6,683
Views
201
CrossRef citations to date
0
Altmetric
Reviews

Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review

&
Pages 131-154 | Published online: 18 Apr 2017

References

  • Al-Juboori, R. A., Yusaf, T., and Pittaway, P. A. (2016). Exploring the correlations between common UV measurements and chemical fractionation for natural waters. Desalin. Water Treat., 57(35), 16324–16335.
  • Albrecht, R., Le Petit, J., Terrom, G., and Périssol, C. (2011). Comparison between UV spectroscopy and nirs to assess humification process during sewage sludge and green wastes co-composting. Bioresour. Technol., 102(6), 4495–4500.
  • Altmann, J., Massa, L., Sperlich, A., Gnirss, R., and Jekel, M. (2016). UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon. Water Res., 94, 240–245.
  • Andrade-Eiroa, A., Canle, M., and Cerda, V. (2013a). Environmental applications of excitation-emission spectrofluorimetry: An in-depth review I. Appl. Spectros. Rev., 48(1), 1–49.
  • Andrade-Eiroa, A., Canle, M., and Cerda, V. (2013b). Environmental applications of excitation-emission spectrofluorimetry: An in-depth review II. Appl. Spectros. Rev., 48(2), 77–141.
  • Audenaert, W.T.M., Vandierendonck, D., Van Hulle, S.W.H., and Nopens, I. (2013). Comparison of ozone and HO induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment. Water Res., 47(7), 2387–2398.
  • Baker, A., and Spencer, R.G.M. (2004). Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Tot. Environ., 333(1–3), 217–232.
  • Baker, A., Tipping, E., Thacker, S. A., and Gondar, D. (2008). Relating dissolved organic matter fluorescence and functional properties. Chemosphere 73(11), 1765–1772.
  • Battin, T. J. (1998). Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river, Venezuela. Organic Geochemistry, 28(98), 561–569.
  • Benner, R. (2011). Loose ligands and available iron in the ocean. Proc. Nat. Acad. Sci. USA., 108(3), 893–894.
  • Benner, R., and Kaiser, K. (2011). Biological and photochemical transformations of amino acids and lignin phenols in riverine dissolved organic matter. Biogeochemistry, 102(1), 209–222.
  • Blaen, P. J., Khamis, K., Lloyd, C.E.M., Bradley, C., Hannah, D., and Krause, S. (2016). Real-time monitoring of nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities and future directions. Sci. Tot. Environ., 569–570, 647–660.
  • Blough, N. V., Zafiriou, O. C., and Bonilla, J. (1993). Optical absorption spectra of waters from the Orinoco River outflow: Terrestrial input of colored organic matter to the Caribbean. J. Geophys. Res. Ocean., 98(C2), 2271–2278.
  • Breves, W., Heuermann, R., and Reuter, R. (2003). Enhanced red fluorescence emission in the oxygen minimum zone of the Arabian Sea. Ocean Dyn., 53(2), 86–97.
  • Brezonik, P. L., Olmanson, L. G., Finlay, J. C., and Bauer, M. E. (2015). Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ., 157, 199–215.
  • Bricaud, A., Morel, A., and Prieur, L. (1981). Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanograph., 26(1), 43–53.
  • Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometr. Intell. Lab. Syst., 38(2), 149–171.
  • Buck, R. P., Singhadeja, S., and Rogers, L. B. (1954). Ultraviolet absorption spectra of some inorganic ions in aqueous solutions. Analyt. Chem., 26(7), 1240–1242.
  • Catalá, T. S. (2016). Insights on the microbial carbon pump in the global ocean with spectroscopic technique, Universidad de Granada.
  • Catalá, T. S., Mladenov, N., Echevarría, F., and Reche, I. (2013). Positive trends between salinity and chromophoric and fluorescent dissolved organic matter in a seasonally inverse estuary. Estuar. Coast. Shelf Sci., 133, 206–216.
  • Catalá, T. S., Reche, I., Ramón, C. L., López-Sanz, Á., Álvarez, M., Calvo, E., and Álvarez-Salgado, X. A. (2016). Chromophoric signatures of microbial by-products in the dark ocean. Geophys. Res. Lett., 43(14), 7639–7648.
  • Chen, H., Zheng, B., Song, Y., and Qin, Y. (2011). Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquat. Sci., 73(1), 103–112.
  • Chin, Y.-P., Aiken, G., and O'Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol., 28(11), 1853–1858.
  • Cieslewicz, J., and Gonet, S. S. (2004). Properties of humic acids as biomarkers of lake catchment management. Aquat. Sci., 66(2), 178–184.
  • Claret, F., Schäfer, T., Bauer, A., and Buckau, G. (2003). Generation of humic and fulvic acid from Callovo-Oxfordian clay under high alkaline conditions. Sci. Tot. Environ., 317(1–3), 189–200.
  • Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chem. Rev., 107(2), 402–418.
  • Coble, P. G., Green, S. A., Blough, N. V., and Gagosian, R. B. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348(6300), 432–435.
  • Coble, P. G., Spencer, R. G., Baker, A., and Reynolds, D. M. (2014). Aquatic organic matter fluorescence. In P. Coble, J. Lead, A. Baker, D. Reynolds and R.G.M. Spencer (Eds.), Aquatic organic matter fluorescence, pp. 75–122, Cambridge University Press: Cambridge.
  • Dilling, J., and Kaiser, K. (2002). Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry. Water Res., 36(20), 5037–5044.
  • Duarte, R.M.B.O., Pio, C. A., and Duarte, A. C. (2005). Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions. Analyt. Chim. Acta., 530(1), 7–14.
  • Erlandsson, M., Futter, M. N., Kothawala, D. N., and Köhler, S. J. (2012). Variability in spectral absorbance metrics across boreal lake waters. J. Environ. Monitor., 14(10), 2643–2652.
  • Etheridge, J. R., Birgand, F., Osborne, J. A., Osburn, C. L., Burchell, M. R., and Irving, J. (2014). Using in situ ultraviolet-visual spectroscopy to measure nitrogen, carbon, phosphorus, and suspended solids concentrations at a high frequency in a brackish tidal marsh. Limnol. Oceanogr. Method., 12(1), 10–22.
  • Fabbricino, M., and Korshin, G. V. (2005). Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater. Desalination 176(1–3), 57–69.
  • Fellman, J. B., Hood, E., and Spencer, R.G.M. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr., 55(6), 2452–2462.
  • Fichot, C. G., and Benner, R. (2011). A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett., 38(3).
  • Fichot, C. G., and Benner, R. (2012). The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr., 57(5), 1453–1466.
  • Fichot, C. G., and Benner, R. (2014). The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Glob. Biogeochem. Cycl., 28(3), 300–318.
  • Fichot, C. G., Benner, R., Kaiser, K., Shen, Y., Amon, R.M.W., Ogawa, H. and Lu, C.-J. (2016). Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM) absorption coefficients. Front. Mar. Sci., 3.
  • Fichot, C. G., Lohrenz, S. E., and Benner, R. (2014). Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico. J. Geophys. Res. Ocean., 119(2), 1176–1194.
  • Frey, K. E., Sobczak, W. V., Mann, P. J., and Holmes, R. M. (2016). Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia. Biogeosciences, 13(8), 2279–2290.
  • Galgani, L., Tognazzi, A., Rossi, C., Ricci, M., Angel Galvez, J., Dattilo, A. M., Cozar, A., Bracchini, L., and Loiselle, S. A. (2011). Assessing the optical changes in dissolved organic matter in humic lakes by spectral slope distributions. J. Photochem. Photobiol. B: Biol., 102(2), 132–139.
  • Gao, Y., Yan, M., and Korshin, G. (2015a). Effects of calcium on the chromophores of dissolved organic matter and their interactions with copper. Water Res., 81, 47–53.
  • Gao, Y., Yan, M., and Korshin, G. V. (2015b). Effects of ionic strength on the chromophores of dissolved organic matter. Environ. Sci. Technol., 49(10), 5905–5912.
  • Gerrity, D., Gamage, S., Jones, D., Korshin, G. V., Lee, Y., Pisarenko, A., Trenholm, R. A., von Gunten, U., Wert, E. C., and Snyder, S. A. (2012). Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Res., 46(19), 6257–6272.
  • Giancoli Barreto, S. R., Nozaki, J., and Barreto, W. J. (2003). Origin of dissolved organic carbon studied by UV-vis spectroscopy. Acta hydrochim. hydrobiol., 31(6), 513–518.
  • Gonsior, M., Valle, J., Schmitt-Kopplin, P., Hertkorn, N., Bastviken, D., Luek, J., Harir, M., Bastos, W., and Enrich-Prast, A. (2016). Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences, 13(14), 4279–4290.
  • Green, S. A., and Blough, N. V. (1994). Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr., 39(8), 1903–1916.
  • Grzybowski, W. (2000). Effect of short-term sunlight irradiation on absorbance spectra of chromophoric organic matter dissolved in coastal and riverine water. Chemosphere, 40(12), 1313–1318.
  • Guéguen, C., and Kowalczuk, P. (2013). Colored Dissolved Organic Matter in Frontal Zones. In I.M. Belkin (eds.) The Handbook of Environmental Chemistry, pp. 1–35. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Guo, M. X., and Chorover, J. (2003). Transport and fractionation of dissolved organic matter in soil columns. Soil Sci., 168(2), 108–118.
  • Guo, W. D., Stedmon, C. A., Han, Y. C., Wu, F., Yu, X. X., and Hu, M. H. (2007). The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Mar. Chem., 107(3), 357–366.
  • Hansell, D. A., and Carlson, C. A. (2015). Biogeochemistry of marine dissolved organic matter. Academic Press, Amsterdam: Boston.
  • Harvey, E. T., Kratzer, S., and Andersson, A. (2015). Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. Ambio, 44(Suppl 3), 392–401.
  • Hassett, J. P. (2006). Dissolved natural organic matter as a microreactor. Science, 311(5768), 1723–1724.
  • Hayakawa, K., Kojima, R., Wada, C., Suzuki, T., Sugiyama, Y., Kumagai, T., Takei, N., and Bamba, D. (2016). Distribution and characteristics of ultraviolet absorption and fluorescenceof dissolved organic matter in a large lake (Lake Biwa, Japan). J. Great Lakes Res., 42(3), 571–579.
  • He, S., Yan, M., and Korshin, G. V. (2015). Spectroscopic examination of effects of iodide on the chloramination of natural organic matter. Water Res., 70, 449–457.
  • Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr., 53(3), 955–969.
  • Henderson, R. K., Baker, A., Murphy, K. R., Hamblya, A., Stuetz, R. M., and Khan, S. J. (2009). Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Res., 43(4), 863–881.
  • Her, N., Amy, G., Sohn, J., and Gunten, U. (2008). UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator. J. Water Suppl. Res. Technol. Aqua., 57(1), 35–44.
  • Hernes, P. J., and Benner, R. (2003). Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. J. Geophys. Res. Ocean., 108(C9), 3291.
  • Herzsprung, P., von Tümpling, W., Hertkorn, N., Harir, M., Büttner, O., Bravidor, J., Friese, K., and Schmitt-Kopplin, P. (2012). Variations of DOM Quality in inflows of a drinking water reservoir: Linking of van Krevelen diagrams with EEMF spectra by rank correlation. Environ. Sci. Technol., 46(10), 5511–5518.
  • Hu, C., Muller-Karger, F. E., and Zepp, R. G. (2002). Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts. Limnol. Oceanogr., 47(4), 1261–1267.
  • Huang, H., Chow, C.W.K., and Jin, B. (2016). Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography. J. Environ. Sci., 42, 236–245.
  • Hudson, N., Baker, A., and Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - A review. River Res. Appl., 23(6), 631–649.
  • Hunt, J. F., and Ohno, T. (2007). Characterization of fresh and decomposed dissolved organic matter using excitation−Emission matrix fluorescence spectroscopy and multiway analysis. J. Agric. Food Chem., 55(6), 2121–2128.
  • Hur, J., Jung, K.-Y., and Jung, Y. M. (2011). Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy. Water Res., 45(9), 2965–2974.
  • Hur, J., Williams, M. A., and Schlautman, M. A. (2006). Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere, 63(3), 387–402.
  • Ikeya, K., Sleighter, R. L., Hatcher, P. G., and Watanabe, A. (2015). Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry. Geochim. Cosmochim. Acta, 153, 169–182.
  • Ikeya, K., and Watanabe, A. (2003). Direct expression of an index for the degree of humification of humic acids using organic carbon concentration. Soil Sci. Plant Nutr., 49(1), 47–53.
  • Ishii, S.K.L., and Boyer, T. H. (2012). Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review. Environ. Sci. Technol., 46(4), 2006–2017.
  • Jaffé, R., Boyer, J. N., Lu, X., Maie, N., Yang, C., Scully, N. M., and Mock, S. (2004). Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar. Chem., 84(3–4), 195–210.
  • Jaffé, R., Cawley, K. M., and Yamashita, Y. (2014). Applications of Excitation Emission Matrix Fluorescence with Parallel Factor Analysis (EEM-PARAFAC) in Assessing Environmental Dynamics of Natural Dissolved Organic Matter (DOM) in Aquatic Environments: A Review. In F. Rosario-Ortiz (ed.), Advances in the Physicochemical Characterization of Dissolved Organic Matter: Impact on Natural and Engineered Systems (ACS Symposium Series, pp. 27–73. Washington, DC: American Chemical Society.
  • Janot, N., Reiller, P. E., Korshin, G. V., and Benedetti, M. F. (2010). Using spectrophotometric titrations to characterize humic acid reactivity at environmental concentrations. Environ. Sci. Technol., 44(17), 6782–6788.
  • Jeong, J.-J., Bartsch, S., Fleckenstein, J. H., Matzner, E., Tenhunen, J. D., Lee, S. D., Park, S. K., and Park, J.-H. (2012). Differential storm responses of dissolved and particulate organic carbon in a mountainous headwater stream, investigated by high-frequency, in situ optical measurements. J. Geophys. Res. Biogeosci., 117(G3).
  • Jerlov, N. G. (1953). Influence of suspended and dissolved matter on the transparency of sea water. Tellus, 5(1), 59–65.
  • Jerlov, N. G. (1968). Optical oceanography. Elsevier: New York.
  • Jerlov, N. G. (1976). Marine optics. Elsevier: New York.
  • Jiang, G., Ma, R., Loiselle, S. A., and Duan, H. (2012). Optical approaches to examining the dynamics of dissolved organic carbon in optically complex inland waters. Environ. Res. Lett., 7(3), 034014.
  • Kalle, K. (1938). Zum Problem des Meereswasser-Farbe. Ann. Hydrol. Mar. Mitt., 66, 1–13.
  • Kalle, K. (1949). Fluoreszenz und Gelbstoff im Bottnischen und Finnischen Meerbusen. Deutsche Hydrografische Zeitschrift 2(4), 117–124.
  • Kalle, K. (1966). The problem of the gelbstoff in the sea. Oceanogr. Mar. Biol. Ann. Rev., 4.
  • Kim, C., Eom, J., Jung, S., and Ji, T. (2016). Detection of organic compounds in water by an optical absorbance method. Sensors, 16(1), 61.
  • Kim, H.-C., and Yu, M.-J. (2007). Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water. J. Hazard. Mater., 143(1–2), 486–493.
  • Kirk, J.T.O. (2011). Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, UK: New York.
  • Kiss, K., Szalai, Z., Jakab, G., Madarász, B., and Zboray, N. (2014). Soil Carbon. In EA. Hartemink and K. McSweeney (Eds), pp. 127–136, Springer International Publishing: Cham.
  • Korshin, G. V., Benjamin, M. M., Chang, H.-S., and Gallard, H. (2007). Examination of NOM chlorination reactions by conventional and stop-flow differential absorbance spectroscopy. Environ. Sci. Technol., 41(8), 2776–2781.
  • Korshin, G. V., Li, C.-W., and Benjamin, M. M. (1997a). The decrease of UV absorbance as an indicator of TOX formation. Water Res., 31(4), 946–949.
  • Korshin, G. V., Li, C.-W., and Benjamin, M. M. (1997b). Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Res., 31(7), 1787–1795.
  • Korshin, G. V., Wu, W. W., Benjamin, M. M., and Hemingway, O. (2002). Correlations between differential absorbance and the formation of individual DBPs. Water Res., 36(13), 3273–3282.
  • Kowalczuk, P., Cooper, W. J., Durako, M. J., Kahn, A. E., Gonsior, M., and Young, H. (2010a). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations. Mar. Chem., 118(1–2), 22–36.
  • Kowalczuk, P., Stedmon, C. A., and Markager, S. (2006). Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar. Chem., 101(1–2), 1–11.
  • Kowalczuk, P., Zablocka, M., Sagan, S., and Kulinski, K. (2010b). Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanologia, 52(3), 431–471.
  • Kus, S., Marczenko, Z., and Obarski, N. (1996). Derivative UV–VIS spectrophotometry in analytical chemistry. Chern. Anal., 41, 899–927.
  • Lambert, T., Darchambeau, F., Bouillon, S., Alhou, B., Mbega, J.-D., Teodoru, C., Nyoni, F., Massicotte, P., and Borges, A. (2015). Landscape control on the spatial and temporal variability of chromophoric dissolved organic matter and dissolved organic carbon in large african rivers. Ecosystems, 18(7), 1224–1239.
  • Langergraber, G., Fleischmann, N., Hofstaedter, F., Weingartner, A., and Lettl, W. (2003). Detection of (unusual) changes in wastewater composition using UV/VIS spectroscopy. Proceedings of the 9th IWA conference on “Design, Operation and Costs of Large Wastewater Treatment Plants”–Poster papers.
  • Lavonen, E. E., Kothawala, D. N., Tranvik, L. J., Gonsior, M., Schmitt-Kopplin, P., and Köhler, S. J. (2015). Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production. Water Res., 85, 286–294.
  • Li, P., Chen, L., Zhang, W., and Huang, Q. (2015). Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze estuary and its adjacent sea using fluorescence and parallel factor analysis. PLoS ONE, 10(6), e0130852.
  • Loiselle, S., Vione, D., Minero, C., Maurino, V., Tognazzi, A., Dattilo, A. M., Rossi, C., and Bracchini, L. (2012). Chemical and optical phototransformation of dissolved organic matter. Water Res., 46(10), 3197–3207.
  • Loiselle, S. A., Bracchini, L., Dattilo, A. M., Ricci, M., Tognazzi, A., Cozar, A., and Rossi, C. (2009). Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol. Oceanogr., 54(2), 590–597.
  • Markager, S., and Vincent, W. F. (2000). Spectral light attenuation and the absorption of UV and blue light in natural waters. Limnol. Oceanogr., 45(3), 642–650.
  • Markechova, D., Tomkova, M., and Sadecka, J. (2013). Fluorescence excitation-emission matrix spectroscopy and parallel factor analysis in drinking water treatment: A review. Polish J. Environ. Stud., 22(5), 1289–1295.
  • Massicotte, P., and Markager, S. (2016). Using a Gaussian decomposition approach to model absorption spectra of chromophoric dissolved organic matter. Mar. Chem., 180, 24–32.
  • Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempéré, R., Prieur, L., Bélanger, S., and Babin, M. (2012). Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics. Biogeosciences, 9(3), 925–940.
  • Morel, A., and Smith, R. (1982). Terminology and units in optical oceanography. Mar. Geod., 5(4), 335–349.
  • Mostofa, K.M.G., Liu, C.-Q., Yoshioka, T., Vione, D., Zhang, Y., and Sakugawa, H. (2013). Fluorescent Dissolved Organic Matter in Natural Waters. In K.M.G. Mostofa, T. Yoshioka, A. Mottaleb and D. Vione (eds.), Photobiogeochemistry of Organic Matter: Principles and Practices in Water Environments, pp. 429–559. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Nanaboina, V., and Korshin, G. V. (2010). Evolution of absorbance spectra of ozonated wastewater and its relationship with the degradation of trace-level organic species. Environ. Sci. Technol., 44(16), 6130–6137.
  • Nelson, N. B., and Coble, P. G. (2009). Optical analysis of chromophoric dissolved organic matter. In O. Wurl (ed.), Practical Guidelines for the Analysis of Seawater, pp. 79–96. CRC Press.
  • Nelson, N. B., and Siegel, D. A. (2013). The global distribution and dynamics of chromophoric dissolved organic matter. Ann. Rev. Mar. Sci., 5, 447–476.
  • Noda, I., Dowrey, A., Marcott, C., Story, G., and Ozaki, Y. (2000). Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc., 54(7), 236A–248A.
  • Osburn, C. L., Boyd, T. J., Montgomery, M. T., Coffin, R. B., Bianchi, T. S., and Paerl, H. W. (2016). Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front. Mar. Sci., 2, 127.
  • Patel-Sorrentino, N., Mounier, S., and Benaim, J. Y. (2002). Excitation–emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res., 36(10), 2571–2581.
  • Patel, K. N., Patel, J. K., Rajput, G. C., and Rajgor, N. B. (2010). Derivative spectrometry method for chemical analysis: A review. Der Pharmacia Lettre, 2, 139–150.
  • Peacock, M., Burden, A., Cooper, M., Dunn, C., Evans, C. D., Fenner, N., Freeman, C., Gough, R., Hughes, D., Hughes, S., Jones, T., Lebron, I., West, M., and Zieliński, P. (2013). Quantifying dissolved organic carbon concentrations in upland catchments using phenolic proxy measurements. J. Hydrol., 477, 251–260.
  • Pegau, W. S., Gray, D., and Zaneveld, J.R.V. (1997). Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Optic., 36(24), 6035–6046.
  • Peuravuori, J., and Pihlaja, K. (1997). Molecular size distribution and spectroscopic properties of aquatic humic substances. Analyt. Chim. Acta, 337(2), 133–149.
  • Phong, D. D., and Hur, J. (2016). Non-catalytic and catalytic degradation of effluent dissolved organic matter under UVA-and UVC-irradiation tracked by advanced spectroscopic tools. Water Res., 105, 199–208.
  • Röttgers, R., and Koch, B. P. (2012). Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean. Biogeosciences, 9(7), 2585–2596.
  • Reader, H. E., Stedmon, C. A., Nielsen, N. J., and Kritzberg, E. S. (2015). Mass and UV-visible spectral fingerprints of dissolved organic matter: sources and reactivity. Front. Mar. Sci. 2, 88.
  • Roccaro, P., Chang, H.-S., Vagliasindi, F.G.A., and Korshin, G. V. (2008). Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water. Water Res., 42(8–9), 1879–1888.
  • Roccaro, P., and Vagliasindi, F.G.A. (2009). Differential vs. absolute UV absorbance approaches in studying NOM reactivity in DBPs formation: Comparison and applicability. Water Res., 43(3), 744–750.
  • Roccaro, P., and Vagliasindi, F.G.A. (2010). Monitoring emerging chlorination by-products in drinking water using UV-absorbance and fluorescence indexes. Desalin. Water Treat., 23(1–3), 118–122.
  • Roccaro, P., Vagliasindi, F.G.A., and Korshin, G. V. (2011). Quantifying the formation of nitrogen-containing disinfection by-products in chlorinated water using absorbance and fluorescence indexes. Water Sci. Technol., 63(1), 40–44.
  • Roccaro, P., Yan, M., and Korshin, G. V. (2015). Use of log-transformed absorbance spectra for online monitoring of the reactivity of natural organic matter. Water Res., 84, 136–143.
  • Rodríguez, F. J., Schlenger, P., and García-Valverde, M. (2016). Monitoring changes in the structure and properties of humic substances following ozonation using UV–Vis, FTIR and 1H NMR techniques. Sci. Tot. Environ., 541, 623–637.
  • Santos, L., Pinto, A., Filipe, O., Cunha, Â., Santos, E.B.H., and Almeida, A. (2016). Insights on the optical properties of estuarine DOM? Hydrological and biological influences. PLoS ONE, 11(5), e0154519.
  • Schwarz, J. N., Kowalczuk, P., Kaczmarek, S. a., and Cota, G. F. (2002). Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia, 44(2), 209–241.
  • Sharpless, C. M., and Blough, N. V. (2014). The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties. Environ. Sci. Process. Impact., 16(4), 654–671.
  • Shen, Y., Benner, R., Robbins, L. L., and Wynn, J. G. (2016). Sources, distributions, and dynamics of dissolved organic matter in the Canada and Makarov Basins. Front. Mar. Sci., 3, 198.
  • Stedmon, C. A., and Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. Method., 6(11), 572–579.
  • Stedmon, C. A., and Markager, S. (2003). Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing. Estuar. Coast. Shelf Sci., 57(5), 973–979.
  • Stedmon, C. A., Markager, S., and Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem., 82(3), 239–254.
  • Stedmon, C. A., Markager, S., and Kaas, H. (2000). Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar. Coast. Shelf Sci., 51(2), 267–278.
  • Stedmon, C. A., and Nelson, N. B. (2015). Biogeochemistry of marine dissolved organic matter. In DA. Hansell and CA Carlson (Eds), pp. 481–508, Academic Press: Boston.
  • Stetzenbach, K. J., and Thompson, G. M. (1983). A new method for simultaneous measurement of Cl−, Br−, NO3−, SCN−, and I− at Sub-ppm Levels in ground water. Ground Water, 21(1), 36–41.
  • Stubbins, A., Lapierre, J. F., Berggren, M., Prairie, Y. T., Dittmar, T., and del Giorgio, P. A. (2014). What's in an EEM? Molecular signatures associated with dissolved organic fluorescence in Boreal Canada. Environ. Sci. Technol., 48(18), 10598–10606.
  • Talsky, G., Mayring, L., and Kreuzer, H. (1978). High-resolution, higher-order UV/VIS derivative spectrophotometry. Angewandte Chemie International Edition in English, 17(11), 785–799.
  • Tfaily, M. M., Hamdan, R., Corbett, J. E., Chanton, J. P., Glaser, P. H., and Cooper, W. T. (2013). Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniques. Geochim. Cosmochim. Acta., 112, 116–129.
  • Tipping, E., Corbishley, H. T., Koprivnjak, J.-F., Lapworth, D. J., Miller, M. P., Vincent, C. D., and Hamilton-Taylor, J. (2009). Quantification of natural DOM from UV absorption at two wavelengths. Environ. Chem., 6(6), 472–476.
  • Traganza, E. D. (1969). Fluorescence excitation and emission spectra of dissolved organic matter in sea water. Bull. Mar. Sci., 19(4), 897–904.
  • Tremblay, L. B., Dittmar, T., Marshall, A. G., Cooper, W. J., and Cooper, W. T. (2007). Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy. Mar. Chem., 105(1–2), 15–29.
  • Twardowski, M. S., Boss, E., Sullivan, J. M., and Donaghay, P. L. (2004). Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem., 89(1–4), 69–88.
  • Vodacek, A., Blough, N. V., DeGrandpre, M. D., Peltzer, E. T., and Nelson, R. K. (1997). Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnol. Oceanogr., 42(4), 674–686.
  • Wagner, S., Jaffe, R., Cawley, K., Dittmar, T., and Stubbins, A. (2015). Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system. Front. Chem., 3, 66.
  • Wang, K., Li, W., Gong, X., Li, Y., Wu, C., and Ren, N. (2013). Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV–vis, GPC, FTIR and EEM. Int. Biodeterior. Biodegrad., 85, 617–623.
  • Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol., 37(20), 4702–4708.
  • Woźniak, B., and Dera, J. (2007). Light absorption in sea water. Springer: New York, NY.
  • Xiao, Y.-H., Räike, A., Hartikainen, H., and Vähätalo, A. V. (2015). Iron as a source of color in river waters. Sci. Tot. Environ., 536, 914–923.
  • Xiao, Y.-H., Sara-Aho, T., Hartikainen, H., and Vähätalo, A. V. (2013). Contribution of ferric iron to light absorption by chromophoric dissolved organic matter. Limnol. Oceanogr., 58(2), 653–662.
  • Xiao, Y. H., Huang, Q. H., Vähätalo, A. V., Li, F. P., and Chen, L. (2014). Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants. Environ. Toxicol. Chem., 33(8), 1739–1746.
  • Xu, H., Yu, G., Yang, L., and Jiang, H. (2013). Combination of two-dimensional correlation spectroscopy and parallel factor analysis to characterize the binding of heavy metals with DOM in lake sediments. J. Hazard. Mater., 263, Part 2, 412–421.
  • Yakimenko, O., Khundzhua, D., Izosimov, A., Yuzhakov, V., and Patsaeva, S. (2016). Source indicator of commercial humic products: UV-Vis and fluorescence proxies. J. Soil. Sediment., 1–13.
  • Yamashita, Y., Maie, N., Briceño, H., and Jaffé, R. (2010). Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. J. Geophys. Res. Biogeosci., 115(G1).
  • Yan, M., Benedetti, M. F., and Korshin, G. V. (2013a). Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: Comparison of data interpretation based on NICA-Donnan and Stockholm humic models. Water Res., 47(14), 5439–5446.
  • Yan, M., Dryer, D., and Korshin, G. V. (2016a). Spectroscopic characterization of changes of DOM deprotonation–protonation properties in water treatment processes. Chemosphere, 148, 426–435.
  • Yan, M., Dryer, D., Korshin, G. V., and Benedetti, M. F. (2013b). In situ study of binding of copper by fulvic acid: Comparison of differential absorbance data and model predictions. Water Res., 47(2), 588–596.
  • Yan, M., Fu, Q., Li, D., Gao, G., and Wang, D. (2013c). Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation–emission matrix and parallel factor analysis. J. Luminesc., 142, 103–109.
  • Yan, M., and Korshin, G. V. (2014). Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter. Environ. Sci. Technol., 48(6), 3177–3185.
  • Yan, M., Korshin, G. V., Claret, F., Croué, J.-P., Fabbricino, M., Gallard, H., Schäfer, T., and Benedetti, M. F. (2014). Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin. Water Res., 59, 154–164.
  • Yan, M., Lu, Y., Gao, Y., Benedetti, M. F., and Korshin, G. V. (2015). In-situ investigation of interactions between magnesium ion and natural organic matter. Environ. Sci. Technol., 49(14), 8323–8329.
  • Yan, M., Ma, J., and Ji, G. (2016b). Examination of effects of Cu(II) and Cr(III) on Al(III) binding by dissolved organic matter using absorbance spectroscopy. Water Res., 93, 84–90.
  • Yan, M., Wang, D., Korshin, G. V., and Benedetti, M. F. (2013d). Quantifying metal ions binding onto dissolved organic matter using log-transformed absorbance spectra. Water Res., 47(7), 2603–2611.
  • Yang, L., and Hur, J. (2014). Critical evaluation of spectroscopic indices for organic matter source tracing via end member mixing analysis based on two contrasting sources. Water Res., 59, 80–89.
  • Yin, C., Meng, F., Meng, Y., and Chen, G.-H. (2016). Differential ultraviolet–visible absorbance spectra for characterizing metal ions binding onto extracellular polymeric substances in different mixed microbial cultures. Chemosphere 159, 267–274.
  • You, S.-J., Yin, Y., and Allen, H. E. (1999). Partitioning of organic matter in soils: effects of pH and water/soil ratio. Sci. Tot. Environ., 227(2–3), 155–160.
  • Zbytniewski, R., and Buszewski, B. (2005). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresour. Technol., 96(4), 471–478.
  • Ziska, A. D., Park, M., Anumol, T., and Snyder, S. A. (2016). Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes. Chemosphere 156, 163–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.