398
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Designing biosensor networks for the environmental risk assessment of aquatic systems

, &
Pages 40-63 | Published online: 06 Feb 2017

References

  • Clark, M. J. R., MacDonald, D. D., Whitfield, P. H., and Wong, M. P. (2010). Designing monitoring programs for water quality based on experience in Canada. II. Characterization of problems and data-quality objectives. Trends Anal. Chem., 29, 385–398.
  • Gerbersdorf, S. U., Cimatoribus, C., Class, H., Engesser, K.-H., Helbich, S., Hollert, H., Lange, C., Kranert, M., Metzger, J., Nowak, W., Seiler, T.-B., Steger, K., Steinmetz, H., and Wieprecht, S. (2015). Anthropogenic trace compounds (ATCs) in aquatic habitats — Research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environ. Int., 79, 85–105.
  • Hansen, P.-D. (2007). Risk assessment of emerging contaminants in aquatic systems. Trends Anal. Chem., 26, 1095–1099.
  • Siontorou, C. G., and Batzias, F. A. (2013). A methodological combined framework for roadmapping biosensor research: A fault tree analysis approach within a strategic technology evaluation frame. Crit. Rev. Biotechnol., 34, 31–55.
  • Whitfield, P. H., and Clark, M. J. R. (2001). Using force analysis to target collection and analysis of environmental information. Environ. Manage., 28, 75–85.
  • Batzias, A. F., and Siontorou, C. G. (2008). A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands. J. Hazard. Mater., 158, 340–358.
  • Sillero, N. (2011). What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model., 222, 1343–1346.
  • Frihy, O. E. (2001). The necessity of environmental impact assessment (EIA) in implementing coastal projects: Lessons learned from the Egyptian Mediterranean coast. Ocean Coast Manage., 44, 489–516.
  • Cushing, D. H. (1980). The decline of the herring stocks and the gadoid outburst. J. ICES J. Mar. Sci., 39, 70–81.
  • Jakeman, A. J., Letcher, R. A., and Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental models. Environ. Modell. Softw., 21, 602–614.
  • Borecka, M., Białk-Bielińska, A., Haliński, L. P., Pazdro, K., Stepnowski, P., and Stolte, S. (2016). The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris. J. Hazard. Mater., 308, 179–186.
  • Glinska-Lewczuk, K., Golas, I., Koc, J., Gotkowska-Plachta, A., Harnisz, M., and Rochwerger, A. (2016). The impact of urban areas on the water quality gradient along a lowland river. Environ. Monit. Assess., 188, 624.
  • Iordache, V., Ion, S., and Pohoat¸, A. (2009). Integrated modeling of metals biogeochemistry: Potential and limits. Chem. Erde Geochem., 69, 125–169.
  • Siontorou, C. G., and Batzias, F. A. (2011). Error identification/propagation/remediation in biomonitoring surveys – A knowledge-based approach towards standardization via fault tree analysis. Ecol. Indic., 11, 564–581.
  • Semenza, J. C., Höser, C., Herbst, S., Rechenburg, A., Suk, J. E., Frechen, T., and Kistemann, T. (2012). Knowledge mapping for climate change and food- and waterborne diseases. Crit. Rev. Environ. Sci. Technol., 42, 378–411.
  • Darlington, M. J., and Culley, S. J. (2008). Investigating ontology development for engineering design support. Adv. Eng. Inform., 22, 112–134.
  • Malhorta, R. (2008). Meta-modelling framework: A new approach to manage meta-modelbase and modeling knowledge. Knowl. Syst., 21, 6–37.
  • Li, H., Mynett, A., Penning, E., and Qi, H. (2010). Revealing spatial pattern dynamics in aquatic ecosystem modelling with multi-agent systems in Lake Veluwe. Ecol. Inform., 5, 97–107.
  • Chau, K. W. (2007). An ontology-based knowledge management system for flow and water quality modelling. Adv. Eng. Softw., 38, 172–181.
  • Islam, A. S., and Piasecki, M. (2008). Ontology based web simulation system for hydrodynamic modelling. Simul. Model. Pract. Theor., 16, 754–767.
  • Harmancioglu, N. B., Fistikoglu, O., Ozkul, S. D., Singh, V. P., and Alpaslan, M. N. (2013). Water quality monitoring network design (pp. 65–66). Springer, Science & Business Media.
  • Kotis, K., Vouros, G. A., and Stergiou, S. (2006). Towards automatic merging of domain ontologies: The HCONE-merge approach. Web Sem., 4, 60–79.
  • Seddiqui, M. H., and Aono, M. (2009). An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Web Sem., 7, 344–356.
  • Cheng, J., Greiner, R., Kelly, J., Bell, D., and Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artif. Intell., 137, 43–90.
  • Bonastre, A., Capella, J. V., and Ors, R. (2012). In-line monitoring of chemical-analysis processes using Wireless Sensor Networks. Trend. Anal. Chem., 34, 111–125.
  • Luo, Q., Wu, J., Yang, Y., Qian, J., and Wu, J. (2016). Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty. J. Hydrol., 534, 352–363.
  • Batzias, F. A., and Siontorou, C. G. (2012). Creating a specific domain ontology for supporting R&D in science-based disciplines – The case of biosensors. Expert Syst. Appl., 39, 9994–10015.
  • Wang, Y., Wang, J., Zhao, X., Song, X., and Gong, J. (2016). The inhibition and adaptability of four wetland plant species to high concentration of ammonia wastewater and nitrogen removal efficiency in constructed wetlands. Bioresour. Technol., 202, 198–205.
  • Álvarez, R., Ordóñez, A., Loredo, J., and Younger, P. L. (2013). Wetland-based passive treatment systems for gold ore processing effluents containing residual cyanide, metals and nitrogen species. Environ. Sci. Process Impacts, 15, 2115–2124.
  • Gao, H., Schersonb, Y. D., and Wells, G. F. (2014). Towards energy neutral wastewater treatment: Methodology and state of the art. Environ. Sci. Process Impacts, 16, 1223–1246.
  • Liu, J., Olsson, G., and Mattiason, B. (2004). Short-term BOD (BODst) as a parameter for on-line monitoring of biological treatment process Part I. A novel design for BOD biosensor for easy renewal of bio-receptor. Biosens. Bioelectron., 20, 562–570.
  • Jang, J. D., Barford, J. P., Wati, L., and Renneberg, R. (2004). Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosens. Bioelectron., 19, 805–812.
  • Bollmann, A., and Revsbech, N. P. (2005). An NH4+ biosensor based on ammonia-oxidizing bacteria for use under anoxic conditions. Sensor. Actuat. B Chem., 105, 412–418.
  • Raj, D. R., Prasanth, S., Vineeshkumar, T. V., and Sudarsanakumar, S. (2015). Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt. Commun., 340, 86–92.
  • Chen, H., Mousty, C., Cosnier, S., Silveira, C., Moura, J. J. G., and Almeida, M. G. (2007). Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem. Commun., 9, 2241–2245.
  • Siontorou, C. G., and Georgopoulos, K. N. (2016). A biosensor platform for soil management: The case of nitrites. J. Clean. Prod., 111, 133–142.
  • Mak, W. C., Chan, C., Barford, J., and Renneberg, R. (2003). Biosensor for rapid phosphate monitoring in a sequencing batch reactor (SBR) system. Biosens. Bioelectron., 19, 233–237.
  • Mousty, C., Cosnier, S., Shan, D., and Mu, S. (2001). Trienzymatic biosensor for the determination of inorganic phosphate. Anal. Chim. Acta, 443, 1–8.
  • Tront, J. M., Fortner, J. D., Plötze, M., Hughes, J. B., and Puzrin, A. M. (2008). Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens. Bioelectron., 24, 586–590.
  • Karapetis, S., Nikoleli, G. P., Siontorou, C. G., Nikolelis, D. P., Tzamtzis, N., and Psaroudakis, N. (2016). Development of an electrochemical biosensor for the rapid detection of cholera toxin based on air stable lipid films with incorporated ganglioside GM1 using graphene electrodes. Electroanalysis, 28, 1584–1590.
  • Bratakou, S., Nikoleli, G. P., Siontorou, C. G., Karapetis, S., Nikolelis, D. P., and Tzamtzis, N. (2016). Electrochemical biosensor for naphthalene acetic acid in fruits and vegetables based on lipid films with incorporated auxin-binding protein receptor using graphene electrodes. Electroanalysis, 28, 2171–2177.
  • Paranychianakis, N. V., Tsiknia, M., and Kalogerakis, N. (2016). Pathways regulating the removal of nitrogen in planted and unplanted subsurface flow constructed wetlands. Water Res., 102, 321–329.
  • Moutsopoulos, K. N., Poultsidis, V. G., Papaspyros, J. N. E., and Tsihrintzis, V. A. (2011). Simulation of hydrodynamics and nitrogen transformation processes in HSF constructed wetlands and porous media using the advection–dispersion-reaction equation with linear sink-source terms. Ecol. Eng., 37, 1407–1415.
  • Hua, Y., He, F., Ma, L., Zhang, Y., and Wu, Z. (2016). Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems. Biores. Technol. 207, 339–345.
  • Zhang, A., and Lieber, C. M. (2016). Nano-bioelectronics. Chem. Rev., 116, 215–257.
  • Bejarano, A. C., and Mearns, A. J. (2015). Improving environmental assessments by integrating species sensitivity distributions into environmental modeling: Examples with two hypothetical oil spills. Mar. Pollut. Bull., 93, 172–182.
  • Alves, T. M., Kokinou, E., and Zodiatis, G. (2014). A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins. Mar. Pollut. Bull., 86, 443–457.
  • Tansel, B., Lee, M., abd Tansel, D. Z. (2013). Comparison of fate profiles of PAHs in soil, sediments and mangrove leaves after oil spills by QSAR and QSPR. Mar. Pollut. Bull., 73, 258–262.
  • Bastiaens, L., Springael, D., Dejonghe, W., Wattiau, P., Verachtert, H., and Diels, L. (2001). A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes. Res. Microbiol., 152, 849–859.
  • Duong, H. D., Reddy, C. V. G., Rhee, J. I., and Vo-Dinh, T. (2011). Amplification of fluorescence emission of CdSe/ZnS QDs entrapped in a sol–gel matrix, a new approach for detection of trace level of PAHs. Sensor. Actuat. B Chem., 157, 139–145.
  • Li, X., Kaattari, S. L., Vogelbein, M. A., Vadas, G. G., and Unger, M. A. (2016). A highly sensitive monoclonal antibody based biosensor for quantifying 3–5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. Sens. Biosens. Res., 7, 115–120.
  • Batzias, F. A., Siontorou, C. G., Spanidis, P. M.-P. (2011). Designing a reliable leak bio-detection system for natural gas pipelines. J. Hazard. Mater., 186, 35–58.
  • Scheller, F. W., Yarman, A., Bachmann, T., Hirsch, T., Kubick, S., Renneberg, R., Schumacher, S., Wollenberger, U., Teller, C., and Bier, F. F. (2014). Future of biosensors: A personal view. Adv. Biochem. Eng. Biotechnol., 140, 1–28.
  • Fabrizio, E. D., Schlücker, S., Wenger, J., Regmi, R., Rigneault, H., Calafiore, G., West, M., Cabrini, S., Fleischer, M., van Hulst, N. F., Garcia-Parajo, M. F., Pucci, A., Cojoc, D., Hauser, C. A. E., and Ni, M. (2016). Roadmap on biosensing and photonics with advanced nano-optical methods. J. Opt., 18, 063003.
  • Goode, J. A., Rushworth, J. V., and Millner, P. A. (2015). Biosensor regeneration: A review of common techniques and outcomes. Langmuir, 31, 6267–6276.
  • Williams, B. K., and Brown, E. D. (2016). Technical challenges in the application of adaptive management. Biol. Conserv., 195, 255–263.
  • Assmuth, T., Hildén, M., and Craye, M. (2010). Beyond REACH: Roadblocks and shortcuts en route to integrated risk assessment and management of chemicals. Sci. Total Environ., 408, 3954–3963.
  • Simon, E., Lamoree, M. H., Hamers, T., and de Boer, J. (2015). Challenges in effect-directed analysis with a focus on biological samples. Trends Anal. Chem., 67, 179–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.