J. (2008). Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents. Waste Manage., 28, 1983–1992.
  • Sharaf El-Deen, S. E. A., and Zhang, F. (2012). Synthesis of sludge@carbon Nanocomposite for the Recovery of As (V) from Wastewater. Procedia Environ. Sci., 16, 378–390.
  • Sheha, D., Khalaf, H., and Daghestani, N. (2013). Experimental design methodology for the preparation of activated carbon from sewage sludge by chemical activation process. Arabian J. Sci. Eng., 38, 2941–2951.
  • Smith, K. M., Fowler, G. D., Pullket, S., and Graham, N. J. D. (2009). Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res., 43, 2569–2594.
  • Smith, K. M., Fowler, G. D., Pullket, S., and Graham, N. J. D. (2012). The production of attrition resistant, sewage–sludge derived, granular activated carbon. Sep. Purif. Technol., 98, 240–248.
  • Sueyoshi, M., Al-Maamari, R. S., Jibril, B., Tasaki, M., Okamura, K., Kuwagaki, H., and Han, Y. (2012). Preparation and characterization of adsorbents for treatment of water associated with oil production. J. Anal. Appl. Pyrol., 97, 80–87.
  • Tay, J. H., Chen, X. G., Jeyaseelan, S., and Graham, N. (2001). Optimising the preparation of activated carbon from digested sewage sludge and coconut husk. Chemosphere, 44, 45–51.
  • Trujillo-Reyes, J., Sánchez-Mendieta, V., Colín-Cruz, A., and Morales-Luckie, R. A. (2010). Removal of indigo blue in aqueous solution using Fe/Cu nanoparticles and C/Fe-cu nanoalloy composites. Water Air Soil Pollut., 207, 307–317.
  • Tsai, J., Chiang, H., Huang, G., and Chiang, H. (2008). Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. J. Hazard. Mater., 154, 1183–1191.
  • Tseng, R. L., Tseng, S. K., and Wu, F. C. (2006). Preparation of high surface area carbons from corncob using KOH combined with CO2 gasification for the adsorption of dyes and phenols from water. Colloids Surf. A, 279, 69–78.
  • Utomo, H. D., Ong, X. C., Lim, S. M. S., Ong, G. C. B., and Li, P. (2013). Thermally processed sewage sludge for methylene blue uptake. Int. Biodeter. Biodegrad., 85, 460–465.
  • Vasques, A. R., de Souza, S. M. G. U., Valle, J. A. B., and de Souza, A. A. U. (2009). Application of ecological adsorbent in the removal of reactive dyes from textile effluents. J. Chem. Technol. Biotechnol., 84, 1146–1155.
  • Velghe, I., Carleer, R., Yperman, J., Schreurs, S., and D'Haen, J. (2012). Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix. Water Res., 46, 2783–2794.
  • Vinitnantharat, S., Kositchaiyong, S., and Chiarakorn, S. (2010). Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge. Appl. Surf. Sci., 256, 5458–5462.
  • Wajima, T., and Munakata, K. (2011). Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4+ and PO43– from aqueous solution. J. Environ. Sci., 23, 718–724.
  • Wallace, R., Seredych, M., Zhang, P., and Bandosz, T. J. (2014). Municipal waste conversion to hydrogen sulfide adsorbents: Investigation of the synergistic effects of sewage sludge/fish waste mixture. Chem. Eng. J., 237, 88–94.
  • Wang, S., Boyjoo, Y., and Choueib, A. A. (2005). Comparative study of dye removal using fly ash treated by different methods. Chemosphere, 60, 1401–1407.
  • Wang, X. J., Xu, X. M., Liang, X., Wang, Y., Liu, M., Wang, X., and Zhang, Y. L. (2011). Adsorption of copper(II) onto sewage sludge-derived materials via microwave irradiation. J. Hazard. Mater., 192, 1226–1233.
  • Wu, C., Song, M., Jin, B., Wu, Y., and Huang, Y. (2013a). Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge. J. Environ. Sci., 25, 405–412.
  • Wu, C., Song, M., Jin, B., Wu, Y., Zhong, Z., and Huang, Y. (2013b). Adsorption of sulfur dioxide using nickel oxide/carbon adsorbents produced by one-step pyrolysis method. J. Anal. Appl. Pyrol., 99, 137–142.
  • Xi, X., and Guo, X. (2013). Preparation of bio-charcoal from sewage sludge and its performance on removal of Cr (VI) from aqueous solutions. J. Mol. Liq., 186, 26–30.
  • Xiaohua, W., and Jiancheng, J. (2012). Effect of heating rate on the municipal sewage sludge pyrolysis character. Energy Procedia, 14, 1648–1652.
  • Xie, J., Yue, Q., Yu, H., Yue, W., Li, R., Zhang, S., and Wang, X. (2008). Adsorption of reactive brilliant red K-2BP on activated carbon developed from sewage sludge. Front. Chem. China, 3, 33–40.
  • Xie, R., Jiang, W., Wang, L., Peng, J., and Chen, Y. (2013). Effect of pyrolusite loading on sewage sludge-based activated carbon in Cu(II), Pb(II), and Cd(II) adsorption. Environ. Prog. Sustain. Energy, 32, 1066–1073.
  • Xu, G. R., Zhang, W. T., and Li, G. B. (2005). Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment. Water Res., 39, 5175–5185.
  • Yu, L., and Zhong, Q. (2006). Preparation of adsorbents made from sewage sludges for adsorption of organic materials from wastewater. J. Hazard. Mater., 137, 359–366.
  • Yuan, W., and Bandosz, T. J. (2007). Removal of hydrogen sulfide from biogas on sludge-derived adsorbents. Fuel, 86, 2736–2746.
  • Yun, C. C., and Yi, Z. Y. (2009). Adsorbent derived from sewage sludge and its application in dye wastewater treatment. 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE-2009),, 1–4.
  • Zaini, M. A. A., Zakaria, M., Mohd.-Setapar, S. H., and Che-Yunus, M. A. (2013). Sludge-adsorbents from palm oil mill effluent for methylene blue removal. J. Environ. Chem. Eng., 1, 1091–1098.
  • Zare, H., Heydarzade, H., Rahimnejad, M., Tardast, A., Seyfi, M., and Peyghambarzadeh, M. (2012). Dried activated sludge as an appropriate biosorbant for removal of copper (II) ions. Arab. J. Chem., 8, 858–864.
  • Zhang, J., Tian, Y., Zhu, J., Zuo, W., and Yin, L. (2014). Characterization of nitrogen transformation during microwave-induced pyrolysis of sewage sludge. J. Anal. Appl. Pyrol., 105, 335–341.
  • Zhang, W., Mao, S., Chen, H., Huang, L., and Qiu, R. (2013). Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Technol., 147, 545–542.
  • Zou, J., Dai, Y., Wang, X., Ren, Z., Tian, C., Pan, K., Li, S., Abuobeidah, M., and Fu, H. (2013). Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity. Bioresour. Technol., 142, 209–217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.