308
Views
11
CrossRef citations to date
0
Altmetric
Articles

Modelling toxicity of metal mixtures: A generalisation of new advanced methods, considering potential application to terrestrial ecosystems

&
Pages 409-454 | Published online: 15 Jun 2017

References

  • Abe, S., and Takeda, J. (1988). Effects of La3+ on surface charges, dielectrophoresis, and electrofusion of barley protoplasts. Plant Physiol. 87, 389–394.
  • Ahlf, W., Drost, W., and Heise, S. (2009). Incorporation of metal bioavailability into regulatory frameworks – metal exposure in water and sediment. J. Soils Sedim. 9, 411–419.
  • Ahn, S. J., Sivaguru, M., Osawa, H., Chung, G. C., and Matsumoto, H. (2001). Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potential in squash roots. Plant Physiol. 126, 1381–1390.
  • Allen, H. E., Hall, R. H., and Brisbin, T. D. (1980). Metal speciation: effects on aquatic toxicity. Environ. Sci. Technol. 14, 411–443.
  • Allen, H. E., and Hansen, D. L. (1996). The importance of trace metal speciation to water quality criteria. Water Environ. Res. 68, 42–54.
  • Allen, H. E., and Janssen, C. R. (2006) Incorporating bioavailability into criteria for metals. In: I. Twardowka, H. E. Allen, M. M. Haeggblom, S. Stefaniak, (Eds.), Soil and water pollution monitoring, protection and remediation (pp. 3–23). NATO Science Series, Dordrecht, Springer.
  • Allison, F. E. (1973). The nature and composition of soil organic matter. Amsterdam: Elsevier.
  • Alsop, D. H., McGeer, J. C., McDonald, D. G., and Wood, C. M. (1999). Assessing the costs and consequences of chronic waterborne zinc exposure to juvenile rainbow trout in hard and soft water. Environ. Toxicol. Chem. 18, 1014–1025.
  • Antunes, P. M. C., Berkelaar, E. J., Boyle, D., Hale, B. A., Hendershot, W., and Voigt, A. (2006). The biotic ligand model for plants and metals: technical challenges for field application. Environ. Toxicol. Chem. 25, 875–882.
  • Antunes, P. M. C., Hale, B. A., and Ryan, A. C. (2007). Toxicity versus accumulation for barley plants exposed to copper in the presence of metal buffers: progress towards development of a terrestrial biotic ligand model. Environ. Toxicol. Chem. 26, 2282–2289.
  • Antunes, P. M. C., Scornaienchi, M. L., and Roshon, H. D. (2012). Copper toxicity to Lemna minor modelled using humic acid as a surrogate to the plant root. Chemosphere 88, 389–394.
  • Arnot, J. A., and Gobas, F. A. P. C. (2004). A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ. Toxicol. Chem. 23, 2343–2355.
  • Arnot, J. A., and Gobas, F. A. P. C. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 14, 257–297.
  • Assuncao, A. G. L., Martins, P. D., De Folter, S., Vooijs, R., Schat, H., and Aarts, M. G. M. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell Environ. 24, 217–226.
  • Astolfi, S., Zuchi, S., and Passera, C. (2004). Effects of cadmium on the metabolic activity of Avena sativa plants grown in soil or hydroponic culture. Biol. Plant. 48, 413–418.
  • Axelsen, K. B., and Palmgren, M. G. (2001). Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 126, 696–706.
  • Backhaus, T., Altenburger, R., Boedeker, W., Faust, M., Scholze, M., and Grimme, L. H. (2000a). Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ. Toxicol. Chem. 19, 2348–2356.
  • Backhaus, T., Scholze, M., and Grimme, L. H. (2000b). The single substance and mixture toxicity of quinolnes to the bioluminescent bacterium Vibrio fischeri. Aquat. Toxicol. 49, 49–61.
  • Baziramakenga, R., Leroux, G. D., and Simard, R. R. (1995). Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 21, 1271–1285.
  • Belouchi, A., Cellier, M., Kwan, T., Saini, H. S., Leroux, G., and Gros, P. (1995). The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologues expressed in the root system of plants. Plant Mol. Biol. 29, 1181–1196.
  • Belouchi, A., Kwan, T., and Gros, P. (1997). Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol. Biol. 33, 1085–1092.
  • Belyaeva, E. A., Glazunov, V. V., and Korotkov, S. M. (2004). Cd2+ promoted mitochondrial permeability transition: a comparison with other heavy metals. Acta Biochim. Polonca 51, 545–551.
  • Beveridge, T. J., and Murray, E. G. E. (1976). Uptake and retention of metals by cell walls of Bacillus subtilis. J. Bacteriol. 127, 1502–1518.
  • Beveridge, T. J., and Murray, R. G. E. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 140, 876–883.
  • Blanco-Penedo, I., Cruz, J. M., Lopez-Alonso, M., Miranda, M., Castillo, C., Hernandez, J., and Benedito, J. L. (2006). Influence of copper status on the accumulation of toxic and essential metals in cattle. Environ. Int. 32, 901–906.
  • Bliss, C. I. (1939). The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615.
  • Borgmann, U., Nowierski, M., and Dixon, D. G. (2005). Effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model. Aquat. Toxicol. 73, 268–287.
  • Borgmann, U., Norwood, W. P., and Dixon, D. G. (2008). Modelling bioaccumulation and toxicity of metal mixtures. Hum. Ecol. Risk Assess. 14, 266–289.
  • Bovet, L., Feller, U., and Martinoia, E. (2005). Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ. Int. 31, 263–267.
  • Boyle, D., Hogstrand, C., and Bury, N. R. (2011). Physiological response to a metal-contaminated invertebrate diet in zebrafish: importance of metal speciation and regulation of metal transport pathways. Aquat. Toxicol. 105, 21–28.
  • Brown, P. L., and Markich, S. J. (2000). Evaluation of the free ion activity model of metal-organism interaction: extension of the conceptual model. Aquat. Toxicol. 51, 177–194.
  • Buffle, J., Altmann, R. S., Filella, M., and Tessier, A. (1990). Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation. Geochim. Cosmochim. Acta 54, 1535–1553.
  • Buffle, J., and Cominoli, A. (1981). Voltammetric study of humic and fulvic substances. Part IV. Behaviour of fulvic substances at the mercury-water interface. J. Electroanal. Chem. Interfacial Electrochem. 121, 273–299.
  • Bury, N. R., Galvez, F., and Wood, C. M. (1999c). Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: comparison between rainbow trout and fathead minnows. Environ. Toxicol. Chem. 18, 56–62.
  • Bury, N. R., Groesell, M., Grover, A. K., and Wood, C. M. (1999a). ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol. Appl. Pharmacol. 159, 1–8.
  • Bury, N. R., McGeer, J. C., and Wood, C. M. (1999b). Effects of altering freshwater chemistry on physiological responses of rainbow trout to silver exposure. Environ. Toxicol. Chem. 18, 49–55.
  • Bury, N. R., and Wood, C. M. (1999). The mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+-channel. Am. J. Physiol. 277, 1385–1391.
  • Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier, A., Turner, D. R. (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). Chichester, UK: John Wiley & Sons.
  • Chapman, P. M. (1996). Hazard identification, hazard classification and risk assessment for metals and metal compounds in the aquatic environment. International Council on Metals and the Environment, Ottawa, Canada.
  • Chapman, P. M., Allen, H. E., Godtfredsen, K., Z'Graggen, M. N. (1996). Evaluation of bioaccumulation factors in regulating metals. Environ. Sci. Technol. 30, 448–452.
  • Christensen, J. B., Botma, J. J., and Christensen, T. H. (1999). Complexation of Cu and P by DOC in polluted groundwater: A comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2). Water Res. 33, 3231–3238.
  • Cooper, N. L., Bidwell, J. R., and Kumar, A. (2009). Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicol. Environ. Saf. 72, 1523–1528.
  • Cox, J. S., Smith, D. S., Warren, L. A., and Ferris, F. G. (1999). Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ. Sci. Technol. 33, 4514–4521.
  • Curie, C., Alonso, J. M., Le Jean, M., Ecker, J. R., and Briat, J. F. (2000). Involvement of Nramp1 from Arabidopsis thaliana in iron transport. Biochem. J. 347, 749–755.
  • Dardenne, F., Nobels, I., De Coen, W., and Blust, R. (2008). Mixture toxicity and gene inductions: can we predict the outcome? Environ. Toxicol. Chem. 27, 509–518.
  • Degryse, F., Smolders, E., and Merckx, R. (2006a). Labile Cd complexes increase availability to plants. Environ. Sci. Technol. 40, 830–836.
  • Degryse, F., Smolders, S., and Parker, D. R. (2006b). Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 289, 171–85.
  • Degryse, F., Verma, V. K., and Smolders, E. (2008). Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. Plant Soil 306, 69–84.
  • Diels, L., Tsezos, M., Pümpel, T., Pernfuss, P., Schinner, F., Hummel, A., Echard, L., and Glombitza, F. (1995). Pseudomonas mendocina AS302 a bacterium with a non selective and very high metal biosorption capacity. In: Jerez, C. A., Vargas, T., Toledo, H., Wiertz, J. V. (Eds.), Biohydrometallurgical processing (pp. 195–200). University of Chile, Santiago.
  • Dijkstra, J. J., Meeussen, J. C. L., and Comans, R. N. J. (2009). Evaluation of a generic multisurface sorption model for inorganic soil contaminants. Environ. Sci. Technol. 43, 6169–6201.
  • Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., and Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 20, 2383–2393.
  • Dong, J., Mao, W. H., Zhang, G. P., Wu, F. B., and Cai, Y. (2007). Root excretion and plant tolerance to cadmium toxicity—a review. Plant Cell Environ. 53, 193–200.
  • Eide, D., Broderius, M., Fett, J., and Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. U S A 93, 5624–5628.
  • Fairbrother, A., Wenstel, R., Sappington, K., Wood, W. (2007). Framework for metals risk assessment. Ecotoxicol. Environ. Saf. 68, 145–227.
  • Farinati, S., DalCorso, G., Varotto, S., Furini, A. (2010). The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol/ 18, 964–978.
  • Farley, K. J., Meyer, J. S., Balistrieri, L. S., De Schamphelaere, K. A. C., Iwasaki, Y., Janssen, C. R., Kamo, M., Lofts, S., Mebane, C. A., Naito, W., Ryan, A. C., Santore, R. C., and Tipping, E. (2015). Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches. Environ. Toxicol. Chem. 34, 741–753.
  • Fein, J. B., Daughney, C. J., Yee, N., and Davis, T. (1997). A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta 61, 3319–3328.
  • Flemming, H. C. (1995). Sorption sites in biofilms. Water Sci. Technol. 32, 27–33.
  • Gardea-Torresdey, J. L., Tiemann, K. J., Parsons, J. G., Gamez, G., Herrera, I., and Jose-Yacaman, M. (2002). XAS investigation into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass. Microchem. J. 71, 193–204.
  • Gibrat, R., Grouzis, J.-P., Rigaud, J., and Grignon, C. (1985). Electrostatic characteristics of corn root plasmalemma: effect on the Mg2+-ATPase activity. Biochim. Biophys. Acta 816, 349–357.
  • Gimmler, H., de Jesus, J., and Greiser, A. (2001). Heavy metal resistance of the extreme acidotolerant filamentous fungus Bispora sp. Microb. Ecol. 42, 87–98.
  • Gimmler, H., Schieder, M., Kowalski, M., and Zimmermann, U. (1991a). Dunaliella acidophila: an algae with a positive zeta potential at its optimal pH for growth. Plant Cell Environ. 14, 261–269.
  • Gimmler, H., Treffny, B., Kowalski, M., and Zimmermann, U. (1991b). The resistance of Dunaliella acidophila against heavy metals: the importance of the zeta potential. Plant Physiol. 138, 708–716.
  • Ginn, B. R., Szymanowski, J. S., and Fein, J. B. (2008). Metal and proton binding onto the roots of Fescue rubra. Chem. Geol. 253, 130–135.
  • Groenenberg, J. E., Dijkstra, J. J., Bonten, L. T. C., de Vries, W., and Comans, R. N. J. (2012). Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Environ. Pollut. 166, 98–107.
  • Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., and Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. U S A 95, 7220–7224.
  • Guerinot, M. L. (2000a). To improve nutrition for the world's population. Science 288, 1966–1967.
  • Guerinot, M. L. (2000b). The ZIP family of metal transporters. Biochim. Biophys. Acta 1465, 190–198.
  • Guerinot, M. L., and Eide, D. (1999). Zeroing in on zinc uptake in yeast and plants. Curr. Opin. Plant Biol. 2, 244–249.
  • Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L., and Hediger, M. A. (1997). Cloning and characterisation of a mammalian proton-coupled metal-iron transporter. Nature 388, 482–488.
  • Hall, J. L., and Williams, L. E. (2003). Transition metal transporters in plants. J. Exp. Bot. 54, 2601–2613.
  • Hamilton, S. J., and Mehrle, P. M. (1986). Metallothionein in fish: review of its importance in assessing stress from metal contaminants. Trans. Am. Fish. Soc. 115, 569–609.
  • Havelaar, A. C., De Gast, I. L., Snijders, S., Beerens, C. E. M. T., Mancini, G. M. S., and Verheijen, F. W. (1998). Characterization of a heavy metal ion transproter in the lysosomal membrane. FEBS Lett. 436, 223–227.
  • Hendriks, A. J., Pieters, H., de Boer, J. (1998). Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and eel from the Rhine and Meuse Rivers. Environ. Toxicol. Chem. 17, 1885–1898.
  • Hendriks, A. J., van der Linde, A., Cornelissen, G., and Sijm, D. T. H. M. (2001). The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ration and species weight. Environ. Toxicol. Chem. 20, 1399–1420.
  • Hering, J. G., and Morel, F. M. M. (1990). Kinetics of trace metal complexation: ligand exchange reactions. Environ. Sci. Technol. 24, 242–252.
  • Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237, 173–195.
  • Hollis, L., Burnison, K., and Playle, R. (1996). Does the age of metal-dissolved organic carbon complexes influence binding of metals to fish gills? Aquat. Toxicol. 35, 253–264.
  • Hollis, L., McGeer, J. C., McDonald, D. G., and Wood, C. M. (2000). Effects of long term sublethal Cd exposure in rainbow trout during soft water exposure: implications for biotic ligand modeling. Aquat. Toxicol. 51, 93–105.
  • Hollis, L., Muench, L., and Playle, R. C. (1997). Influence of dissolved organic matter on copper binding, and calcium on cadmium binding, by gills of rainbow trout. J. Fish Biol. 50, 703–720.
  • Huang, J. C., Lai, W. A., Hameed, A., Young, C. C. (2013). Response of mycorrhizal hybrid tomato cultivars under saline stress. J. Soil Sci. Plant Nutr. 13, 469–484.
  • Iwasaki, Y., Cadmus, P., and Clements, W. H. (2013). Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms. Aquat. Toxicol. 132–133, 151–156.
  • Janes, N., and Playle, R. (1995). Modeling silver binding to gills of rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 14, 1847–1858.
  • Jho, E. H., An, J., and Nam, K. (2011). Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data. Environ. Toxicol. Chem. 30, 1697–1703.
  • Julious, S. A. (2004). Using confidence intervals around individual means to assess statistical significance between two means. Pharmaceut. Stat. 3, 217–222.
  • Kabata-Pendia, A., and Pendias, H. (1984). Trace elements in soils and plants. Boca Raton, FL: CRC Press.
  • Kalis, E. J. J., Temminghoff, E. J. M., Weng, L., van Riemsdijk, W. H. (2006). Effects of humic acid and competing cations on metal uptake by Lolium perenne. Environ. Toxicol. Chem. 25, 702–711.
  • Kamo, M., and Nagai, T. (2008). An application of the biotic ligand model to predict the toxic effects of metal mixtures. Environ. Toxicol. Chem. 27, 1479–1487.
  • Kapoor, A., and Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61, 221–227.
  • Ke, H. Y. D., and Rayson, G. D. (1992). Chracterization of Cd binding sites on Datura innoxia using 113Cd NMR Spectrometry. Environ. Sci. Technol. 26, 1202–1205.
  • Khan, F. R., Keller, W. B., Yan, N. D., Welsh, P. G., Wood, C. M., McGeer, J. C. (2012). Application of biotic ligand and toxic unit modelling approaches to predict improvements in zooplankton species richness in smelter damages lakes near Sudbury, Ontario. Environ. Sci. Technol. 46, 1641–1649.
  • Kinraide, T. B. (1994). Use of a Gouy-Chapman-Stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiol. 106, 1583–1592.
  • Kinraide, T. B. (1998). Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol. 118, 513–520.
  • Kinraide, T. B. (1999). Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J. Exp. Bot. 50, 1495–1505.
  • Kinraide, T. B. (2001). Ion fluxes considered in terms of membrane-surface electrical potentials. Aust. J. Plant Physiol. 28, 605–616.
  • Kinraide, T. B. (2003). Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur. J. Soil Sci. 54, 323–333.
  • Kinraide, T. B. (2006). Plasma membrane surface potential (ψPM) as a determinant of ion bioavailability: a critical analysis of new and published toxicological studies and a simplified method for the computation of plant ψPM. Environ. Toxicol. Chem. 25, 3188–3198.
  • Kinraide, T. B., Pedler, J. F., and Parker, D. R. (2004). Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminium, sodium, and low pH. Plant Soil 259, 201–208.
  • Kinraide, T. B., and Yermiyahu, U. (2007). A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J. Inorg. Biochem. 101, 1201–1213.
  • Kinraide, T. B., Yermiyahu, U., and Rytwo, G. (1998). Computation of surface electrical potentials of plant cell membranes. Plant Physiol. 118, 505–512.
  • Kopittke, P. M., Blamey, F. P. C., Wang, P., and Menzies, N. W. (2011). Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings. J. Exp. Bot. 62, 3393–4001.
  • Korshunova, Y. O., Eide, D., Clark, W. G., Guerinot, M. L., and Pakrasi, H. B. (1999). The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 40, 37–44.
  • Krab, K., Wagner, M. J., Wagner, A. M., and Moller, I. M. (2000). Identification of the site where the electron transfer chain of plant mitochondria is stimulated by electrostatic charge screening. Eur. J. Biochem. 267, 869–876.
  • Kratochvil, D., and Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291–300.
  • Langston, W. J., and Bryan, G. W. (1984). The relationship between metal speciation in the environment and bioaccumulation in aquatic organisms. In: C. J. M. Kramer and J. C. Duinker (Eds.), Complexation of trace metals in natural waters (pp. 375–392). Hague, the Netherlands: Nijhoff/Junk.
  • Le, T. T. Y., and Hendriks, A. J. (2014). Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil. Sci. Total Environ. 490, 44–49.
  • Le, T. T. Y., Peijnenburg, W. J. G. M., Hendriks, A. J., and Vijver, M. G. (2012). Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. Environ. Toxicol. Chem. 31, 355–359.
  • Le, T. T. Y., Swartjes, F., Römkens, P., Groenenberg, J. E., Wang, P., Lofts, S., and Hendriks, A. J. (2015). Modelling metal accumulation using humic acid as a surrogate for plant roots. Chemosphere 124, 61–69.
  • Le, T. T. Y., Vijver, M. G., Hendriks, A. J., and Peijnenburg, W. J. G. M. (2013b). Modeling toxicity of binary metal mixtures (Cu2+–Ag+, Cu2+–Zn2+) to lettuce, Lactuca sativa, with the biotic ligand model. Environ. Toxicol. Chem. 32, 137–143.
  • Le, T. T. Y., Vijver, M. G., Kinraide, T. B., Peijnenburg, W. J. G. M., and Hendriks, A. J. (2013a). Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu2+–Zn2+ and Cu2+–Ag+). Environ. Pollut. 176, 185–192.
  • Le, T. T. Y., Wang, P., Vijver, M. G., Kinraide, T. B., Hendriks, A. J., and Peijnenburg, W. J. G. M. (2014). Delineating ion-ion interactions by electrostatic modelling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa. Environ. Toxicol. Chem. 33, 1988–1995.
  • Lee, J., Pena, M. M., Nose, Y., and Thiele, D. J. (2002). Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 227, 4380–4387.
  • Leszczyszyn, Ol., Iman, H. T., and Blindauer, C. A. (2013). Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5, 1146–1169.
  • Lindberg, S., Landberg, T., and Greger, M. (2004). A new method to detect cadmium uptake in protoplasts. Planta 214, 526–532.
  • Linderman, R. G., and Davis, E. A. (2004). Vesicular arbuscular mycorrhizal and plant growth response to soil amendment with composed grape promac or its water extract. Phyton Ann. Bot. 11, 446–450.
  • Liu, Y., Vijver, M. G., and Peijnenburg, W. J. G. M. (2014). Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu–Ni, Cu–Zn and Cu–Ag) to lettuce (Lactuca sativa L.). Chemosphere 112, 282–288.
  • Llamas, A., Ullrich, C. I., and Sanz, A. (2000). Cd2+ effects on transmembrane electrical potential difference, respiration, and membrane permeability of rice (Oryza sativa) roots. Plant Soil 219, 21–28.
  • Lock, K., De Schamphelaere, K. A. C., Because, S., Criel, P., van Eeckhout, H., and Janssen, C. R. (2007a). Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare). Environ. Pollut. 147, 626–633.
  • Lock, K., van Eeckhout, H., De Schamphelaere, K. A. C., Criel, P., and Janssen, C. R. (2007b). Development of a biotic ligand model (BLM) predicting nickel toxicity to barley. Chemosphere 66, 1346–1352.
  • Loewe, S., and Muischnek, H. (1926). Effect of combinations: mathematical basis of problem. Naunyn-Schmiedebergs Archiv fur Experimentelle Pathologie und Pharmakologie 114, 313–326.
  • Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F. J., Hawkesford, M. J., McGrath, S. P. (2002). Influence of iron status on calcium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 128, 1359–1367.
  • Luo, X. S., Li, L. Z., Zhou, D. M. (2008). Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model. Chemosphere 73, 401–406.
  • Luoma, S. N. (1983). Bioavailability of trace metals to aquatic organisms—a review. Sci. Total Environ. 28, 1–22.
  • MacFarlane, G. R., and Burchett, M. D. (2003). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk) Vierh. Mar. Environ. Res. 54, 65–84.
  • Manzo, S., Buono, S., and Cremisini, C. (2010). Cadmium, lead and their mixtures with copper: Patracentrotus lividus embryotoxcicity assessment, prediction, and offspring quality evaluation. Ecotoxicology 19, 1209–1223.
  • Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., Talke, I. N., Amtmann, A., Maathuis, F. J. M., Sanders, D., Harper, J. F., Tchieu, J., Gribskov, M., Persnans, M. W., Salt, D. E., Kim, S. A., and Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter family of Arabidopsis. Plant Physiol. 126, 1646–1667.
  • Mason, A. Z., and Jenkins, K. D. (1995). Metal detoxification in aquatic organisms. In: A. Tessier and D. R. Turner (Eds). Metal speciation and bioavailability in aquatic systems (pp. 479–608). Chichester, UK: John Wiley & Sons.
  • McDonald, D. G., and Wood, C. M. (1993). Branchial mechanisms of acclimation to metals in freshwater fish. In: J. C. Rankin and F. B. Jensen (Eds.), Fish ecophysiology (pp. 297–321). London: Chapman and Hall.
  • McGeer, J. C., Brix, K. V., Skeaff, J. M., DeForest, D. K., Brigham, S. I., Adams, W. J., and Green, A. (2003). Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem. 22, 1017–1037.
  • McGeer, J. C., Playle, R. C., Wood, C. M., and Galvez, F. (2000). A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwaters. Environ. Sci. Technol. 34, 4199–4207.
  • McLaughlin, M., Smolders, E. A. A., Degryse, F., and Rietra, R. P. J. J. (2011). Uptake of metals from soil into vegetables. In: F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (pp. 325–367). Dordrecht, Springer .
  • Merce, A. L. R., Landaluze, J. S., Mangrich, A. S., Szpoganicz, B., and Sierakowski, M. R. (2001). Complexes of arabinogalactan of Pereskia aculeate and Co2+, Cu2+, Mn2+, and Ni2+. Bioresour. Technol. 76, 29–37.
  • Meychik, N. R., and Yermakov, I. P. (2001). Ion exchange properties of plant root cell walls. Plant Soil 234, 181–193.
  • Meyer, J. (1999). A mechanistic explanation for the ln(LC50) vs. ln(hardness) adjustment equation for metals. Environ. Sci. Technol. 33, 908–912.
  • Meyer, J. S., Farley, K. J., and Garman, E. R. (2015a). Metal mixtures modeling evaluation project: 1. Background. Environ. Toxicol. Chem. 34, 726–740.
  • Meyer, J. S., Ranville, J. F., Pontasch, M., Gorsuch, J. W., and Adams, W. J. (2015b). Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna. Environ. Toxicol. Chem. 34, 799–808.
  • Mills, R. F., Francini, A., da Rocha, P. S. C. F., Baccarini, P. J., Aylett, M., Krijger, G. C., and Williams, L. E. (2005). The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett. 597, 783–791.
  • Milne, C. J., Kinniburgh, D. G., de Wit, J. C. M., van Riemsdijk, W. H., and Koopal, L. K. (1995). Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geochim. Cosmochim. Acta 59, 1101–1112.
  • Moller, I. M., Lundborg, T., and Bérczi, A. (1984). The negative surface charge density of plasmalemma vesicles from wheat and oat roots. FEBS Lett. 167, 181–185.
  • Morel, F. M. M. (1983). Principles of aquatic chemistry. New York: Wiley-Interscience.
  • Morel, F., and Hering, J. (1993). Principles and applications of aquatic chemistry. New York: John Wiley.
  • Morgan, I. J., Henry, R. P., and Wood, C. M. (1997). The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl− transport. Aquat. Toxicol. 38, 145–163.
  • Mozdzer, T. J., Kramarz, P., Piskiewicz, A., and Niklinska, M. (2003). Effects of cadmium and zinc on larval growth and survival in the ground beetle, Pterostichus oblongopunctatus. Environ. Int. 28, 737–742.
  • Nagata, T., and Melchers, G. (1978). Surface charge of protoplasts and their significance in cell-cell interaction. Planta 142, 235–238.
  • Nedelkoska, T. V., and Doran, P. M. (2000). Characteristics of heavy metal uptake by plant species with potential for phytomediation and phytomining. Minerals Eng. 13, 549–561.
  • Newman, M. C., and Jagoe, C. H. (1994). Ligands and the bioavailability of metals in aquatic environments. In: J. L. Hamelink, P. F. Landrum, H. L. Bergman, and W. H. Bensen (Eds.), Bioavailability: Physical, chemical and biological interactions (pp. 39–61). Boca Raton, FL: CRC.
  • Niyogi, S., and Wood, C. M. (2003). Effects of chronic waterborne and dietary metal exposures on gill metal-binding: implications for the biotic ligand model. Hum. Ecol. Risk Assess. 4, 813–846.
  • Niyogi, S., and Wood, C. M. (2004). Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ. Sci. Technol. 38, 6177–6192.
  • Nobel, P. S. (1961). Physicochemical and environmental plant physiology. San Diego, CA: Academic.
  • Norwood, W. P., Borgmann, U., Dixon, D. G., and Wallance, A. (2003). Effects of metal mixtures on aquatic biota: a review of observations and methods. Hum. Ecol. Risk Assess. 4, 795–811.
  • Obi, I., Ichikawa, Y., Kakutani, T., and Senda, M. (1989a). Electrophoretic studies on plant protoplasts. I. pH dependence of zeta potentials of protoplasts from various sources. Plant Cell Physiol. 30, 439–444.
  • Obi, I., Ichikawa, Y., Kakutani, T., and Senda, M. (1989b). Electrophoresis, zeta potential and surface charges of barley mesophyll protoplasts. Plant Cell Physiol. 30, 129–135.
  • Oka, K., Ikeshima, H., Ishikawa, H., Ohta, E., and Sakata, M. (1988). Surface charge density estimation of Vigna mungo protoplasts using a fluorescent dye, 9-aminoacridine. Plant Cell Physiol. 29, 771–775.
  • Otitoloju, A. A. (2002). Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.). Ecotoxicol. Environ. Saf. 53, 404–415.
  • Pagenkopf, G. K. (1983). Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH and water hardness. Environ. Sci. Technol. 17, 342–347.
  • Pagenkopf, G. K. (1986). Metal ion speciation and toxicity in aquatic systems. In: H. Sigel, (Ed.), Metal ions in biological systems. New York: Marcel Dekker. Vol 20: Concepts on metal ion activity.
  • Pagenkopf, G. K., Russo, R. C., and Thurston, R. V. (1974). Effect of complexation on toxicity of copper to fishes. J. Fish. Res. Board Can. 31, 462–465.
  • Paquin, P. R., Zoltay, V., Winfield, R. P., Wu, K. B., Mathew, R., Santore, R. C., Di Toro, D. M. (2002). Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver. Compar. Biochem. Physiol. C 133, 305–343.
  • Parker, D. R., Chaney, R. L., and Norwell, W. A. (1995). Chemical equilibrium models: Applications to plant nutrition research. In: R. H. Loeppert, A. P. Schwab, and S. Goldberg, (Eds.), Chemical equilibrium and reaction models (pp. 163–200). Madison, WI: Soil Sci Soc Amer Spec Pub.
  • Parker, D. R., and Pedler, J. F. (1997). Reevaluating the free-ion activity model of trace metal availability to higher plants. Plant Soil 196, 223–228.
  • Parsons, J. G., Gardea-Torresdey, J. L., Tiemann, K. J., Gonzales, J. H., Peralta-Vieta, J., Gonzales, E., and Herrera, I. (2002). Absorption and emission spectroscopy investigation of the phyto-extraction of europium(III) nitrate from aqueous solutions by alfalfa biomass. Microchem. J. 71, 175–183.
  • Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L. D., Lasat, M. M., Garvin, D. F., Eide, D., and Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl. Acad. U S A 97, 4956–4960.
  • Pinheiro, J. P., and van Leeuwen, H. P. (2001). Metal speciation dynamics and bioavailability. 2. Radial diffusion effects in the microorganism range. Environ. Sci. Technol. 35, 890–900.
  • Playle, R. C. (1998). Modelling metal interactions at fish gills. Sci. Total Environ. 219, 147–163.
  • Playle, R. C. (2004). Using multiple metal-gill binding models to the toxic unit concept to help reconcile multiple-metal toxicity results. Aquat. Toxicol. 67, 359–370.
  • Playle, R. C., Dixon, D. G., and Burnison, K. (1993a). Copper and cadmium-binding to fish gills—estimates of metal gill stability constants and modeling of metal accumulation. Can. J. Fish Aquat. Sci. 50, 2678–2687.
  • Playle, R. C., Dixon, D., and Burnison, K. (1993). Copper and cadmium binding to fish gills: modification by dissolved organic carbon and synthetic ligands. Can. J. Fish. Aquat. Sci. 50, 2667–2677.
  • Playle, R., Gensemer, R., and Dixon, D. (1992). Copper accumulation on gills of fathead minnows—influence of water hardness, complexation, and pH of the gill micro-environment. Environ. Toxicol. Chem. 11, 381–391.
  • Pollard, A. J., Powell, K. D., Harper, F. A., and Smith, J. A. C. (2002). The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci. 21, 539–566.
  • Portnoy, M. E., Liu, X. F., and Culotta, V. C. (2000). Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. Mol. Cell. Biol. 20, 7893–7902.
  • Rea, P. A. (2007). Plant ATP-binding cassette transporters. Ann. Rev. Plant Biol. 58, 347–375.
  • Richards, J., and Playle, R. (1998). Cobalt binding to gills of rainbow trout (Oncorhynchus mykiss): an equilibrium model. Compar. Biochem. Physiol. C 119, 185–197.
  • Rudakova, E. V., Karkis, K. D., and Sidorshina, E. I. (1988). The role of plant cell walls in absorption and accumulation of metal ions. Fiziologiya I Biokhimiya Kulturnykh Rastenii 20, 3–12.
  • Saleh, A. A. H., El-Meleigy, S. A., Ebad, F. A., Helmy, M. A., Jentschke, G., and Godbold, D. L. (1999). Base cations ameliorate Zn toxicity but not Cu toxicity in sugar beet (Beta vulgaris). J. Plant Nutr. Soil Sci. 62, 275–279.
  • Santore, C., Di Toro, D. M., Paquin, P. R., Allen, H. E., and Meyer, J. S. (2001). Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ. Toxicol. Chem. 20, 2397–2402.
  • Santore, R. C., and Ryan, A. C. (2015). Development and application of a multimetal multibiotic ligand model for assessing aquatic toxicity of metal mixtures. Environ. Toxicol. Chem. 34, 777–787.
  • Schneider, I. A. H., Rubio, J., and Smith, R. W. (2001). Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Int. J. Mineral Process. 62, 111–120.
  • Schwab, A. P., He, Y. H., and Banks, M. K. (2005). The influence of organic ligands on the retention of lead in soil. Chemosphere 61, 856–866.
  • Seregin, I. V., and Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian J. Plant Physiol. 53, 257–277.
  • Shuhaimi-Othman, M., and Pascoe, D. (2007). Bioconcentration and depuration of copper, cadmium and zinc mixtures by the freshwater amphipod Hyalella azteca. Ecotoxicol. Environ. Saf. 66, 29–35.
  • Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404.
  • Slaveykova, V. I., and Wilkinson, K. J. (2005). Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ. Chem. 2, 9–24.
  • Slaveykova, V. I., Wilkinson, K. J., Ceresa, A., and Pretsch, E. (2003). Role of fulvic acid on lead bioaccumulation by Chlorella kesslerii. Environ. Sci. Technol. 37, 1114–1121.
  • Spark, D. L. (1995). Environmental soil chemistry (pp. 81–97.). San Diego, CA: Academic Press.
  • Steenbergen, N. T. T. M., Iaccino, F., Winkel, M. D., Reijnders, L., Peinenburg, W. J. G. M. (2005). Development of a biotic ligand model and a regression model predicting acute copper toxicity to earthworm Aporrectodea caligninosa. Environ. Sci. Technol. 39, 5694–5702.
  • Stockdale, A., Tipping, E., Lofts, S., Ormerod, S., Clements, W., and Blust, R. (2010). Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquat. Toxicol. 100, 112–119.
  • Suhayda, C. G., Giannini, J. L., Briskin, D. P., and Shannon, M. C. (1990). Electrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress. Plant Physiol. 93, 471–478.
  • Sunda, W. G., and Guillard, R. R. (1976). Relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res. 34, 511–529.
  • Sunda, W. G., and Huntsman, S. A. (1983). Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of diatom Thalassiosira. Limnol. Oceanogr. 28, 924–934.
  • Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F. J., McGrath, S. (2006a). A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ. Sci. Technol. 40, 7085–7093.
  • Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F. J., McGrath, S., Criel, P., van Eeckhout, H., Janssen, C. R., Oorts, K., and Smolders, E. (2006b). Terrestrial biotic ligan model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ. Sci. Technol. 40, 7094–7100.
  • Thomann, R. V. (1989). Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23, 699–707.
  • Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., and Schroeder, J. I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. U S A 97, 4991–4996.
  • Tiemann, K. J., Gardea-Torresdey, J. L., Gamez, G., Kenneth, D., Renner, M. W., and Furenlid, L. R. (1999). Use of X-ray absorption spectroscopy and esterification to investigate the nickel(II) and chromium(III) ligands in alfalfa biomass. Environ. Sci. Technol. 33, 150–154.
  • Tipping, E. (1994). WHAM – a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput. Geosci. 20, 973–1023.
  • Tipping, E. (1998). Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 4, 3–48.
  • Tipping, E., and Lofts, S. (2013). Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model. Aquat. Toxicol. 142–143, 114–122.
  • Tipping, E., and Lofts, S. (2015). Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environ. Toxicol. Chem. 34, 788–798.
  • Tipping, E., Lofts, S., and Sonke, J. E. (2011). Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 8, 225–235.
  • Tipping, E., Vincent, C. D., Lawlor, A. J., and Lofts, S. (2008). Metal accumulation by stream bryophytes, related to chemical speciation. Environ. Pollut. 156, 936–943.
  • Tobin, J. M., Cooper, D. G., and Neufeld, R. J. (1984). Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47, 821–824.
  • Traudt, E. M., Ranville, J. F., Smith, S. A., and Meyer, J. S. (2016). A test of the additivity of acute toxicity of binary-metal mixtures of Ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves. Environ. Toxicol. Chem. 35, 1843–1851.
  • Tsezos, M. (1983). The role of chitin in uranium adsorption by R. arrhizus. Biotechnol. Bioeng. 25, 2025–2040.
  • Tsezos, M., and Remoundaki, E. (1997). Recent advances in the mechanistic understanding of metals mobility and interaction with microbial biomass. Res. Microbiol. 148, 515–517.
  • Tsezos, M., Remoundaki, E., and Angelatou, V. (1997). Biosorption sites of selected elements using electron microscopy. Compar. Biochem. Physiol. 118, 481–487.
  • Tsezos, M., Remoundaki, E., and Hatzikioseyian, A. (2006). Bisorption—Principles and applications for metal immobilization from waste-water streams. Proceedings of EU-Asia Workshop on Clean Production and Nanotechonologies. Seoul, Korea, pp. 23–33.
  • Tyerman, S. D., Skerrett, M., Garrill, A., Findlay, G. P., and Leigh, R. A. (1997). Pathways for the permeation of Na+ and Cl− into protoplasts derived from the cortex of wheat roots. J. Exp. Bot. 48, 459–480.
  • US EPA (U.S. Environmental Protection Agency). (2007). Aquatic life ambient freshwater quality criteria—Copper. 2007 revision. EPA 82/R-07/001. US Environmental Protection Agency, Washington, DC, USA.
  • van der Zaal, B. J., Neuteboom, L. W., Pina, J. E., Chardonnens, A. N., Schat, H., Verkleij, J. A. C., and Hooykaas, P. I. J. (1999). Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 199, 1047–1055.
  • van Leeuwen, H. P. (1999). Metal speciation dynamics and bioavailability: inert and labile complexes. Environ. Sci. Technol. 33, 3743–3748.
  • Verheyen, L., Versieren, L., and Smolders, E. (2014). Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata( Korschikov) in resin buffered solutions. Aquat. Toxicol. 154, 80–86.
  • Verret, F., Gravot, A., Auroy, P., Leonhardt, N., David, P., Nussaume, L., Vavasseur, A., and Richaud, P. (2004). Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett. 576, 306–312.
  • Viarengo, A. (1985). Biochemical effects of trace-metals. Mar. Pollut. Bull. 16, 153–158.
  • Voigt, A., Hendershot, W. H., and Sunahara, G. I. (2006). Rhizotoxicity of cadmium and copper in soil extracts. Environ. Toxicol. Chem. 25, 692–701.
  • Wagatsuma, T., and Akiba, R. (1989). Low surface negativity of root protoplasts from aluminium-tolerant plant species. Soil Sci. Plant Nutr. 35, 443–452.
  • Wang, P., Kopittke, P. M., De Schamphelaere, K. A. C., Zhao, F.-J., Zoud, D.-M., Lock, K., Ma, Y.-B., Peijnenburg, W. J. G. M., and McGrath, S. P. (2011a). Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytol. 192, 414–427.
  • Wang, P., Kinraide, T. B., Zhou, D.-M., Kopittke, P. M., and Peijnenburg, W. J. G. M. (2011b). Plasma membrane surface potential: dual effects upon ion uptake and toxicity. Plant Physiol. 155, 808–820.
  • Wang, Y.-M., Kinraide, T. B., Wang, P., Zhou, D.-M., and Hao, X.-Z. (2013). Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential. Environ. Sci. Technol. 47, 2831–2838.
  • Wang, Y.-M., Wang, P., Ni, L.-F., Hao, Z.-Z., and Zhou, D.-M. (2014). Assessment of the Zn-Co mixtures rhizotoxicity under Ca deficiency: using two conventional mixture models based on the cell membrane surface potential. Chemosphere 112, 232–239.
  • Wang, P., Zhou, D.-M., Peijnenburg, W. J. G. M., Li, L.-Z., and Weng, N. (2010). Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant Soil 334, 277–288.
  • Webb, N. A., and Wood, C. M. (1998). Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 17, 579–588.
  • Weng, L. P., Wolthoorn, A., Lexmond, T. M., Temminghoff, E. J. M., van Riemsdijk, W. H. (2004). Understanding the effects of soil charactersitics on phytotoxicity and bioavailability of nickel using speciation model. Environ. Sci. Technol. 38, 156–162.
  • Wilkinson, K. J., and Buffle, J. (2004). Critical evaluation of physicochemical parameters and processes for modeling the biological uptake of trace metals in environment (aquatic) systems. In: H. P. van Leewen and W. Koester (Eds.), Physicochemical kinetics and transport at biointerfaces (pp. 447–533). IUPAC Series in Analytical and Physical Chemistry of Environmental Systems, John Wiley & Sons, Chichester.
  • Williams, L. E., Pittman, J. K., and Hall, J. L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta – Biomembr. 1465, 104–126.
  • Windward Environment LLC. (2017). Biotic ligand model. http://www.windwardenv.com/biotic-ligand-model/. Accessed 10 April 2017.
  • Wood, C. M., Adams, W. J., Ankley, G. T. (1997). Environmental toxicity of metals. In: Bergman, H. L., and Dorward-King, E. J. ( 1997). Reassessment of metals criteria for aquatic life protection (pp. 31–55). Pensacola, FL: SETAC.
  • Wood, C. M., Hogstrand, C., Galvez, F., and Munger, R. S. (1996). The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of silver nitrate. Aquat. Toxicol. 35, 93–109.
  • Wood, C., Playle, R., and Hogstrand, C. (1999). Physiology and modelling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem. 18, 71–83.
  • Worms, I., Simon, D. F., Hassler, C. S., and Wilkinson, K. J. (2006). Bioavailability of trace metals to aquatic microorganisms, importance of chemical, biological and physical processes on biouptake. Biochimie 88, 1721–1731.
  • Wu, Y., and Hendershot, W. H. (2009). Cation exchange capacity and proton binding properties of pea (Pisum sativum L.) roots. Water Air Soil Pollut. 200, 353–369.
  • Yang, X., Feng, Y., He, Z., and Stoffella, P. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Med. Biol. 18, 339–353.
  • Zhang, Q., Smith, F. A., Sekimoto, H., and Reid, R. J. (2001). Effect of membrane surface charge on nickel uptake by purified mung bean root protoplasts. Planta 213, 788–793.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.