500
Views
6
CrossRef citations to date
0
Altmetric
Articles

Long-term phosphorus removal in land treatment systems: Evaluation, experiences, and opportunities

ORCID Icon, , ORCID Icon &
Pages 314-334 | Published online: 24 May 2017

References

  • Ádám, K., Krogstad, T., Suliman, F.R.D., and Jenssen, P.D. (2005). Phosphorous sorption by Filtralite P—Small scale box experiment. J. Environ. Sci. Health A, 40(6–7), 1239–1250.
  • Ádám, K., and Krogstad, T. (2006). Sorption of phosphorous to Filtralite-P–the effect of different scales. Water Res., 40(6), 1143–1154.
  • Beach, D.N.H., and McCray, J.E. (2003). Numerical modeling of unsaturated flow in wastewater soil absorption systems. Groundwater Monit. Remed., 23(2), 64–72.
  • Bisone, S., Gautier, M., Masson, M., and Forquet, N. (2016). Influence of loading rate and modes on infiltration of treated wastewater in soil-based constructed wetland. Environ. Technol., 3330(June), 1–12.
  • Brady, N.C., and Weil, R.R. (2008). The nature and properties of soils (14th ed.). New Jersey: Pearson Prentice Hall.
  • Carpenter, S.R., and Bennett, E.M. (2011). Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett., 6, 14009–14012.
  • Carpenter, S.R., and Caraco, N.F. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8(3), 559–568.
  • Chang, J., Wu, S., Zhang, S., Zhang, S., and Liang, W. (2014). Comparative evaluation of total phosphorus removal performances for treatment of domestic and secondary wastewater using integrated vertical-flow constructed wetlands: two years' experience. Desalin. Water Treat., 56(5), 1379–1388.
  • Claveau-Mallet, D., Courcelles, B., and Comeau, Y. (2014). Phosphorus removal by steel slag filters: modeling dissolution and precipitation kinetics to predict longevity. Environ. Sci. Technol., 48(13), 7486–7493.
  • Crites, R.W., Middlebrooks, J.E., and Sherwood, C.R. (2006). Natural wastewater treatment systems. Boca Raton: CRC Press.
  • Crites, R.W., Reed, S.C., and Bastian, R.K. (2000). Land treatment systems for municipal and industrial wastes. New York: McGraw-Hill.
  • Cucarella, V., and Renman, G. (2009). Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments-a comparative study. J. Environ. Qual., 38(2), 381–392.
  • Dong, C.S., Ju, S.C., Hong, J.L., and Jong, S.H. (2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res., 39(11), 2445–2457.
  • Drizo, A., Comeau, Y., Forget, C., and Chapuis, R.P. (2002). Phosphorus saturation potential: A parameter for estimating the longevity of constructed wetland systems. Environ. Sci. Technol., 36(21), 4642–4648.
  • Dzakpasu, M., Scholz, M., McCarthy, V., and Jordan, S.N. (2015). Assessment of long-term phosphorus retention in an integrated constructed wetland treating domestic wastewater. Environ. Sci. Pollut. Res., 22(1), 305–313.
  • Elmi, A., Nohra, J.S.A., Madramootoo, C.A., and Hendershot, W. (2012). Estimating phosphorus leachability in reconstructed soil columns using HYDRUS-1D model. Environ. Earth Sci., 65(6), 1751–1758.
  • EU Parliament Regulation. (2004). EU Parliament Regulation (EC). No 648/2004 on detergents, Luxemburg.
  • European Commission. (1991). Council Directive 91/271/ECC of 21 May 1991 concerning urban waste water treatment. [1991]OJ L135/40. 40–52. Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31991L0271 [Accessed August 18, 2015].
  • European Commission. (2000). Directive 2000/60/EC of the European Parliament. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establising a framework for Community action in the field of water policy, L327 (October 2000), pp. 1–82.
  • European Commission. (2012). Regulation (EU) 259/2012 of 14 March 2012 ameding Regulation (EC) No 648/2004 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and cosumer automatic dishwasher detergents. [2012]OJ L94/17. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:094:0016:0021:en:PDF [Accessed April 8, 2015].
  • Evangelou, V.P. (1998). Environmental soil and water chemistry. Principles and applications., Nre York: John Wiley and Sons.
  • Eveborn, D., Gustafsson, J.P., Elmefors, E., Yu, L., Eriksson, A.-K., Ljung, E., and Renman, G. (2014). Phosphorus in soil treatment systems: accumulation and mobility. Water Res., 64, 42–52.
  • Eveborn, D., Kong, D., and Gustafsson, J.P. (2012). Wastewater treatment by soil infiltration: Long-term phosphorus removal. J. Contam. Hydrol., 140–141, 24–33.
  • García, J., Rousseau, D.P.L., Morató, J., Lesage, E., Matamoros, V., and Bayona, J.M. (2010). Contaminant removal processes in subsurface-flow constructed wetlands: a review. Crit. Rev. Environ. Sci. Technol., 40(7), 561–661.
  • Graetz, D., and Nair, V.D. (2000). Phosphorus sorption isotherm determination. In G. M. Pierzynski (Ed.), Methods of phosphorus analysis for soils, sediments, residuals and waters (p. 110). Manhattan: Southern Cooperative Series.
  • Gray, N.F. (1989). Biology of wastewater treatment. New York: Oxford University Press.
  • Groenendijk, P., and Kroes, J.G. (1999). Modelling the nitrogen and phosphorus leaching to groundwater and surface water; ANIMO 3.5. Report 144.
  • Heistad, A., Paruch, A.M., Vråle, L., Ádám, K., and Jenssen, P.D. (2006). A high–performance compact filter system treating domestic wastewater. Ecol. Eng., 28(4), 374–379.
  • Henze, M., and Comeau, Y. (2008). Wastewater characterization. M. Henze, M. C. M. van Loosdrecht, G. A. Ekama, and D. Brdjanovic (eds.). IWA Publishing, London.
  • Herrmann, I., Jourak, A., Gustafsson, J.P., Hedström, A., Lundström, T.S., and Viklander, M. (2013). Modeling phosphate transport and removal in a compact bed filled with a mineral-based sorbent for domestic wastewater treatment. J. Contam. Hydrol., 154, 70–77.
  • HMSO. (1973). Water Act, Chapter 37. London: HMSO, 120.
  • Hooda, P.S., Rendell, A.R., Edwards, A.C., Withers, P.J.A., Aitken, M.N., and Truesdale, V.W. (2000). Relating soil phosphorus indices to potential phosphorus release to water. J. Environ. Qual., 29(4), 1116–1171.
  • Hu, C., Zhang, T.C., Huang, Y.H., Dahab, M.F., and Surampalli, R. (2005). Effects of long-term wastewater application on chemical properties and phosphorus adsorption capacity in soils of a wastewater land treatment system. Environ. Sci. Technol., 39(18), 7240–7245.
  • Hu, C., Zhang, T.C., Kendrick, D., Huang, Y.H., Dahab, M.F., and Surampalli, R. (2006). Muskegon wastewater land treatment system: fate and transport of phosphorus in soils and life expectancy of the system. Eng. Life Sci., 6(1), 17–25.
  • Inc. Metcalf and Eddy, Tchobanoglous, G., Burton, F.L., and Stensel, H.D. (2003). Wastewater engineering. treatment and reuse (4th ed.). Boston: McGraw-Hill.
  • Jarvis, N., and Larsbo, M. (2012). MACRO (v5.2) Model use, calibration, and validation. Am. Soc. Agric. Biol. Eng., 55(4), 1413–1423.
  • Jenssen, P.D., Krogstad, T., and Halvorsen, K. (2014). Community wastewater infiltration at 69 o northern latitude—25 years of experience. Proceedings of the Soil Science Society of America Onsite Wastewater Conference, Albuquerque NM, 7–8 April 2014.
  • Jewell, W.J., and Seabrook, B.L. (1979). MCD-40: A history of land application as a treatment alternative, Washington D.C.: U.S. Environmental Protection Agency. Office of Water Program Operation.
  • Kardos, L.T., and Hook, J.E. (1976). Phosphorus balance in sewage effluent treated soils. J. Environ. Qual., 1, 87–90.
  • Kovar, J.L., and Pierzynski, G.M. (2009). Methods of phosphorus analysis for soils, sediments, residuals, and waters (2nd ed.), Southern Cooperative Series Bulletin. Second Edition. Ames, IA, USA.
  • Langergraber, G. (2016). Applying process-based models for subsurface flow treatment wetlands: Recent developments and challenges. Water, 9(1), 5.
  • Langergraber, G., and Šimůnek, J. (2012). Reactive transport modeling of subsurface flow constructed wetlands using the HYDRUS Wetland Module. Vadose Zone J., 11(2).
  • Leonard, R.A., Knisel, W.G., and Still, D.A. (1986). GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE, 30(5), 1403–1418.
  • Lewis, J., and Sjöstrom, J. (2010). Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J. Contam. Hydrol., 115(1–4), 1–13.
  • Lindsay, W.L. (1980). Chemical equilibria in soils. Wiley-Interscience Publication, Chichester.
  • Liolios, K.A., Moutsopoulos, K.N., and Tsihrintzis, V.A. (2015). Numerical simulation of phosphorus removal in horizontal subsurface flow constructed wetlands. Desalin. Water Treat., 56(5), 1282–1290.
  • MacBride, M.B. (1994). Environmental chemistry of soils. New York: Oxford University Press.
  • McCray, J.E., Lowe, K., Geza, M., Drewes, J., Wunsch, A., and Roberts, S. (2009). State of the Science: Review of Quantitative Tools to Determine Wastewater Soil Treatment Unit Performance (WERF Report DEC1R06). London, UK: Water Environment Research Foundation, Alexandria, VA.
  • McGechan, M.B., and Lewis, D.R. (2002). A review of field scale phosphorus dynamics models. Biosyst. Eng., 81(1), 3–34.
  • Meyer, D., Chazarenc, F., Claveau-mallet, D., Dittmer, U., Forquet, N., Molle, P., Morvannou, A., Pálfy, T., Petitjean, A., Rizzo, A., Samsó, R., Scholz, M., and Soric, A. (2015). Modelling constructed wetlands: Scopes and aims—a comparative review. Ecol. Eng., 80, 205–213.
  • Morrissey, P.J., Johnston, P.M., and Gill, L.W. (2015). The impact of on-site wastewater from high density cluster developments on groundwater quality. J. Contam. Hydrol., 182, 36–50.
  • Moura, D.R., Silveira, M.L., O'Connor, G.A., and Wise, W.R. (2011). Long-term reclaimed water application effects on phosphorus leaching potential in rapid infiltration basins. J. Environ. Monit., 13(9), 2457–2462.
  • Nair, P.S., Logan, T.J., Sharpley, A. N., Sommers, L.E., Tabatabai, M. A., and Yuan, T.L. (1984). Interlaboratory comparison of a standardized phosphorus adsorption procedure. J. Environ. Qual., 13(4), 591.
  • Naseri, A.A., Hoseini, Y., Moazed, H., Abbasi, F., Samani, H.M.V., and Sakebi, S.A. (2011). Phosphorus transport through a saturated soil column: comparison between physical modeling and HYDRUS-3D outputs. J. Appl. Sci., 11(5), 815–823.
  • Nissim, W.G., Jerbi, A., Lafleur, B., Fluet, R., and Labrecque, M. (2015). Willows for the treatment of municipal wastewater: Performance under different irrigation rates. Ecol. Eng., 81, 395–404.
  • Office of Research and Development U.S. Environmental Protection Agency. (2002). Onsite wastewater treatment systems manual. EPA/625/R-00/008.
  • Paranychianakis, N.V., Angelakis, A.N., Leverenz, H., and Tchobanoglous, G. (2006). Treatment of wastewater with Slow Rate Systems: A review of treatment processes and plant functions. Crit. Rev. Environ. Sci. Technol., 36(3), 187–259.
  • Parkhurst, B.D.L., and Appelo, C. a J. (1999). User's Guide To PHREEQC (version 2)—a Computer Program for Speciation, and Inverse Geochemical Calculations. Exch. Org. Behav. Teach. J., D(Version 2), 326.
  • Parkhurst, D.L., and Appelo, C.A.J. (2011). PHREEQC forWindows.A hydrogeochemical transport model. Version 2.18.00. Available at http://pfw.antipodes.nl/download.html
  • Parkhurst, D.L., and Kipp, K.L. (2002). Parallel processing for PHAST: a three-dimensional reactive-transport simulator. Developments in Water Science, 47(C), 711–718.
  • Parkhurst, D.L., Stollenwerk, K.G., and Colman, J. a. (2003). Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts. Water-Resources Investigations Report 03–4017.
  • Parliamentary Office of Science and Technology. (2014). Phosphate resources (PostNOTE 477). Available at: http://researchbriefings.parliament.uk/ResearchBriefing/Summary/POST-PN-477#fullreport [Accessed December 11, 2015].
  • Parton, W.J., Hartman, M., Ojima, D., and Schimel, D. (1998). DAYCENT Its land surface submodel Description and testing. PDF. pp. 35–48.
  • Pretty, J.N., Mason, C.F., Nedwell, D.B., Hine, R.E., Leaf, S., and Dils, R. (2003). Environmental costs of freshwater eutrophication in England and Wales. Environ. Sci. Technol., 37, 201–208.
  • Reddy, K.R., Kadlec, R.H., Flaig, E., and Gale, P.M. (1999). Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol., 29, 83–146.
  • Richards, S., Paterson, E., Withers, P.J.a., and Stutter, M. (2015). The contribution of household chemicals to environmental discharges via effluents: Combining chemical and behavioural data. J. Environ. Manage., 150, 427–434.
  • Richardson, C.J., Walbridg, M.R., and Burns, A. (1988). Soil chemistry and phosphorus retention capacity of North Carolina coastal plain swamps receiving rewage effluent. UNC-WRRI-88-241 (November).
  • Robertson, W.D. (2008). Irreversible phosphorus sorption in septic system plumes? Ground Water, 46(1), 51–60.
  • Robertson, W.D. (2012). Phosphorus retention in a 20-year-old septic system filter bed. J. Environ. Qual., 41(5), 1437–1444.
  • Sapkota, M., Arora, M., Malano, H., Moglia, M., Sharma, A., George, B., and Pamminger, F. (2014). An overview of hybrid water supply systems in the context of urban water management: challenges and opportunities. Water, 7(1), 153–174.
  • Šimůnek, J., Šejna, M., Saito, H., Sakai, M., and van Genuchten, M.T. (2013). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 4.17 (June), Riverside, California.
  • Šimůnek, J., and van Genuchten, M.T. (2008). Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J., 7, 782.
  • Sinclair, A., Jamieson, R., Madani, A., Gordon, R.J., Hart, W., and Hebb, D. (2014). A watershed modeling framework for phosphorus loading from residential and agricultural sources. J. Environ. Qual., 43(4), 1356–1369.
  • Sinclair, A., Jamieson, R., Gordon, R.J., Madani, A., and Hart, W. (2014). Modeling phosphorus treatment capacities of on-site wastewater lateral flow sand filters. J. Environ. Eng., 140(2), 4013002–4013013.
  • Smith, J.E.J. (2006). Process design manual land treatment of municipal wastewater effluents. EPA/625/R-06/016. U.S. Environmental Protection Agency. 193.
  • Smith, V.H., Joye, S.B., and Howarth, R.W. (2006). Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51(2), 351–355.
  • Sweaney, G. (2011). The performance of sustainable wastewater treatment works solutions. Report Ref. NO. 11/WW/04/16.
  • Syers, J.K., Johnston, a. E., and Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. Rome: FAO Fertilizer and Plant Nutrition Bulletin 18. Food and Agriculture Organization of the United Nations.
  • The 92nd United States Congress. (1972). Federal Water Pollution Control Act of 1972. 33 U.S.C. 1251 et seq. Available at: http://www2.epa.gov/laws-regulations/summary-clean-water-act [Accessed August 18, 2015].
  • Twarakavi, N.K.C., Simunek, J., and Seo, S. (2008). Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J., 7(2), 757–768.
  • Tzanakakis, V.E., Paranychianakis, N. V., and Angelakis, A.N. (2007). Soil as a wastewater treatment system: Historical development. Water Sci. Technol., 7(1), 67–75.
  • UK Parliament. (2010). Detergents Regulations 2010 (SI 740/2010). 1–15.
  • Vadas, P.A., Bolster, C.H., and Good, L.W. (2013). Critical evaluation of models used to study agricultural phosphorus and water quality. Soil Use Manage., 29(Suppl. 1), 36–44.
  • Vogel, T., Gerkeb, H.H., Zhang, R., and van Genuchtend, M.T. (2015). Modeling flow and transport in a two- dimensional dual-permeability system with spatially variable hydraulic properties. Journal of Hydrology, 238, 78–89.
  • Vohla, C., Kõiv, M., Bavor, H.J., Chazarenc, F., and Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng., 37(1), 70–89.
  • Weiss, P., Eveborn, D., Kärrman, E., and Gustafsson, J.P. (2008). Environmental systems analysis of four on-site wastewater treatment options. Resour. Conserv. Recycl., 52(10), 1153–1161.
  • White, P.J., and Hammond, J.P. (2002). Updating the estimate of the sources of phosphorus in UK waters. Defra project WT0701CSF.
  • Xu, D., Xu, J., Wu, J., and Muhammad, A. (2006). Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 63(2), 344–352.
  • Yu, L. (2012). A modeling method for longevity study of infiltration for phosphorous removal. Master thesis. Stockholm: Royal Institute of Technology.
  • Zhang, T.C., Dahab, M.F., Nunes, G., Hu, C., and Surampalli, R. (2007). Phosphorus fate and transport in soil columns loaded intermittently with influent of high phosphorous concentrations. Water Environ. Res., 79(11), 2343–2351.
  • Zhang, T.C., and Dahab, M.F. (2006). Phosphorous sorption capacity and distributions in soil after long-term wastewater land treatment in Muskegon, Michigan. Kansas City: EPA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.