928
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

State of the science review: Potential for beneficial use of waste by-products for in situ remediation of metal-contaminated soil and sediment

, , , &
Pages 65-129 | Published online: 06 Feb 2017

References

  • U.S. EPA. (2014, 30 June). Land risk management research, contaminated soil and sediments. Retrieved 14 July, from http://www.epa.gov/nrmrl/lrpcd/contamin_ss.html
  • U.S. EPA. (2009). Technology performance review: Selecting and using solidification/stabilization treatment for site remediation. (EPA/600/R-09/148). Washington, DC: US EPA.
  • Rajendram, P., Muthukrishnan, J., and Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian J. Exp. Biol., 41, 935–944.
  • Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., Kilburn, J. E., and Fey, D. L. (2013). Geochemical and mineralogical data for soils of the conterminous United States. Chapter 2, Tables 2 and 3. U.S. Geological Survey Data Series 801. Retrieved from http://pubs.usgs.gov/ds/801/
  • U.S. EPA. (2007b). Treatment technologies for mercury in soil, waste, and water. (EPA-542-R-07-003). Washington, DC: US EPA. Retrieved from http://www.epa.gov/tio/download/remed/542r07003.pdf
  • McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., and Rogers, S. L. (2000a). Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil Res., 38, 1037–1086.
  • McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., and Cook, N. (2000b). Soil testing for heavy metals. Commun. Soil Sci. Plan., 31, 1661–1700.
  • Wuana, R. A., and Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology.
  • Evanko, C. R., and Dzombak, D. A. (1997). Remediation of metals-contaminated soils and groundwater. Carnegie Mellon University: GWRTAC (Ground-Water Remediation Technologies Analysis Center). Report No.: Technology Evaluation Report TE-97-01.
  • Mulligan, C. N., Yong, R. N., and Gibbs, B. F. (2001). An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater., 85, 145–163.
  • U.S. EPA. (2007). The use of soil amendments for remediation, revitalization and reuse. Washington, DC: U.S. Environmental Protection Agency (U.S. EPA). Retrieved from http://www.clu-in.org/download/remed/epa-542-r-07-013.pdf
  • U.S. EPA. (2005). Chapter 5.0 In Situ Capping. The contaminated sediment remediation guidance for hazardous waste sites. (EPA-540-R-05-012). Washington, DC: US EPA. Retrieved from http://www.epa.gov/tio/download/remed/542r07003.pdf
  • U.S. EPA. (2013d). Use of amendments for in situ remediation at superfund sediment sites. (OSWER Directive 9200.2-128FS). Washington, DC: US EPA. Retrieved from http://www.epa.gov/superfund/health/conmedia/sediment/pdfs/In_situ_AmendmentReportandAppendix_FinalApril2013.pdf
  • Jardine, P. M., Parker, J. C., Stewart, M. S., Barnett, M. O., and Fendorf, S. E. (2007). Decreasing toxic metal bioavailability with novel soil amendment strategies: This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP).
  • U.S. EPA. (1995). Contaminants and remedial options at selected metals-contaminated sites. (EPA/540/R-95/512). Washington, DC. Retrieved from http://www.epa.gov/superfund/health/conmedia/sediment/pdfs/ch5.pdf
  • U.S. EPA. (2007c). Chapter 3: Environmental chemistry, transport and fate framework for metals risk assessment. Washington, DC: US EPA.
  • Martin, F., Garcia, I., Dorronsoro, C., Simon, M., Aguilar, J., Ortiz, I., Fernandez, J. (2004). Thallium behavior in soils polluted by pyrite tailings (Aznalcollar, Spain). Soil Sediment Contam., 13, 25–36.
  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., and Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plan. Nutr., 10, 268–292.
  • McLean, J. E., and Bledsoe, B. E. (1992). Ground water issue: Behavior of metals in soils. Superfund Technology Support Center for Ground Water, Technology Innovation Office, Office of Solid Waste and Emergency Response, Office of Research and Development. Report No.: EPA/540/S-92/018.
  • Shuman, L. M. (1991). Chemical forms of micronutrients in soils. In J. E. McLean and B. E. Bledsoe (Eds.), Ground water issue: Behavior of metals in soils: Superfund technology support center for ground water. Technology Innovation Office, Office of Solid Waste and Emergency Response, Office of Research and Development, EPA/540/S-92/018.
  • Sposito, G. (1984). The surface chemistry of soils. Oxford, England: Oxford Univ. Press.
  • Bolan, N. S., Adriano, D. C., Mani, A., and Duraisamy, A. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant Soil, 251, 187–198.
  • Choppala, G., Bolan, N., Kunhikrishnan, A., Skinner, W., and Seshadri, B. (2015). Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environ. Sci. Pollut. R., 22, 8969–8978.
  • Adriano, D. C. (2001). Trace elements in the terrestrial environments: Biogeochemistry, bioavailability, and risks of heavy metals (2nd ed.). New York: Springer-Verlag.
  • Harter, R. D., and Naidu, R.. (1995). Role of metal-organic complexation in metal sorption by soils. Adv. Agron., 55, 219–263.
  • Haas, C. N., and Horowitz, N. D. (1986). Adsorption of cadmium to kaolinite in the presence of organic material. Water Air Soil Poll., 27, 131–140.
  • U.S. EPA. (1992). Framework for ecological risk assessment. Risk Assessment Forum. (EPA/505/2-90/001). Washington, DC: US EPA.
  • Borda, M. J., and Sparks, D. L. (2008). Mobility of trace elements in soil environments. In: A. Violante, P. M. Huang, and G. M. Gadd (Eds.), Biophysico-chemical processes of metals and metalloids in soil environments (pp. 97–168), Hoboken, NJ: John Wiley and Sons.
  • Plant Conservation Alliance (PCA). (2002). Using biosolids for reclamation and remediation of disturbed soils: Prepared by the Center for Urban Horticulture, University of Washington for the Plant Conservation Alliance, Bureau of Land Management, United States Department of Interior.
  • Scheckel, K. G., Diamond, G. L., Burgess, M. F., Klotzbach, J. M., Maddaloni, M., Miller, B. W., and Serda, S. M. (2013). Amending soils with phosphate as means to mitigate soil lead hazard: A critical review of the state of the science. J. Toxicol. Env. Health B., 16, 337–380.
  • Boisson, J., Mench, M., Vangronsveld, J., Ruttens, A., Kopponen, P., and De Koe., T. (1999). Immobilization of trace metals and arsenic by different soil additives: Evaluation by means of chemical extractions. Commun. Soil Sci. Plan., 30, 365–387.
  • Pearson, M. S., Maenpaa, K., Pierzynski, G. M., and Lydy, M. J. (2000). Effects of soil amendments on the bioavailability of lead, zinc, and cadmium to earthworms. J. Environ. Qual., 29, 1611–1617.
  • Bolan, N. S., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J. E., Makino, T., Kirkham, M. B., Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater., 266, 141–166.
  • Gadepalle, V. P., Ouki, S. K., Van Herwijnen, R., and Hutchings, T. (2007). Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam., 16, 223–251.
  • Barthel, J., and Edwards, S. (2001). Chemical stabilization of heavy metals. Metals Treatment Technologies (MT2), L.L.C. Wheat Ridge, CO. Retrieved from http://www.containment.fsu.edu/cd/content/pdf/040.pdf
  • Liu, R., and Zhao, D. (2013). Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil. Chemosphere, 91, 594–601.
  • Liu, R. Q., and Zhao, D. Y. (2007). In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere, 68, 1867–1876.
  • An, B., and Zhao, D. Y. (2012). Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. J. Hazard. Mater., 211, 332–341.
  • Clu-In. (2014c, February 20). Solidification: Overview. Table 1. Retrieved 24 Sept 2014, from http://clu-in.org/techfocus/default.focus/sec/Solidification/cat/Overview/
  • Abdel-Kader, N. R. S., and H., K. (2013). Assessment of heavy metals immobilization in artificially contaminated soils using some local amendments. Open J. Metal, 3, 8–76.
  • Minocha, A. K., and Goyal, M. K. (2013). Immobilization of molybdenum in ordinary Portland cement. J. Chem. Eng. Process Technol., 4, 162.
  • Savannah River Ecology Laboratory. (2014). Soil remediation using in situ immobilization techniques. Retrieved July 28, 2014, from http://srel.uga.edu/outreach/snapshots/soil_remediation.html
  • Tica, D., Udovic, M., and Lestan, D. (2011). Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85, 577–583.
  • Finžgar, N., Kos, B., and Leštan, D. (2006). Bioavailability and mobility of Pb after soil treatment with different remediation methods. Plant Soil Environ., 52, 25–34.
  • Petrilakova, A., and Balintova, M. (2011). Utilization of sorbents for heavy metals removal from acid mine drainage. Kosice, Slovakia: University of Kosice. Retrieved from http://www.nt.ntnu.no/users/skoge/prost/proceedings/pres2011-and-icheap10/PRES11/214Petrilakova.pdf
  • Cao, R. X., Ma, L. Q., Chan, M., Singh, S. P., and Harris, W. G. (2003). Phosphate-induced metal immobilization in a contaminated site. Environ. Poll., 122, 19–28.
  • Chmielewska, E., Hodossyova, R., and Bujdos, M. (2013). Kinetic and thermodynamic studies for phosphate removal using natural adsorption materials. Pol. J. Environ. Stud., 22, 1307–1316.
  • Brown, L., Seaton, K., Mohseni, R., and Vasiliev, A. (2013). Immobilization of heavy metals on pillared montmorilonite with a grafted chelate ligand. J. Hazard Mater., 15, 181–187.
  • Cruz-Guzman, M., Celis, R., Hermosin, M. C., Koskinen, W. C., Nater, E. A., and Cornejo, J. (2006). Heavy metal adsorption by montmorillonites modified with natural organic matter. Soil Sci. Soc. Am. J., 70, 215–221.
  • Addy, M. A. (2011). Modified organoclay containing chelating ligand for adsorption of heavy metals in solution. East Tennessee State University School of Graduate Studies Electronic Theses and Dissertations, Paper 1372. Retrieved from http://dc.etsu.edu/etd/1372
  • Hyman, M., and Dupont, R. R. (2001). Groundwater and soil remediation: Process design and cost estimating of proven technologies. ASCE Press.
  • Warren, G. P., and Alloway, B. J. (2003). Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J. Environ. Qual., 32, 767–772.
  • Walker, D. J., Clemente, R., and Bernal, M. P. (2004). Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57, 215–224.
  • Asensio, V., Covelo, E. F., and Kandeler, E. (2013). Soil management of copper mine tailing soils—Sludge amendment and tree vegetation could improve biological soil quality. Sci. Total Environ., 456–457.
  • Brown, S., Svendsen, A., and Henry, C. (2009). Restoration of high zinc and lead tailings with municipal biosolids and lime: A Field Study. J. Environ. Qual., 38, 2189–2197.
  • Carcamo, V., Bustamante, E., Trangolao, E., de la Fuente, L. M., Mench, M., Neaman, A., and Ginocchio, R. (2012). Simultaneous immobilization of metals and arsenic in acidic polluted soils near a copper smelter in central Chile. Environ. Sci. Poll. R., 19, 1131–1143.
  • Ginocchio, R., Cárcamo, V., Bustamante, E., Trangolao, E., de la Fuente, L. M., and Neaman, A. (2013). Efficacy of fresh and air-dried biosolids as amendments for remediation of acidic and metal-polluted soils: A short-term laboratory assay. J. Soil Sci. Plant Nutr., 13, 855–869.
  • Rate, A. W., Lee, K. M., and French, P. A. (2004). Application of biosolids in mineral sands rehabilitation: Use of stockpiled topsoil decrease trace elements by plants. Biores. Technol., 3, 223–231.
  • Soler-Rovira, P., Madejon, E., Madejon, P., and Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability. Chemosphere, 79, 844–849.
  • Carrillo Zenteno, M. D., de Freitas, R. C. A., Fernandes, R. B. A., Fontes, M. P. F., and Jordao, C. P. (2013). Sorption of cadmium in some soil amendments for in situ recovery of contaminated soils. Water Air Soil Poll., 224, 1418.
  • Venner, K. H., Prescott, C. E., and Preston, C. M. (2009). Leaching of nitrogen and phenolics from wood waste and co-composts used for road rehabilitation. J. Environ. Qual., 38, 281–290.
  • Zeng, M., Campbell, A. G., and Mahler, R. L. (1993). Log yard fines as a soil amendment: 601 pot and field studies. Commun. Soil Sci. Plant Anal., 24, 2025–2041.
  • Preston, C. M., and Forrester, P. D. (2004). Chemical and carbon-13 cross-polarization 567 magic-angle spinning nuclear magnetic resonance characterization of logyard fines 568 from British Columbia. J. Environ. Qual., 33, 767–777.
  • Jirjis, R., and Theander, O. (1990). The effect of seasonal storage on the chemical 495 composition of forest residue chips. Scand. J. Res., 5, 437–448.
  • Petruzzelli, G., Barbafieri, M., Bretzel, F., and Pezzarossa., B. (1998). In situ attenuation of heavy metal mobility in contaminated soil by use of paper mill sludge Contaminated Soil (pp. 1139–1140). London: Thomas Telford Publishing.
  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.
  • U.S. EPA. (2013a). Coal combustion residues. Wastesnon-hazardous waste—industrial waste. Retrieved September 2014, from http://www.epa.gov/osw/nonhaz/industrial/special/fossil/coalashletter.htm
  • U.S. EPA. (2013b). Frequent questions: Coal combustion residues (CCR)—Proposed rule. Wastes—non-hazardous waste—industrial waste. Retrieved September 2014, from http://www.epa.gov/waste/nonhaz/industrial/special/fossil/ccr-rule/ccrfaq.htm
  • Chang, Y. T., Hsi, H. C., Hseu, Z. Y., and Jheng, S. L. (2013). Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products. J. Environ. Sci. Heal. A., 48, 1748–1756.
  • Gangloff, W. J., Ghodrati, M., Sims, J. T., and Vasilas, B. L. (2000). Impact (ed.) The reuse and recycling of contaminated soil. Lewis Publ., of fly ash amendment and incorporation method on hydraulic properties of a sandy soil. Water Air Soil Poll., 119, 231–245.
  • Bern, J. (1976). Residues from power generation: Processing, recycling, and disposal in land application of waste materials. Soil Conservation Society of America, 226–248.
  • Page, A. L., Elseewi, A. A., and Straughan, I. R. (1979). The physical and chemical properties of fly ash from coal-fired power plants with soils. Prentice Hall, Upper Saddle River, NJ. reference to environmental impacts. Residue Rev., 71, 83–120.
  • Lau, S. S. S., Fang, M., Wong, J. W. C. (2001). Effects of composting process and fly ash amendment on phytotoxicity of sewage sludge. Arch. Environ. Contam. Toxicol., 40, 184–191.
  • Zinck, J., and Griffith, W. (2006). Utilizing industrial wastes and alternative reagents to treat acidic drainage. Paper presented at the 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, MO. http://www.asmr.us/Publications/Conference%20Proceedings/2006/2618-Zinck-ON-2.pdf
  • U.S. EPA. (2012d). Cement kiln dust waste. Wastes—non-hazardous waste—industrial waste. Retrieved September 2014, from http://www.epa.gov/osw/nonhaz/industrial/special/ckd/index.htm
  • U.S. EPA. (2012e). Aluminum production wastes. Radiation protection. Retrieved September 2014, from http://www.epa.gov/radiation/tenorm/aluminum.html
  • Sutar, H., Mishra, S. H., Sahoo, S. K., Chakraverty, A. P., and Maharana, H. S. (2014). Progress of red mud utilization: An overview. Am. Chem. Sci. J., 4, 25–279.
  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., and McGrath, S. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Poll., 142, 530–539.
  • Muller, I., and Pluquet, E. (1998). Water. Sci. China Ser. D., 37, 379–386.
  • Lombi, E., Zhao, F. J., Zhang, G., Sun, B., Fitz, W. J., Zhang, H., and McGrath, S. P. (2002). In situ fixation of metals in soils using bauxite residue: Chemical assessment. Environ. Poll., 118, 435–443.
  • Friesl, W., Lombi, E., Horak, O., and Wenzel, W. W. (2003). Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. J. Plant Nutr. Soil Sci., 166, 191–196.
  • Basta, N. T., and McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Poll., 127, 73–82.
  • Dermatas, D., and Meng, X. G. (1996). Stabilization/Solidification (S/S) of heavy metal contaminated soils by means of a quicklime-based treatment approach. Stabilization and solidification of hazardous, radioactive, and mixed wastes, ASTM STP 1240, 1. Paper presented at the American Society for Testing and Materials, Philadelphia.
  • Li, Y. M., Chaney, R. L., Siebielec, G., and Kerschner, B. A. (2000). Response of four turfgrass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, Pennsylvania. J. Environ. Qual., 29, 1440–1447.
  • Pierzinsky, G. M., and Schwab, A. P. (1993). Bioavailability of zinc cadmium and lead in a metal-contaminated alluvial soil. J. Environ. Qual., 22, 247–254.
  • Sanchez, A. G., and Ayuso, E. A. (2008). Soil remediation in mining polluted areas. Conferencia invitada revista de la sociedad espanola de mineralogia, 10, 76–84.
  • Trakal, L., Neuberg, M., Tlustoš, P., Száková, J., Tejnecký, V., and Drábek, O. (2011). Dolomite limestone application as a chemical immobilization of metal-contaminated soil. Plant Soil Environ., 57, 173–179.
  • Girovish, M. J. (1996). Biosolids treatment and management: Processes for beneficial use. New York: Marcel Dekker, Inc.
  • Basta, N. T., Gradwohl, R., Snethen, K. L., and Schroder, J. L. (2001). Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J. Environ. Qual., 30, 1222–1230.
  • National Lime Association. (2014). Biosolids and sludge. Retrieved August, from http://www.lime.org/uses_of_lime/environmental/biosolids.asp
  • Lal, R. (Ed.). (2006). Encyclopedia of soil science (2nd ed.). New York, NY: Taylor and Francis Group, LLC.
  • National Slag Association. (2013). Common uses for slag. Retrieved September 2014, from http://www.nationalslag.org/common-uses-slag
  • Penn State, College of Agricultural Sciences. (2014). Penn State Extension. Slag. Nontraditional soil amendments. Retrieved 23 July 2014, from http://extension.psu.edu/agronomy-guide/cm/sec9/sec96
  • Iskander, I. K. (2001). Environmental restoration of metals-contaminated soils. Boca Raton, FL: CRC Press LLC, Lewis Publishers.
  • Sappin-Didier, V. (1995). Utililisation de composes inorganiques pour diminuer les flux de metaux dan deux agrosystems pollues: Etude des mecanismes impliques par l'emploi d'un compose du fer, PhD Thesis. As cited in Iskander, I. K. (2001), Environmental restoration of metals-contaminated soils. Lewis Publishers.
  • Mench, M. J., Didier, V. L., Loffler, M., Gomez, A., and Masson, P. (1994). A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual., 23, 58–63.
  • Mench, M., Vangronsveld, J., Clijster, H., Lepp, N. W., and Edwards, R. (1999). In-situ metal immobilization and phytostabilisation of contaminated soils. In T. Logan, G. Banuelos, J. Vangronsveld, and N. Terry (Eds.), Phytoremediation of contaminated soils and water. Boca Raton, FL: CRC Press.
  • Muller, I., and Pluquet, E. (1997). Immobilization of heavy metals in mud dredged from a seaport. Rotterdam: Int. Conf. Contaminated Sediments, 09/7-11/1997.
  • Mench, M., Vangronsveld, J., Lepp, N. W., and Edwards, R. (1998). Physico-chemical aspects and efficiency of trace element immobilization by soil amendments. In J. Vangronsveld and S. D. Cunningham (Eds.), Metal contaminated soils: In situ inactivation and phytorestoration (pp. 151–182). New York: Spring.
  • De Boodt, M. F. (1991). Application of the sorption theory to eliminate heavy metals from waste waters and contaminated soils, Interactions at the soil colloid-soil solution interface. In G. H. Bolt, M. F. De Boodt, M. H. B. Hayes, and M. B. McBride (Eds.), NATO ASI series, series E: Applied sciences (Vol. 190, pp. 293–320). Dordrecht (NL): Luwer Academic Publishers.
  • Kumar, A. (2004). Environmental contamination and bioreclamation. New Delhi, India: APH Publishing Corporation.
  • Stegmann, R., Brunner, G., Calmano, W., and Matz, G. (2001). Treatment of contaminated soil: Fundamentals, analysis, applications. New York, NY: Springer-Verlag Berlin Heidelberg.
  • U.S. EPA. (2013c). Foundry sand. Wastes—resource conservation—industrial materials recycling. Retrieved September 2014, from http://www.epa.gov/epawaste/conserve/imr/foundry/
  • Merck. (1983). The Merck index (10th ed.). Rahway, NJ: Merck and Co.
  • Stillwell, D. E., and Ranciato, J. F. (2008). Use of phosphates to immobilize lead in community garden soils. The Connecticut Agricultural Experiment Station, New Haven: Bulletin 1018. Department of Analytical Chemistry.
  • Hettiarachchi, G. M., and Pierzynski, G. M. (2004). Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environ. Prog., 23, 78–93.
  • Ma, Q. Y., Traina, S. J., Logan, T. J., and Ryan, J. A. (1993). In-Situ lead immobilization by apatite. Environ. Sci. Technol., 27, 1803–1810.
  • Chlopecka, A., and Adriano, D. C. (1996). Mimicked in-situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc. Environ. Sci. Technol., 30, 3294–3303.
  • Mench, M. J., Manceau, A., Vangronsveld, J., Clijsters, H., and Mocquot, B. (2000). Capacity of soil amendments in lowering the phytoavailability of sludge-born zinc. Agronomie, 20, 383–397.
  • Naidu, R., Bolan, N., Kookana, R. S., and Tiller, K. G. (1994). Ionic strength and pH effects on the adsorption of cadmium and the surface charge of soils. Eur. J. Soil Sci., 45, 419–429.
  • Naidu, R., Lamb, D. T., Bolan, N. S., and Gawandar, J. (2012). Recovery and reuse of phosphorous from wastewater. Retrieved from http://www.massey.ac.nz/∼flrc/workshops/12/Manuscripts/Naidu_2012.pdf
  • Abollino, O., Giacomino, A., Malandrina, M., and Mentaste, E. (2007). The efficiency of verminculite as natural sorbent for heavy metals. Application to a contaminated soil. Water Air Soil Poll., 181, 149–160.
  • Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Peretti, R., and Zucca, A. (2003). Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner. Eng., 16, 187–192.
  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., and McGrath, S. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Poll., 142, 530–539.
  • Illera, V., Garrido, F., Serrano, S., and Garcia-Gonzalez, M. T. (2004). Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial by-products. Eur. J. Soil Sci., 55, 135–145.
  • Lombi, E., Hamon, R. E., McGrath, S. P., and McLaughlin, M. J. (2003). Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environ. Sci. Technol., 37, 979–984. doi: 10.1021/Es026083w
  • Florida Industrial and Phosphate Research Institute (FIPR). (2010). Phosphate primer. Retrieved 12 Sept 2014, from http://www1.fipr.state.fl.us/PhosphatePrimer/0/684AE64864D115FE85256F88007AC781
  • Elliott, H. A., and Dempsey, B. A. (1991). Agronomic effects of land application of water treatment sludges. J. Am. Water Works Assoc., 84, 126–131.
  • Chiang, Y. W., Ghyselbrecht, K., Santos, R. M., Martens, J. A., Swennen, R., Cappuyns, V., and Meesschaert, B. (2012). Adsorption of multi-heavy metals onto water treatment residuals: Sorption capacities and applications. Chem. Eng. J., 200–202, 405–415.
  • Fan, J. H., He, Z. L., Ma, L. Q., Yang, Y. G., Yang, X. E., and Stoffella, P. J. (2011). Immobilization of copper in contaminated sandy soils using calcium water treatment residue. J. Hazard Mater., 189, 710–718.
  • Rengasamy, P., Oades, J. M., and Hancock, T. W. (1980). Improvement of Soil Structure and Plant-Growth by Addition of Alum Sludge. Commun. Soil Sci. Plan., 11, 533–545.
  • Silveira, M. L., Miyittah, M. K., and O'Connor, S. G. A. (2006). Phosphorus release from a manure-impacted spodosol: Effect of a water treatment residual. J. Environ. Qual., 35, 529–541.
  • Wang, C., Zhao, Y., and Pei, Y. (2012). Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China. J. Hazard Mater., 237–238, 240–246.
  • Lombi, E., Hamon, R. E., Wieshammer, G., McLaughlin, M., and McGrath, S. (2004). Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. J. Environ. Qual., 33, 902–910.
  • Bünemann, E. K., Schwenke, G. D., and Van Zwietan, L. (2006). Impact of agricultural inputs on soil organisms: A review. Aust. J. Soil Res., 44, 379–406.
  • Sud, D., Mahajan, G., and Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresource Technol., 99, 6017–6027.
  • Novak, J., Ro, K., Ok, Y. S., Sigua, G., Spokas, K., Uchimiya, S., and Bolan, N. (2016). Biochars multifunctional role as a novel technology in the agricultural, environmental, and industrial sectors. Chemosphere, 142, 1–3.
  • Bishnoi, N. R., Bajaj, M., Sharma, N., and Gupta, A. (2004). Adsorption of chromium (VI) on activated rice husk carbon and activated alumina. Bioresour. Technol., 91, 305–307.
  • Zheng, R. L., Chen, Z., Cai, C., Wang, X. H., Huang, Y. Z., Xiao, B., and Sun, G. X. (2013). Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. Bioresources, 8, 5965–5982.
  • Montanher, S. F., Oliveira, E. A., and Rollemberg, M. C. (2005). Removal of metal ions from aqueous solutions by sorption onto rice bran. J. Hazard Mater., 117, 207–211.
  • Oliveira, E. A., Montanher, S. F., Andrade, A. D., Nobrega, J. A., and Rollemberg, M. C. (2005). Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem., 40, 3485–3490.
  • Roy, D., Greenlaw, P. N., and Shane, B. S. (1993). Adsorption of heavy-metals by green-algae and ground rice hulls. J. Environ. Sci. Heal. A., 8, 37–50.
  • Basci, N., Kocadagistan, E., and Kocadagistan, B. (2003). Biosorption of Cu II from aqueous solutions by wheat shells. Desalination, 164, 135–140.
  • Farajzadeh, M. A., and Monji, A. B. (2004). Adsorption characteristics of wheat bran towards heavy metal cations. Sep. Purif. Technol., 38, 197–207.
  • Gardea-Torresdey, J. L., Tiemann, K. J., Armendariz, V., Bess-Oberto, L., Chianelli, R. R., Rios, J., Gamez, G. (2000). Characterization of chromium (VI) binding and reduction to chromium(III) by the agricultural byproduct of Avena monida (oat) biomass. J. Hazard. Mater., 80, 175–188.
  • Garg, V. K., Gupta, R., Kumar, R., and Gupta, R. K. (2004). Adsorption of chromium from aqueous solution on treated sawdust. Bioresour. Technol., 92, 79–81.
  • Manju, G. N., and Anirudhan, T. S. (1997). Use of coconut fiber pith-based pseudo activated carbon for chromium (VI) removal. Ind. J. Environ. Health., 4, 289–298.
  • Tsui, M. T., Cheung, K. C., Tam, N. F., and Wong, M. H. (2006). A comparative study on metal sorption by brown seaweed. Chemosphere, 65, 51–57.
  • Hashem, A., Abdel-Halim, E. S., El-Tahlawy, K. F., and Hebeish, A. (2005). Enhancement of adsorption of Co (II) and Ni (II) ions onto peanut hulls though esterification using citric acid. Adsorp. Sci. Technol., 23, 367–380.
  • Wilson, K., Yang, H., Seo, C. W., and Marshall, W. E. (2006). Select metal adsorption by activated carbon made from peanut shells. Bioresour. Technol., 97, 2266–2270.
  • Cimino, G., Passerini, A., and Toscano, G. (2000). Removal of toxic cations and Cr(Vi) from aqueous solution by hazelnut shell. Water Res., 34, 2955–2962.
  • Demirbas, E., Kobya, M., Oncel, S., and Sencan, S. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: Equilibrium studies. Bioresour. Technol., 84, 291–293.
  • Johns, M. M., Marshall, W. E., and Toles, C. A. (1998). Agricultural byproducts as granular activated carbons for adsorbing dissolved metals and organics. J. Chem. Technol. Biotechnol., 71, 131–140.
  • Hashem, A., Aly, A. A., Aly, A. S., and Hebeish, A. (2006). Quaternization of cotton stalks and palm tree particles for removal of acid dye from aqueous solutions. Polym-Plast Technol., 45, 389–394.
  • Goswami, S., and Ghosh, U. C. (2005). Studies on adsorption behaviour of Cr(VI) onto synthetic hydrous stannic oxide. Water SA., 31, 597–602.
  • Ribas, L. C. C., Mendonca, M. M., Camelini, C. M., and Soares, C. H. L. (2009). Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: Growth promotion and soil bioremediation. Bioresour. Technol., 100, 4750–4757.
  • Beesley, L., Inneh, O., Norton, G., Moreno-Jimenez, E., Pardo, T., Clemente, R., and Dawson, J. (2014). Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut., 186, 195–202.
  • Burgos, P., Madejon, P., Cabrera, F., and Madejon, E. (2010). By-products as amendment to improve biochemical properties of trace element contaminated soils: Effects in time. Int. Biodeter. Biodegr., 64, 481–488.
  • Akkajit, P., DeSutter, T., and Tongcumpou, C. (2013). Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization. Environ. Sci. Process Impacts, 15, 947–954.
  • Akkajit, P., DeSutter, T., and Tongcumpou, C. (2014). Effects of sugarcane waste-products on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.). Environ. Sci. Process. Impacts, 1, 88–93.
  • Niu, X., Zheng, L., Zhou, J., Dang, Z., and Li, Z. (In Press). Synthesis of an adsorbent from sugarcane bagass by graft copolymerization and its utilization to remove Cd(II) ions from aqueous solution. J. Taiwan Inst. Chem. E., 46, 156–164.
  • Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F., and Munoz, J. A. (2009). Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics. Chem. Eng. J., 150, 289–301.
  • Gurgel, L. V. A., de Freitas, R. P., and Gil, L. F. (2008). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohyd. Polym., 74, 922–929.
  • Garrido, F., Illera, V., Campbell, C. G., and Garcia-Gonzalez, M. T. (2006). Regulating the mobility of Cd, Cu and Pb in an acid soil with amendments of phosphogypsum, sugar foam, and phosphoric rock. Eur. J. Soil Sci., 57, 95–105.
  • Jimenez Moraza, C., Iglesias, N., and Palencia, I. (2006). Application of sugar foam to a pyrite-contaminated soil. Miner. Eng., 19, 399–406.
  • Júnior, O., Gurgel, L., Freitas, R., and Gil, L. (2006). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTS dianhydride (EDTAD). Carbohydr. Polym., 77, 643–650.
  • Gupta, V. K., and Ali, I. (2000). Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep. Purif. Technol., 18, 131–140.
  • Maranon, E., and Sastre, H. (1991). Heavy-Metal Removal in Packed-Beds Using Apple Wastes. Bioresource Technol., 38, 39–43.
  • Annadurai, G., Juang, R. S., and Lee, D. L. (2002). Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol., 47, 185–190.
  • Macchi, G., Marani, D., and Tiravanti, G. (1986). Uptake of mercury by exhausted coffee grounds. Environ. Technol. Lett., 7, 431–444.
  • Erwan, Ismail, M. R., Saud, H. M., Othman, R., Habib, S. H., Kausar, H., and Naher, L. (2013). Effect of oil palm frond compost amended coconut coir dust soilless growing media on growth and yield of cauliflower. Int. J. Agric. Biol., 15, 731–736.
  • USBI. (2014). Manufactures and retailers. Retrieved August 2014, from http://biochar-us.org/manufacturers-retailers
  • USA Rice Federation. (2014). The U.S. rice industry at-a-glance. Retrieved August, 2014, from http://www.usarice.com/doclib/188/219/3674.pdf
  • American Olive Oil Producers Association (AOOPA). (2014). The American olive oil industry facts. Retrieved August 21, 2014, from http://www.aoopa.org/U.S.OliveOilProductionFacts-i-17-2.html
  • Alburquerque, J. A., de la Fuente, C., and Bernal, M. P. (2011). Improvement of soil quality after “alperujo” compost application to two contaminated soils characterised by differing heavy metal solubility. J. Environ. Manage., 92, 733–741.
  • Manta Media. (2014). Silk (raw) production and silkworm farms in the United States. Featured company listings. Retrieved September 5, 2014, from http://www.manta.com/mb_35_C011702U_000/silk_raw_production_and_silkworm_farm
  • U.S. Department of Agriculture, Economic Research Service. (2012). Sugar and sweeteners. Retrieved September 2014, from http://www.ers.usda.gov/topics/crops/sugar-sweeteners/background.aspx#.VAdNjvldUy4
  • Hodson, M. E., Valsami-Jones, É., and Cotter-Howells, J. D. (2000). Bonemeal additions as a remediation treatment for metal contaminated soil. Environ. Sci. Technol., 34, 3501–3507.
  • U.S. EPA. (2012c). Beneficial use of waste materials: State of the practice 2012. U.S. Environmental Protection Agency (U.S. EPA).
  • Aguilar-Carrillo, J., Barrios, L., Garrido, F., and Garcia-Gonzalez, M. T. (2007). Effects of industrial by-product amendments on As, Cd and Tl retention/release in an element-spiked acidic soil. Appl. Geochem., 22, 1515–1529.
  • Bert, V., Lors, C., Ponge, J. F., Caron, L., Biaz, A., Dazy, M., and Masfaraud, J. F. (2012). Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: A field study focusing on plants, springtails, and bacteria. Environ. Poll., 169, 1–11.
  • Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., and Donne, S. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard Mater., 272, 121–128.
  • Bian, R., Chen, D., Liu, X., Cui, L., Li, L., Pan, G., and Chang, A. (2013). Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecol. Eng., 58, 378–383.
  • Bradham, K. D., Laird, B., Rasmussen, P. E., Schoof, R. A., Serda, S. M., Siciliano, S. D., and Hughes, M. F. (2013). Workshop Report: Assessing the bioavailability and risk from metal contaminated soils and dusts. Research Triangle Park, NC: U.S. EPA.
  • Chaney, R. L., Brown, S., Mahoney, M., Compton, H., and Sprenger, M. (2012). Using organic amendments, byproducts and agronomy in remediation of hardrock mining sites. Paper presented at the EPA Hardrock Mining Conference.
  • Garau, G., Silvetti, M., Castaldi, P., Mele, E., Deiana, P., and Deiana, S. (2014). Stabilising metal(loid)s in soil with iron and aluminium-based products: Microbial, biochemical and plant growth impact. J. Environ. Manage., 139, 146–153.
  • Geebelen, W., Sappin-Didier, V., Ruttens, A., Carleer, R., Yperman, J., Bongue-Boma, K., Mench, M., van der Lelie, N., and Vangronsveld, J. (2006). Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belguim). Environ. Poll., 144, 32–39.
  • Gonzalez, V., Garcia, I., Del Moral, F., and Simon, M. (2012). Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil. J. Hazard Mater., 205–206, 72–80.
  • Gu, H. H., Qiu, H., Tian, T., Zhan, S. S., Deng, T. H. B., Chaney, R. L., and Qiu, R. L. (2011). Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere, 83, 1234–1240.
  • Houben, D., Pircar, J., and Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. J. Geochem. Explor., 123, 87–94.
  • Hwang, T., and Neculita, C. M. (2013). In situ immobilization of heavy metals in severely weathered tailings amended with food waste-based compost and zeolite. Water, Air, Soil Poll., 224, 1388.
  • Lee, S. H., Kim, E. Y., Park, H., Yun, J., and Kim, J. G. (2011). In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma, 161, 1–7.
  • Lee, S. H., Park, H., Koo, N., Hyun, S., and Hwang, A. (2011b). Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods. J. Hazard Mater., 188, 44–51.
  • Lee, S. H., Li, W., Lee, W. S., Koo, N., Koh, I. H., Kim, M. S., and Park, J. S. (2014). Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. J. Environ. Manage., 139, 15–21.
  • Liu, R., and Lal, R. (2012). Nanoenhanced Materials for Reclamation of Mine Lands and Other Degraded Soils: A Review. J. Nanotechnol., 2012.
  • Makela, M., Harju-Oksanen, M. L., Watkins, G., Ekroos, A., and Dahl, O. (2012). Feasibility assessment of inter-industry solid residue utilization for soil amendment-Trace element availability and legislative issues. [Article]. Resour. Conserv. Recy., 67, 1–8.
  • Mallampati, S. R., Mitoma, Y., Okuda, T., Sakita, S., and Kakeda, M. (2013). Total immobilization of soil heavy metals with nano-Fe/Ca/CaO dispersion mixtures. Environ. Chem. Lett., 11, 119–125.
  • Osama, N., Michel, M., Clemence, B., Mikael, M. H., Fouad, A., Frederic, H., and Philippe, L. C. (2012). In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz–Donawitz slag. Environ. Sci. Poll. Res., 19, 847–857.
  • Oste, L., Lexmond, T. M., and Van Riemsdijk, W. H. (2002). Metal immobilization in soils using synthetic zeolites. J. Environ. Qual., 31, 813–821.
  • Pardo, T., Bernal, M. P., and Clemente, R. (2014). Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk. Chemosphere, 107, 121–128.
  • Soler-Rovira, P., Madejon, E., Madejon, P., and Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability. Chemosphere, 79, 844–849.
  • Sun, Y., Sun, G., Xu, Y., Wang, L., Liang, X., and Lin, D. (2013). Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma, 193–194, 149–155.
  • Wang, F., Ouyang, W., Hao, F., Lin, C., and Song, N. (2014). In situ remediation of cadmium-polluted soil reusing four by-products individually and in combination. J. Soils Sediments, 14, 451–461.
  • Zhang, M., and Pu, J. (2011). Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils. J. Environ. Sci., 23, 607–615.
  • Zhou, H., Zhou, X., Zeng, M., Liao, B. H., Liu, L., Yang, W. T., and Wang, Y. J. (2014). Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotox. Environ. Safe., 101, 226–232.
  • Hamon, R., McLaughlin, M., and Lombi, E. (2007). Natural attenuation of trace element availability in soils. Society of Environmental Toxicology and Chemistry (SETAC) Books.
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, FL: Taylor and Francis Group, LLC.
  • Langmuir, D. L., Chrostrowski, P., Vigneault, B., and Chaney, R. L. (2005). Issue paper on environmental chemistry of metals: U.S. EPA risk assessment forum. Papers addressing scientific issues in the risk assessment of metals.
  • Essington, M. E., and Mattigod, S. V. (1991). Trace-element solid-phase associations in sewage-sludge and sludge-amended soil. Soil Sci. Soc. Am. J., 55, 350–356.
  • Hettiarachchi, G. M., Ryan, J. A., Chaney, R. L., and La Fleur, C. M. (2003). Sorption and desorption of cadmium by different fractions of biosolids-amended soils. J. Environ. Qual., 32, 1684–1693.
  • Lombi, E., Zhao, F. J., Wieshammer, G., Zhang, G. Y., and McGrath, S. P. (2002b). In situ fixation of metals in soils using bauxite residue: Biological effects. Environ. Poll., 118, 445–452.
  • McKenzie, R. M. (1980). The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil Res., 18, 61–73.
  • Lindsay, W. L. (2001). Chemical equilibria in soils. Caldwell, NJ: The Blackburn Press.
  • Houben, D., Pircar, J., and Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. J. Geochem. Explor., 123, 87–94.
  • U.S. EPA. (2008). Beneficial reuse of industrial byproducts in the gulf coast region. Fairfax, VA: ICF International.
  • Chaney, R. L., Reeves, P. G., Ryan, J. A., Simmons, R. W., Welch, R. M., and Angle, J. S. (2004). An improved understanding of soil Cd risk to humans and low cost methods to remediate soil Cd risks. BioMetals, 17, 549–553.
  • McKenna, I. M., Chaney, R. L., Tao, S. H., Leach, R. M., Jr., and Williams, F. M. (1992). Interactions of plant zinc and plant species on the bioavailability of plant cadmium to Japanese quail fed lettuce and spinach. Environ. Res., 57, 73–87.
  • Stuczynski, T. I., Siebielec, G., Daniels, W. L., McCarty, G. C., and Chaney, R. L. (2007). Biological aspects of metal waste reclamation with sewage sludge. J. Environ. Qual., 36, 1154–1162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.