1,055
Views
34
CrossRef citations to date
0
Altmetric
Articles

What role does stream restoration play in nutrient management?

ORCID Icon &
Pages 335-371 | Published online: 30 May 2017

References

  • Agudelo, S.C., Nelson, N.O., Barnes, P.L., Keane, T.D., and Pierzynski, G.M. (2011). Phosphorus adsorption and desorption potential of stream sediments and field soils in agricultural watersheds. J. Environ. Qual., 40, 144–152. DOI: 10.2134/jeq2010.0153
  • Aldridge, K.T., Brookes, J.D., and Ganf, G.G. (2009). Rehabilitation of stream ecosystem functions through the reintroduction of coarse particulate organic matter. Restor. Ecol., 17, 97–106. DOI: 10.1111/j.1526-100X.2007.00338.x
  • Aldridge, K.T., Brookes, J.D., and Ganf, G.G. (2010). Changes in abiotic and biotic phosphorus uptake across a gradient of stream condition. River Res. Appl., 26, 636–649. DOI: 10.1002/rra
  • Allen, C.R., Fontaine, J.J., Pope, K.L., and Garmestani, A.S. (2011). Adaptive management for a turbulent future. J. Environ. Manage., 92, 1339–1345. DOI: 10.1016/j.jenvman.2010.11.019
  • Argerich, A., Martí, E., Sabater, F., Ribot, M., von Schiller, D., and Riera, J.L. (2008). Combined effects of leaf litter inputs and a flood on nutrient retention in a Mediterranean mountain stream during fall. Limnol. Oceanogr., 53, 631–641. DOI: 10.4319/lo.2008.53.2.0631
  • Azinheira, D.L., Scott, D.T., Hession, W., and Hester, E.T. (2014). Comparison of effects of inset floodplains and hyporheic exchange induced by in-stream structures on solute retention. Water Resour. Res., 50, 6168–6190. DOI: 10.1002/2013WR014400
  • Baker, D.W., Bledsoe, B.P., and Mueller Price, J. (2012). Stream nitrate uptake and transient storage over a gradient of geomorphic complexity, north-central Colorado, USA. Hydrol. Processes, 26, 3241–3252. DOI: 10.1002/hyp.8385
  • Becker, J.F., Endreny, T.A., and Robinson, J.D. (2013). Natural channel design impacts on reach-scale transient storage. Ecol. Eng., 57, 380–392. DOI: 10.1016/j.ecoleng.2013.04.051
  • Bernhardt, E.S., Palmer, M.A., Allan, J.D., Alexander, G., Barnas, K., Brooks, S., Carr, J., Clayton, S., Dahm, C., Follstad-Shah, J., and Galat, D. (2005). Synthesizing U.S. river restoration efforts. Science 308, 636–637.
  • Bernhardt, E.S., Blaszczak, J.R., Ficken, C.D., Fork, M.L., Kaiser, K.E., and Seybold, E.C. (2017). Control points in ecosystems: Moving beyond the hot spot hot moment concept. Ecosystems DOI: 10.1007/s10021-016-0103-y (published online).
  • Bernhardt, E.S. and Likens, G.E. (2002). Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83, 1689–1700.
  • Bernhardt, E.S. and Palmer, M.A. (2007). Restoring streams in an urbanizing world. Freshwater Biol., 52, 738–751. DOI: 10.1111/j.1365-2427.2006.01718.x
  • Bledsoe, B.P., O'Connor, K.A., Watson, C.C., and Carlson, K.H. (2000). Phosphorus content of bed, bank and upland sediments: Long Creek and Johnson Creek Watersheds, Mississippi. Colorado State University: Prepared for USACE, Vicksburg District.
  • Böhlke, J.K., Antweiler, R.C., Harvey, J.W., Laursen, A.E., Smith, L.K., Smith, R.L., and Voytek, M.A. (2009). Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA. Biogeochemistry 93, 117–141. DOI: 10.1007/s10533-008-9282-8
  • Böhlke, J.K., O'Connell, M.E., and Prestegaard, K.L. (2007). Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions. J. Environ. Qual., 36, 664–680. DOI: 10.2134/jeq2006.0084
  • Booth, D.B. and Fischenich, C.J. (2015). A channel evolution model to guide sustainable urban stream restoration. Area 47, 408–421. DOI: 10.1111/area.12180
  • Booth, D.B., Montgomery, D.R., and Bethel, J. (1996). Large woody debris in urban streams of the Pacific Northwest. presented at the Effects of watershed development and management on aquatic ecosystems: Engineering Foundation Conference. Snowbird, Utah. 178–197 pp.
  • Brady, N.C. and Weil, R.R. (2002). The nature and properties of soils. 13th ed. Upper Saddle River, NJ: Prentice Hall.
  • Browning, M. (2008). The efficacy of urban stream restorations to improve water quality across a spectrum of design approaches, Master's Thesis, George Mason University.
  • Carline, R.F. and Walsh, M.C. (2007). Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania. Restor. Ecol., 15, 731–742. DOI: 10.1111/j.1526-100X.2007.00285.x
  • Charbonneau R. and Resh, V.H. (1992). Strawberry Creek on the University of California, Berkeley campus: A case history of urban stream restoration. Aquat. Conserv.: Mar. Freshwater Ecosyst., 2, 293–307.
  • Cluer, B., and Thorne, C. (2014). A stream evolution model integrating habitat and ecosystem benefits. River Res. Appl., 30, 135–154. DOI: 10.1002/rra
  • Collins, K.E., Doscher, C., Rennie, H.G., and Ross, J.G. (2013). The effectiveness of riparian “restoration” on water quality - A case study of lowland streams in Canterbury, New Zealand. Restor. Ecol., 21, 40–48. DOI: 10.1111/j.1526-100X.2011.00859.x
  • Cooper, J.R. and Gilliam, J.W. (1987). Phosphorus redistribution from cultivated fields into riparian areas. Soil Sci. Soc. Am. J., 51, 1600–1604.
  • Craig, L.S., Palmer, M.A., Richardson, D.C., Filoso, S., Bernhardt, E.S., Bledsoe, B.P., Doyle, M.W., Groffman, P.M., Hassett, B.A., Kaushal, S.S., and Mayer, P.M. (2008). Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ., 6, 529–538. DOI: 10.1890/070080
  • Crispell, J.K. and Endreny, T.A. (2009). Hyporheic exchange flow around constructed in-channel structures and implications for restoration design. Hydrol. Processes, 23, 1158–1168. DOI: 10.1002/hyp
  • Crosland, A.R., Zhao, F.J., McGrath, S.P., and Lane, P.W. (1995). Comparison of aqua regia digestion with sodium carbonate fusion for the determination of total phosphorus in soils by inductively coupled plasma atomic emission spectroscopy (ICP). Commun. Soil Sci. Plant Anal., 26, 1357–1368.
  • Daniluk, T.L., Lautz, L.K., Gordon, R.P., and Endreny, T.A. (2013). Surface water-groundwater interaction at restored streams and associated reference reaches. Hydrol. Processes, 27, 3730–3746. DOI: 10.1002/hyp.9501
  • Davis, R.T., Tank, J.L., Mahl, U.H., Winikoff, S.G., and Roley, S.S. (2015). The influence of two-stage ditches with constructed floodplains on water column nutrients and sediments in agricultural streams. J. Am. Water Resour. Assoc., 51, 941–955. DOI: 10.1111/1752-1688.12341
  • DeWolfe, M.N., Hession, W.C., and Watzin, M.C. (2004). Sediment and phosphorus loads from streambank erosion in Vermont, USA. Critical transitions in water and environmental resources management. Reston, VA: American Society of Civil Engineers.
  • Dick, W.A. and Tabatabai, M.A. (1977). An alkaline oxidation method for determination of total phosphorus in soils. Soil Sci. Soc. Am. J., 41, 511–514.
  • Doyle, M.W., Stanley, E.H., and Harbor, J.M. (2003). Hydrogeomorphic controls on phosphorus retention in streams. Water Resour. Res., 39, 1147. DOI: 10.1029/2003WR002038
  • Elosegi, A., Elorriaga, C., Flores, L., Martí, E., and Díez, J. (2016). Restoration of wood loading has mixed effects on water, nutrient, and leaf retention in Basque mountain streams. Freshwater Sci., 35, 41–54. DOI: 10.1086/684051
  • Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., and Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett., 10, 1–8. DOI: 10.1111/j.1461-0248.2007.01113.x
  • Ensign, S.H. and Doyle, M.W. (2005). In-channel transient storage and associated nutrient retention: Evidence from experimental manipulations. Limnol. Oceanogr., 50, 1740–1751. DOI: 10.4319/lo.2005.50.6.1740
  • EPA. (2015). Watershed Assessment, Tracking & Environmental Results, National Summary of State Information [online] Available from: https://ofmpub.epa.gov/waters10/attains_nation_cy.control (Accessed 5 December 2015).
  • Fanelli, R.M. and Lautz, L.K. (2008). Patterns of water, heat, and solute flux through streambeds around small dams. Groundwater 46, 671–687. DOI: 10.1111/j.1745-6584.2008.00461.x
  • Filoso S. and Palmer, M.A. (2011). Assessing stream restoration effectiveness at reducing nitrogen export to downstream waters. Ecol. Appl., 21, 1989–2006.
  • Fink, D.F. and Mitsch, W.J. (2007). Hydrology and nutrient biogeochemistry in a created river diversion oxbow wetland. Ecol. Eng., 30, 93–102. DOI: 10.1016/j.ecoleng.2006.08.008
  • Forshay, K.J. and Stanley, E.H. (2005). Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75, 43–64. DOI: 10.1007/s10533-004-6016-4
  • Fox, G.A., Purvis, R.A., and Penn, C.J. (2016). Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manage., 181, 602–614. DOI: 10.1016/j.jenvman.2016.06.071
  • Gift, D.M., Groffman, P.M., Kaushal, S.S., and Mayer, P. (2010). Denitrification potential, root biomass, and organic matter in degraded and restored urban riparian zones. Restor. Ecol., 18, 113–120. DOI: 10.1111/j.1526-100X.2008.00438.x
  • Gold, A., Addy, K., Morrison, A., and Simpson, M. (2016). Will dam removal increase nitrogen flux to estuaries? Water 8, 522. DOI: 10.3390/w8110522
  • Gooseff, M.N., McKnight, D.M., Runkel, R.L., and Duff, J.H. (2004). Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr., 49, 1884–1895. DOI: 10.4319/lo.2004.49.5.1884
  • Gordon, R.P., Lautz, L.K., and Daniluk, T.L. (2013). Spatial patterns of hyporheic exchange and biogeochemical cycling around cross-vane restoration structures: Implications for stream restoration design. Water Resour. Res., 49, 2040–2055. DOI: 10.1002/wrcr.20185
  • Groffman, P.M., Altabet, M.A., Bohlke, J.K., Butterbach-Bahl, K., David, M.B., Firestone, M.K., Giblin, A.E., Kana, T.M., Nielsen, L.P., and Voyteck, M.A. (2006). Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol. Appl., 16, 2091–2122. DOI: 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
  • Groffman, P.M., Boulware, N.J., Zipperer, W.C., Pouyat R V, Band, L.E., and Colosimo, M.F. (2002). Soil nitrogen cycle processes in urban riparian zones. Environ. Sci. Technol., 36, 4547–4552.
  • Groffman, P.M. and Crawford, M.K. (2003). Denitrification potential in urban riparian zones. J. Environ. Qual., 32, 1144–1149.
  • Groffman, P.M., Dorsey, A.M., and Mayer, P.M. (2005). N processing within geomorphic structures in urban streams. J. North Am. Benthol. Soc., 24, 613–625. DOI: 10.1899/0887-3593(2005)024\[0613:NPWGSI\]2.0.CO;2
  • Haggard, B.E., Smith, D.R., and Brye, K.R. (2007). Variations in stream water and sediment phosphorus among select Ozark catchments. J. Environ. Qual., 36, 1725–1734. DOI: 10.2134/jeq2006.0517
  • Harrison, M.D., Groffman, P.M., Mayer, P., and Kaushal, S.S. (2012). Microbial biomass and activity in geomorphic features in forested and urban restored and degraded streams. Ecol. Eng., 38, 1–10. DOI: 10.1016/j.ecoleng.2011.09.001
  • Hawley, R.J., Bledsoe, B.P., Stein, E.D., and Haines, B.E. (2012). Channel evolution model of semiarid stream response to urban-induced hydromodification. J. Am. Water Resour. Assoc., 48, 722–744. DOI: 10.1111/j.1752-1688.2012.00645.x
  • Hefting, M.M., Clément J-C, Dowrick, D., Cosandey, A.C., Bernal, S., Cimpian, C., Tatur, A., Burt, T.P., and Pinay, G. (2004). Water table elevations controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67, 113–134. DOI: 10.1023/B:BIOG.0000015320.69868.33
  • Hester, E.T. and Cranmer, E.N. (2014). Variation of hyporheic potential among urban region streams: implications for stream restoration. Environ. Eng. Geosci., 20, 287–304.
  • Hester, E.T. and Doyle, M.W. (2008). In-stream geomorphic structures as drivers of hyporheic exchange. Water Resour. Res., 44, W03417. DOI: 10.1029/2006WR005810
  • Hester, E.T. and Gooseff, M.N. (2010). Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environ. Sci. Technol., 44, 1521–1525. DOI: 10.1021/es902988n
  • Hester, E.T., Hammond, B., and Scott, D.T. (2016). Effects of inset floodplains and hyporheic exchange induced by in-stream structures on nitrate removal in a headwater stream. Ecol. Eng., 97, 452–464. DOI: 10.1016/j.ecoleng.2016.10.036
  • Hill, A.R. (1996). Nitrate removal in stream riparian zones. J. Environ. Qual., 25, 743–755.
  • Hoffman, A.R., Armstrong, D.E., Lathrop, R.C., and Penn, M.R. (2009). Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquat. Geochem., 15, 371–389. DOI: 10.1007/s10498-008-9043-2
  • Hongthanat, N. (2010). Phosphorus sorption-desorption of soils and sediments in the Rathbun Lake watershed, Master's Thesis, Iowa State University.
  • Hothorn, T., Buehlmann, P., Dudoit, S., Molinaro, A., Van Der Laan M. (2006). Survival ensembles. Biostatistics 7, 355–373.
  • Howe, E., Winchell, M., Meals, D., Folle, S., Moore, J., Braun, D., DeLeo, C., Budreski, K., and Schiff, R. (2011). Identification of critical source areas of phosphorus within the Vermont sector of the Missisquoi Bay basin. Stone Environmental Inc: Prepared for Lake Champlain Basin Program, Grand Isle, VT.
  • Hubbard, L.C., Biedenharn, D.S., and Ashby, S.L. (2003). Assessment of environmental and economic benefits associated with streambank stabilization and phosphorus retention. USACE Research and Development Center, Vicksburg, MS.
  • Hupp, C.R., Noe, G.B., Schenk, E.R., and Benthem, A.J. (2013). Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream. Geomorphology 180–181, 156–169.
  • Johnson, L.T., Tank, J.L., and Arango, C.P. (2009). The effect of land use on dissolved organic carbon and nitrogen uptake in streams. Freshwater Biol., 54, 2335–2350. DOI: 10.1111/j.1365-2427.2009.02261.x
  • Jones, C.N., Scott, D.T., Guth, C., Hester, E.T., and Hession, W.C. (2015). Seasonal variation in floodplain biogeochemical processing in a restored headwater stream. Environ. Sci. Technol., 49, 13190–13198. DOI: 10.1021/acs.est.5b02426
  • Jordan, T.E., Correll, D.L., and Weller, D.E. (1993). Nutrient interception by a riparian forest receiving inputs from adjacent cropland. J. Environ. Qual., 22, 467–473.
  • Kasahara T. and Hill, A.R. (2006) a. Effects of riffle-step restoration on hyporheic zone chemistry in N-rich lowland streams. Can. J. Fisheries Aquat. Sci., 63, 120–133. DOI: 10.1139/f05-199
  • Kasahara T. and Hill, A.R. (2006) b. Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada. Hydrol. Processes, 20, 4287–4305. DOI: 10.1002/hyp.6174
  • Kaushal, S.S., Groffman, P.M., Mayer, P.M., Striz, E., and Gold, A.J. (2008). Effects of stream restoration on denitrification in an urbanizing watershed. Ecol. Appl., 18, 789–804.
  • Kerr, J.G., Burford, M., Olley, J., and Udy, J. (2011). Phosphorus sorption in soils and sediments: implications for phosphate supply to a subtropical river in southeast Queensland, Australia. Biogeochemistry 102, 73–85. DOI: 10.1007/s10533-010-9422-9
  • King, S.E., Osmond, D.L., Smith, J., Burchell, M.R., Dukes, M., Evans, R.O., Knies, S., and Kunickis, S. (2016). Effects of riparian buffer vegetation and width: A 12-year longitudinal study. J. Environ. Qual., 45, 1243–1251. DOI: 10.2134/jeq2015.06.0321
  • Kleinman, P.J.A., Sharpley, A.N., Gartley, K., Jarrell, W.M., Kuo, S., Menon, R.G., Myers, R., Reddy, K.R., and Skogley, E.O. (2001). Interlaboratory comparison of soil phosphorus extracted by various soil test methods. Commun. Soil Sci. Plant Anal., 32, 2325–2345. DOI: 10.1081/CSS-120000376
  • Knust, A.E. and Warwick, J.J. (2009). Using a fluctuating tracer to estimate hyporheic exchange in restored and unrestored reaches of the Truckee River, Nevada, USA. Hydrol. Processes, 23, 1119–1130.
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263. DOI: 10.1127/0941-2948/2006/0130
  • Kronvang, B., Andersen, H.E., Larsen, S.E., and Audet, J. (2013). Importance of bank erosion for sediment input, storage and export at the catchment scale. J. Soils Sedim., 13, 230–241. DOI: 10.1007/s11368-012-0597-7
  • Kronvang, B., Andersen, I.K., Hoffmann, C.C., Pedersen, M.L., Ovesen, N.B., and Andersen, H.E. (2007). Water exchange and deposition of sediment and phosphorus during inundation of natural and restored lowland floodplains. Water Air Soil Pollut., 181, 115–121. DOI: 10.1007/s11270-006-9283-y
  • Kronvang, B., Audet, J., Baattrup-Pedersen, A., Jensen, H.S., and Larsen, S.E. (2012). Phosphorus load to surface water from bank erosion in a Danish lowland river basin. J. Environ. Qual., 41, 304–13. DOI: 10.2134/jeq2010.0434
  • Langendoen, E.J., Simon, A., Klimetz, L., Bankhead, N., and Ursic, M.E. (2012). Quantifying sediment loadings from streambank erosion in selected agricultural watersheds draining to Lake Champlain. Technical Report No. 72, USDA - ARS National Sedimentation Laboratory Watershed Physical Processes Research Unit, Oxford, MS.
  • Larson, M.G., Booth, D.B., and Morley, S.A. (2001). Effectiveness of large woody debris in stream restoration projects in urban basins. Ecol. Eng., 18, 211–226.
  • Lave, R. (2009). The controversy over natural channel design: Substantive explanations and potential avenues for resolution. J. Am. Water Resour. Assoc., 45, 1519–1532. DOI: 10.1111/j.1752-1688.2009.00385.x
  • Law, A., Mclean, F., and Willby, N. (2016). Habitat engineering by beaver benefits aquatic biodiversity and ecosystem processes in agricultural streams. Freshwater Biol., 61, 486–499. DOI: 10.1111/fwb.12721
  • Lazar, J.G., Addy, K., Gold, A.J., Groffman, P.M., McKinney, R.A., and Kellogg, D.Q. (2015). Beaver ponds: Resurgent nitrogen sinks for rural watersheds in the northeastern United States. J. Environ. Qual., 44, 1684–1693. DOI: 10.2134/jeq2014.12.0540
  • Lee, K.H., Isenhart, T.M., and Schultz, R.C. (2003). Sediment and nutrient removal in an established multi-species riparian buffer. J. Soil Water Conserv., 58, 1–8.
  • Lefebvre, S., Marmonier, P., and Pinay, G. (2004). Stream regulation and nitrogen dynamics in sediment interstices: Comparison of natural and straightened sectors of a third-order stream. River Res. Appl., 20, 499–512. DOI: 10.1002/rra.765
  • Liu, X., Vidon, P., Jacinthe, P.A., Fisher, K., and Baker, M. (2014). Seasonal and geomorphic controls on N and P removal in riparian zones of the US Midwest. Biogeochemistry 119, 245–257. DOI: 10.1007/s10533-014-9963-4
  • Mahl, U.H., Tank, J.L., Roley, S.S., and Davis, R.T. (2015). Two-stage ditch floodplains enhance N-removal capacity and reduce turbidity and dissolved P in agricultural streams. J. Am. Water Resour. Assoc., 51, 923–940. DOI: 10.1111/1752-1688.12340
  • Maret, T.J., Parker, M., and Fannin, T.E. (1987). The effect of beaver ponds on the nonpoint source water quality of a stream in southwestern Wyoming. Water Res., 21, 263–268. DOI: 10.1016/0043-1354(87)90204-1
  • Martin, T.L., Kaushik, N.K., Trevors, J.T., and Whiteley, H.R. (1999). Review: Denitrification in temperate climate riparian zones. Water, Air, Soil Pollut., 111, 171–186. DOI: 10.1023/A:1005015400607
  • Mayer, P.M., Reynolds, S.K., Canfield, T.J., McCutchen, M.D. (2005). Riparian buffer width, vegetative cover, and nitrogen removal effectiveness: A review of current science and regulations. EPA/600/R-05/118, U.S. Environmental Protection Agency, Cincinnati, Ohio.
  • Mayer, P.M., Reynolds, S.K., McCutchen, M.D., and Canfield, T.J. (2007). Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual., 36, 1172–1180. DOI: 10.2134/jeq2006.0462
  • McClain, M.E., Boyer, E.W., Dent, C.L., Gergel, S.E., Grimm, N.B., Groffman, P.M., Hart, S.C., Harvey, J.W., Johnston, C.A., Mayorga, E., and McDowell, W.H. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312. DOI: 10.1007/s10021-003-0161-9
  • McDaniel, M.D., David, M.B., and Royer, T. V. (2009). Relationships between benthic sediments and water column phosphorus in Illinois streams. J. Environ. Qual., 38, 607–617. DOI: 10.2134/jeq2008.0094
  • McDowell, R.W. (2003). Sediment phosphorus chemistry and microbial biomass along a lowland New Zealand stream. Aquat. Geochem., 9, 19–40.
  • McDowell, R.W., and Sharpley, A.N. (2001). A comparison of fluvial sediment phosphorus (P) chemistry in relation to location and potential to influence stream P concentrations. Aquat. Geochem., 7, 255–265.
  • McDowell, R.W., Sharpley, A.N., and Folmar, G. (2003). Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agric. Ecosyst. Environ., 99, 187–199. DOI: 10.1016/S0167-8809(03)00142-7
  • McDowell, R.W., and Wilcock, R.J. (2007). Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment. J. Environ. Qual., 36, 540–8. DOI: 10.2134/jeq2006.0352
  • Meals, D.W. (2001). Water quality response to riparian restoration in an agricultural watershed in Vermont, USA. Water Sci. Technol., 43, 175–182.
  • Meals, D.W., Dressing, S.A., and Davenport, T.E. (2010). Lag time in water quality response to best management practices: a review. J. Environ. Qual., 39, 85–96. DOI: 10.2134/jeq2009.0108
  • Merill L. and Tonjes, D.J. (2014). A review of the hyporheic zone, stream restoration, and means to enhance denitrification. Crit. Rev. Environ. Sci. Technol., 44, 2337–2379. DOI: 10.1080/10643389.2013.829769
  • Miller, R.B., Fox, G.A., Penn, C.J., Wilson, S., Parnell, A., Purvis, R.A., and Criswell, K. (2014). Estimating sediment and phosphorus loads from streambanks with and without riparian protection. Agric. Ecosyst. Environ., 189, 70–81.
  • Mueller Price, J.S., Baker, D.W., and Bledsoe, B.P. (2016). Effects of passive and structural stream restoration approaches on transient storage and nitrate uptake. River Res. Appl., 32, 1542–1554. DOI: 10.1002/rra.3013
  • Mulholland, P.J., Helton, A.M., Poole, G.C., Hall, R.O., Hamilton, S.K., Peterson, B.J., Tank, J.L., Ashkenas, L.R., Cooper, L.W., Dahm, C.N., and Dodds, W.K. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452, 202–5. DOI: 10.1038/nature06686
  • Mulholland, P.J., Hall, R.O., Sobota, D.J., Dodds, W.K., Findlay, S.E., Grimm, N.B., Hamilton, S.K., McDowell, W.H., O'Brien, J.M., Tank, J.L., and Ashkenas, L.R. (2009). Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification. Limnol. Oceanogr., 54, 666–680. DOI: 10.4319/lo.2009.54.3.0653
  • Mulholland, P.J., Newbold, J.D., Elwood, J.W., Ferren, L.A., and Webster, J.R. (1985). Phosphorus spiralling in a woodland stream: Seasonal variations. Ecology, 66, 1012–1023.
  • Muller, I., Delisle, M., Ollitrault, M., and Bernez, I. (2016). Responses of riparian plant communities and water quality after 8 years of passive ecological restoration using a BACI design. Hydrobiologia, 781, 67–79. DOI: 10.1007/s10750-015-2349-3
  • National Research Council. (1992). Restoration of aquatic ecosystems: science, technology, and public policy. National Research Council, Committee on Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy, Water and Science Technology Board, Commission of Geosciences, Environment, and Resources. National Academy Press. Washington, DC.
  • Nellesen, S.L., Kovar, J.L., Haan, M.M., and Russell, J.R. (2011). Grazing management effects on stream bank erosion and phosphorus delivery to a pasture stream. Can. J. Soil Sci., 91, 385–395. DOI: 10.4141/CJSS10006
  • Newbold, J.D., Herbert, S., Sweeney, B.W., Kiry, P., and Alberts, S.J. (2010). Water quality functions of a 15 year old riparian forest buffer system. J. Am. Water Resour. Assoc., 46, 299–310.
  • Newcomer, T.A., Kaushal, S.S., Mayer, P.M., Shields, A.R., Canuel, E.A., Groffman, P.M., and Gold, A.J. (2012). Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams. Ecol. Monogr., 82, 449–466. DOI: 10.1890/12-0458.1
  • Newcomer Johnson, T.A., Kaushal, S.S., Mayer, P.M., Smith, R.M., and Sivirichi, G.M. (2016). Nutrient retention in restored streams and rivers: A global review and synthesis. Water, 8, 116. DOI: 10.3390/w8040116
  • Orzetti, L.L., Jones, R.C., and Murphy, R.F. (2010). Stream condition in piedmont streams with restored riparian buffers in the Chesapeake Bay watershed. J. Am. Water Resour. Assoc., 46, 473–485. DOI: 10.1111/j.1752-1688.2009.00414.x
  • Palmer-Felgate, E.J., Jarvie, H.P., Withers, P.J.A., Mortimer, R.J.G., and Krom, M.D. (2009). Stream-bed phosphorus in paired catchments with different agricultural land use intensity. Agric., Ecosyst. Environ., 134, 53–66. DOI: 10.1016/j.agee.2009.05.014
  • Palmer, M.A., Bernhardt, E.S., Allan, J.D., Lake, P.S., Alexander, G., Brooks, S., Carr, J., Clayton, S., Dahm, C.N., Follstad Shah, J., and Galat, D.L. (2005). Standards for ecologically successful river restoration. J. Appl. Ecol., 42, 208–217. DOI: 10.1111/j.1365-2664.2005.01004.x
  • Palmer, M.A., Hondula, K.L., and Koch, B.J. (2014). Ecological restoration of streams and rivers: shifting strategies and shifting goals. Annu. Rev. Ecol., Evol. Syst., 45, 247–272. DOI: 10.1146/annurev-ecolsys-120213-091935
  • Pardo, P., Rauret, G., and López-Sánchez, J.F. (2004). Shortened screening method for phosphorus fractionation in sediments: A complementary approach to the standards, measurements and testing harmonised protocol. Anal. Chim. Acta, 508, 201–206. DOI: 10.1016/j.aca.2003.11.005
  • Peacher, R. 2011. Impacts of land use on stream bank erosion in the Northeast Missouri Claypan Region, Master's Thesis, Iowa State University.
  • Pennino, M.J., Kaushal, S.S., Mayer, P.M., Utz, R.M., and Cooper, C.A. (2016). Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds. Hydrol. Earth Syst. Sci., 20, 3419–3439. DOI: 10.5194/hess-20-3419-2016
  • Peterjohn W. and Correll, D.L. (1984). Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 65, 1466–1475.
  • Peterson, B.J., Wollheim, W.M., Mulholland, P.J., Webster, J.R., Meyer, J.L., Tank, J.L., Martí, E., Bowden, W.B., Valett, H.M., Hershey, A.E., and McDowell, W.H. (2001). Control of nitrogen export from watersheds by headwater streams. Science 292, 86–90. DOI: 10.1126/science.1056874
  • Piña-Ochoa, E., and Álvarez-Cobelas M. (2006). Denitrification in aquatic environments: A cross-system analysis. Biogeochemistry 81, 111–130. DOI: 10.1007/s10533-006-9033-7
  • Pinay, G., Gumiero, B., Tabacchi, E., Gimenez, O., Tabacchi-Planty, A.M., Hefting, M.M., Burt, T.P., Black, V.A., Nilsson, C., Iordache, V., and Bureau, F. (2007). Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshwater Biol., 52, 252–266. DOI: 10.1111/j.1365-2427.2006.01680.x
  • Pinay, G., Roques, L., and Fabre, A. (1993). Spatial and temporal patterns of denitrification in a riparian forest. J. Appl. Ecol., 30, 581–591.
  • Pollock, M.M., Beechie, T.J., Wheaton, J.M., Jordan, C.E., Bouwes, N., Weber, N., and Volk, C. (2014). Using beaver dams to restore incised stream ecosystems. BioScience 64, 279–290. DOI: 10.1093/biosci/biu036
  • Quinn, J., Phillips, N., and Parkyn, S. (2007). Factors influencing retention of coarse particulate organic matter in streams. Earth Surf. Processes Landforms, 32, 1186–1203. DOI: 10.1002/esp
  • R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria.
  • Records, R.M., Wohl, E., and Arabi, M. (2016). Phosphorus in the river corridor. Earth-Sci. Rev., 158, 65–88. DOI: 10.1016/j.earscirev.2016.04.010
  • Reisinger, A.J., Tank, J.L., Rosi-Marshall, E.J., Hall, R.O., and Baker, M.A. (2015). The varying role of water column nutrient uptake along river continua in contrasting landscapes. Biogeochemistry, 125, 115–131. DOI: 10.1007/s10533-015-0118-z
  • Richardson, C.J., Flanagan, N.E., Ho, M., and Pahl, J.W. (2011). Integrated stream and wetland restoration: A watershed approach to improved water quality on the landscape. Ecol. Eng., 37, 25–39. DOI: 10.1016/j.ecoleng.2010.09.005
  • Roberts, B.J., Mulholland, P.J., and Houser, J.N. (2007). Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams. J. North Am. Benthol. Soc., 26, 38–53. DOI: 10.1899/0887-3593(2007)26[38:EOUDAI]2.0.CO;2
  • Robertson, W.D. and Merkley, L.C. (2009). In-stream bioreactor for agricultural nitrate treatment. J. Environ. Qual., 38, 230–237. DOI: 10.2134/jeq2008.0100
  • Roley, S.S., Tank, J.L., Stephen, M.L., Johnson, L.T., Beaulieu, J.J., and Witter, J.D. (2012) a. Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream. Ecol. Appl., 22, 281–297. DOI: 10.1890/11-0381.1
  • Roley, S.S., Tank, J.L., and Williams, M.A. (2012) b. Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream. J. Geophys. Res.: Biogeosci., 117, G00N04. DOI: 10.1029/2012JG001950,2012
  • Roni, P., and Beechie, T. (2013). Stream and watershed restoration: A guide to restoring riverine processes and habitats. John Wiley & Sons, Ltd, Chichester, England.
  • Rosgen, D.L. (1996). Applied river morphology. Colorado: Wildland Hydrology.
  • Rosgen, D.L. (2006). River restoration using a geomorphic approach for natural channel design. presented at the Proceedings of the Eighth Federal Interagency Sedimentation Conference. April 2-6, 2006, Reno, NV.
  • Rubin, Z., Kondolf, G., and Rios-Touma, B. (2017). Evaluating stream restoration projects: What do we learn from monitoring? Water, 9, 174. DOI: 10.3390/w9030174
  • Saunders, D.L., and Kalff, J. (2001). Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 443, 205–212. DOI: 10.1023/A:1017506914063
  • Schilling, K.E., and Jacobson, P. (2014). Effectiveness of natural riparian buffers to reduce subsurface nutrient losses to incised streams. Catena, 114, 140–148. DOI: 10.1016/j.catena.2013.11.005
  • Schilling, K.E., Li, Z., and Zhang, Y.K. (2006). Groundwater–surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. J. Hydrol., 327, 140–150. DOI: 10.1016/j.jhydrol.2005.11.014
  • Schilling, K.E., Palmer, J.A., Bettis, E.A., Jacobson, P., Schultz, R.C., and Isenhart, T.M. (2009). Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa. Catena, 77, 266–273. DOI: 10.1016/j.catena.2009.02.006
  • Schoonover, J.E., Williard, K.W.J. (2003). Ground water nitrate reduction in giant cane and forest riparian buffer zones. J. Am. Water Resour. Assoc., 39, 347–354.
  • Schumm, S.A., Harvey, M.D., and Watson, C.C. (1984). Incised channels: Morphology, dynamics and control. Littleton, CO: Water Resources Publications.
  • Segura C. and Booth, D.B. (2010). Effects of geomorphic setting and urbanization on wood, pools, sediment storage, and bank erosion in Puget Sound streams. J. Am. Water Resour. Assoc., 46, 972–986. DOI: 10.1111/j.1752-1688.2010.00470.x
  • Seitzinger, S., Harrison, J.A., Böhlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G. (2006). Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl., 16, 2064–2090.
  • Seitzinger, S.P. (1988). Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr., 33, 702–724. DOI: 10.4319/lo.1988.33.4_part_2.0702
  • Sekely, A.C., Mulla, D.J., and Bauer, D.W. (2002). Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J. Soil Water Conserv., 57, 243–250.
  • Selvakumar, A., O'Connor, T.P., and Struck, S.D. (2010). Role of stream restoration on improving benthic macroinvertebrates and in-stream water quality in an urban watershed: case study. J. Environ. Eng., 136, 127–139. DOI: 10.1061/(ASCE)EE.1943-7870.0000116
  • Sheibley, R.W., Ahearn, D.S., and Dahlgren, R.A. (2006). Nitrate loss from a restored floodplain in the Lower Cosumnes River, California. Hydrobiologia, 571, 261–272. DOI: 10.1007/s10750-006-0249-2
  • Siegel S. and Castellan, N.J. (1988). Non parametric statistics for the behavioural sciences. New York: MacGraw Hill Int.
  • Simon, A. (1989). A model of channel response in disturbed alluvial channels. Earth Surf. Processes Landforms, 14, 11–26.
  • Simon A. and Collison, A.J. (2002). Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Processes Landforms, 27, 527–546. DOI: 10.1002/esp.325
  • Simon, A., Doyle, M.W., Kondolf, M., Shields Jr, F.D., Rhoads, B., and McPhillips, M. (2007). Critical evaluation of how the Rosgen classification and associated “Natural Channel Design” methods fail to integrate and quantify fluvial processes and channel responses. J. Am. Water Resour. Assoc., 43, 1117–1131. DOI: 10.1111/j.l752-1688.2007.00091.x
  • Sivirichi, G.M., Kaushal, S.S., Mayer, P.M., Welty, C., Belt, K.T., Newcomer, T.A., Newcomb, K.D., and Grese, M.M. (2011). Longitudinal variability in streamwater chemistry and carbon and nitrogen fluxes in restored and degraded urban stream networks. J. Environ. Monit., 13, 288–303. DOI: 10.1039/c0em00055h
  • Smidt, S.J., Cullin, J.A., Ward, A.S., Robinson, J., Zimmer, M.A., Lautz, L.K., and Endreny, T.A. (2014). A comparison of hyporheic transport at a cross-vane structure and natural riffle. Groundwater, 53, 859–871. DOI: 10.1111/gwat.12288
  • Smith, D.B., Cannon, W.F., Woodruff, L.G., Solano, F., Kilburn, J.E., and Fey, D.L. (2013). Geochemical and mineralogical data for soils of the conterminous United States. U.S. Geological Survey Data Series 801.
  • Smith, D.G. (1976). Effect of vegetation on lateral migration of anastomosed channels of a glacier meltwater river. Geol. Soc. Am. Bull., 87, 857–860.
  • Smith, V. (2003). Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sci. Pollut. Res., 10, 126–139. DOI: 10.1065/espr2002.12.142
  • Smith, V.H., Tilman, G., and Nekola, J.C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut., 100, 179–96.
  • Society for Ecological Restoration. (2004). The, S.E.R international primer on ecological restoration. Tucson: Society for Ecological Restoration International.
  • Spruill, T.B. (2000). Statistical evaluation of effects of riparian buffers on nitrate and ground water quality. J. Environ. Qual., 29, 1523–1538. DOI: 10.2134/jeq2000.00472425002900050020x
  • Stanley, E.H., Powers, S.M., Lottig, N.R., Buffam, I., and Crawford, J.T. (2012). Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: Is there a role for DOC management? Freshwater Biol., 57, 26–42. DOI: 10.1111/j.1365-2427.2011.02613.x
  • Strobl, C., Boulesteix A-L, Kneib, T., Augustin, T., and Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformat., 9, 308. DOI: 10.1186/1471-2105-9-307
  • Strobl, C., Boulesteix A-L, Zeileis, A., and Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformat., 8, 25. DOI: 10.1186/1471-2105-8-25
  • Sutton, A.J., Fisher, T.R., and Gustafson, A.B. (2010). Effects of restored stream buffers on water quality in non-tidal streams in the Choptank River basin. Water, Air, Soil Pollut., 208, 101–118. DOI: 10.1007/s11270-009-0152-3
  • Theriot, J.M., Conkle, J.L., Reza Pezeshki, S., DeLaune, R.D., and White, J.R. (2013). Will hydrologic restoration of Mississippi River riparian wetlands improve their critical biogeochemical functions? Ecol. Eng., 60, 192–198. DOI: 10.1016/j.ecoleng.2013.07.021
  • Therneau, T., Atkinson, B., and Ripley, B. (2015). rpart: recursive partitioning and regression trees. R package version 4.1-10: http://cran.r-project.org/package=rpart
  • Thoma, D.P., Gupta, S.C., Bauer, M.E., and Kirchoff, C.E. (2005). Airborne laser scanning for riverbank erosion assessment. Remote Sens. Environ., 95, 493–501. DOI: 10.1016/j.rse.2005.01.012
  • Thompson, C.A., and McFarland, A.M.S. (2007). Effects of surface and groundwater interactions on phosphorus transport within streambank sediments. J. Environ. Qual., 39, 548–557. DOI: 10.2134/jeq2009.0313
  • Tufekcioglu, M. (2010). Stream bank soil and phosphorus losses within grazed pasture stream reaches in the Rathbun Watershed in southern Iowa, PhD Dissertation, Iowa State University.
  • Tuttle, A.K., McMillan, S.K., Gardner, A., and Jennings, G.D. (2014). Channel complexity and nitrate concentrations drive denitrification rates in urban restored and unrestored streams. Ecol. Eng., 73, 770–777. DOI: 10.1016/j.ecoleng.2014.09.066
  • U.S. EPA. (1983). Methods for chemical analysis of water and wastes. U.S. EPA Rep. 600/4-79-020. U.S. EPA Office Res. Development, Cincinnati, OH.
  • U.S. EPA. (2007). Method 3051a: Microwave-assisted acid digestion of sediments, sludges, soils and oils [online] Available from: http://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (Accessed 3 August 2016).
  • Ullah S. and Faulkner, S.P. (2006). Use of cotton gin trash to enhance denitrification in restored forested wetlands. For. Ecol. Manage., 237, 557–563. DOI: 10.1016/j.foreco.2006.09.075
  • Valett, H.M., Baker, M.A., Morrice, J.A., Crawford, C.S., Molles, M.C., Dahm, C.N., Moyer, D.L., Thibault, J.R., and Ellis, L.M. (2005). Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology 86, 220–234. DOI: 10.1890/03-4091
  • Vaux, W.G. (1968). Intragravel flow and interchange of water in a stream-bed. Fish. Bull., 66, 479–489.
  • Veihe, A., Jensen, N.H., Schiøtz, I.G., and Nielsen, S.L. (2011). Magnitude and processes of bank erosion at a small stream in Denmark. Hydrol. Processes, 25, 1597–1613. DOI: 10.1002/hyp.7921
  • Vidon, P., Allan, C., Burns, D., Duval, T.P., Gurwick, N., Inamdar, S., Lowrance, R., Okay, J., Scott, D., and Sebestyen, S. (2010). Hot spots and hot moments in riparian zones: Potential for improved water quality management. J. Am. Water Resour. Assoc., 46, 278–298. DOI: 10.1111/j.1752-1688.2010.00420.x
  • Vietz, G.J., Rutherfurd, I.D., Fletcher, T.D., and Walsh, C.J. (2016). Thinking outside the channel: Challenges and opportunities for protection and restoration of stream morphology in urbanizing catchments. Landsc. Urban Plann., 145, 34–44. DOI: 10.1016/j.landurbplan.2015.09.004
  • Wallace, J.B., Webster, J.R., and Meyer, J.L. (1995). Influence of log additions on physical and biotic characteristics of a mountain stream. Can. J. Fish. Aquat. Sci., 52, 2120–2137. DOI: 10.1139/f95-805
  • Walsh, C.J., Fletcher, T.D., and Ladson, A.R. (2005). Stream restoration in urban catchments through redesigning stormwater systems: looking to the catchment to save the stream. J. North Am. Benthol. Soc., 24, 690–705. DOI: 10.1899/0887-3593(2005)024\[0690:SRIUCT\]2.0.CO;2
  • Walter, R., Merritts, D., and Rahnis, M. (2007). Estimating volume, nutrient content, and rates of stream bank erosion of legacy sediment in the Piedmont and Valley and Ridge physiographic provinces. Report to the Pennsylvania Department of Environmental Protection.
  • Walters, C. (1986). Adaptive management of renewable resources. New York: Macmillan Publishing Company.
  • Ward, A.S., Gooseff, M.N., and Johnson, P.A. (2011). How can subsurface modifications to hydraulic conductivity be designed as stream restoration structures? Analysis of Vaux's conceptual models to enhance hyporheic exchange. Water Resour. Res., 47: W08512. DOI: 10.1029/2010WR010028
  • Watson, T.K., Kellogg, D.Q., Addy, K., Gold, A.J., Stolt, M.H., Donohue, S.W., and Groffman, P.M. (2010). Groundwater denitrification capacity of riparian zones in suburban and agricultural watersheds. J. Am. Water Resour. Assoc., 46, 237–245. DOI: 10.1111/j.1752-1688.2010.00418.x
  • Weigelhofer, G., Welti, N., and Hein, T. (2013). Limitations of stream restoration for nitrogen retention in agricultural headwater streams. Ecol. Eng., 60, 224–234. DOI: 10.1016/j.ecoleng.2013.07.057
  • Willett, J., and Singer, J. (1988). Another cautionary note about R2: Its use in weighted least-squares regression analysis. Am. Stat., 42, 236–238. DOI: 10.1080/00031305.1988.10475573
  • Wohl, E., Angermeier, P.L., Bledsoe, B.P., Kondolf, G.M., MacDonnell, L., Merritt, D.M., Palmer, M.A., Poff, N.L., and Tarboton, D. (2005). River restoration. Water Resour. Res., 41: W10301. DOI: 10.1029/2005WR003985
  • Wohl, E., Lane, S.N., and Wilcox, A.C. (2015). The science and practice of river restoration. Water Resour. Res., 51, 5974–5997. DOI: 10.1002/2014WR016874
  • Young, E.O., Ross, D.S., Alves, C., and Villars, T. (2012). Soil and landscape influences on native riparian phosphorus availability in three Lake Champlain Basin stream corridors. J. Soil Water Conserv., 67, 1–7. DOI: 10.2489/jswc.67.1.1
  • Young, E.O., Ross, D.S., Cade-Menun, B.J., and Liu, C.W. (2013). Phosphorus speciation in riparian soils: A phosphorus-31 nuclear magnetic resonance spectroscopy and enzyme hydrolysis study. Soil Sci. Soc. Am. J., 77, 1636–1647. DOI: 10.2136/sssaj2012.0313
  • Zaimes, G.N., Schultz, R.C., and Isenhart, T.M. (2008) a. Streambank soil and phosphorus losses under different riparian land-uses in Iowa. J. Am. Water Resour. Assoc., 44, 935–947. DOI: 10.1111/j.1752-1688.2008.00210.x
  • Zaimes, G.N., Schultz, R.C., and Isenhart, T.M. (2008) b. Total phosphorus concentrations and compaction in riparian areas under different riparian land-uses of Iowa. Agric. Ecosyst. Environ., 127, 22–30. DOI: 10.1016/j.agee.2008.02.008
  • Zarnetske, J.P., Haggerty, R., Wondzell, S.M., and Baker, M.A. (2011). Labile dissolved organic carbon supply limits hyporheic denitrification. J. Geophys. Res., 116: G04036. DOI: 10.1029/2011JG001730

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.