1,323
Views
69
CrossRef citations to date
0
Altmetric
Articles

Pyrogenic carbon and its role in contaminant immobilization in soils

, , , , ORCID Icon, , , , & show all
Pages 795-876 | Published online: 13 Jul 2017

References

  • Accardi-Dey, A., and Gschwend, P. M. (2001). Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ. Sci. Technol. 36, 21–29.
  • Accardi-Dey, A., and Gschwend, P. M. (2002). Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ. Sci. Technol. 37, 99–106.
  • Agarwal, T., and Bucheli, T. D. (2011). Adaptation, validation and application of the chemo-thermal oxidation method to quantify black carbon in soils. Environ. Pollut. 159, 532–538.
  • Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C., and Ok, Y. S. (2017). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J. Soils Sedim. 17, 717–730.
  • Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., Lee, Y. H., Al-Wabel, M. I., Lee, S. E., and Lee, S. S. (2016). Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 301, 179–186.
  • Ahmad, M., Lee, S. S., Yang, J. E., Ro, H.-M., Young, H. L., and Ok, Y. S. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol. Environ. Saf. 79, 225–231.
  • Ahmad, M., Lee, S. S., Oh, S. E., Mohan, D., Moon, D. H., Lee, Y. H., and Ok, Y. S. (2013a). Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environ. Sci. Pollut. Res. 20, 8364–8373.
  • Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., Lee, S. E., and Ok, Y. S. (2013b). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol. 143, 615–622.
  • Ahmad, M., Lee, S. S., Lim, J. E., Lee, S.-E., Cho, J. S., Moon, D. H., Hashimoto, Y., and Ok, Y. S. (2014a). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95, 433–441.
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S. (2014b). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33.
  • Ahmad, M., Ok, Y. S., Kim, B. Y., Ahn, J. H., Lee, Y. H., Zhang, M., Moon, D. H., Al-Wabel, M. I., and Lee, S. S. (2016). Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J. Environ. Manage. 166, 131–139.
  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., and Guo, W. (2016). Insight into biochar properties and its cost analysis. Biomass Bioenergy 84, 76–86.
  • Ali, U., Bajwa, A., Iqbal Chaudhry, M. J., Mahmood, A., Syed, J. H., Li, J., Zhang, G., Jones, K. C., and Malik, R. N. (2016). Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan. Ecotoxicol. Environ. Saf. 126, 177–185.
  • Antal, M. J., and Grønli, M. (2003). The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640.
  • Apell, J. N., and Gschwend, P. M. (2014). Validating the use of performance reference compounds in passive samplers to assess porewater concentrations in sediment beds. Environ. Sci. Technol. 48, 10301–10307.
  • Atkinson, C. J., Fitzgerald, J. D., and Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1–18.
  • Bakshi, S., He, Z. L., and Harris, W. G. (2014). Biochar amendment affects leaching potential of copper and nutrient release behavior in contaminated sandy soils. J. Environ. Qual. 43, 1894–1902.
  • Baldock, J. A., and Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochem. 33, 1093–1109.
  • Bärring, H., Bucheli, T. D., Broman, D., and Gustafsson, O. (2002). Soot-water distribution coefficients for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenylethers determined with the soot cosolvency-column method. Chemosphere 49, 515–523.
  • Barzi, F., Naidu, R., and McLaughlin, M. J. 1996. Contaminants and the Australian soil environment. In: R. Naidu, R. S. Kookana, D. P. Oliver, S. Rogers, and M. J. McLaughlin (Eds.), Contaminants and the soil environment in the Australasia-Pacific region (pp. 451–484). Netherlands: Springer.
  • Beauchemin, S., Clemente, J. S., MacKinnon, T., Tisch, B., Lastra, R., Smith, D., and Kwong, J. (2015). Metal leaching in mine tailings: Short-term impact of biochar and wood ash amendments. J. Environ. Qual. 44, 275–285.
  • Beesley, L., and Dickinson, N. (2011). Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 43, 188–196.
  • Beesley, L., and Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 159, 474–480.
  • Beesley, L., Moreno-Jiménez, E., and Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158, 2282–2287.
  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., and Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 159, 3269–3282.
  • Betts, A. R., Chen, N., Hamilton, J. G., and Peak, D. (2013). Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. Environ. Sci. Technol. 47, 14350–14357.
  • Bian, R., Chen, D., Liu, X., Cui, L., Li, L., Pan, G., Xie, D., Zheng, J., Zhang, X., Zheng, J., and Chang, A. (2013). Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecol. Eng. 58, 378–383.
  • Bird, M. I., and Ascough, P. L. (2012). Isotopes in pyrogenic carbon: A review. Organic Geochem. 42, 1529–1539.
  • Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A. (2015). The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298.
  • Bolan, N., Adriano, D., and Mahimairaja, S. (2004). Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit. Rev. Environ. Sci. Technol. 34, 291–338.
  • Bornemann, L. C., Kookana, R. S., and Welp, G. (2007). Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere 67, 1033–1042.
  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277, 1–18.
  • Brändli, R. C., Breedveld, G. D., and Cornelissen, G. (2009). Tributyltin sorption to marine sedimentary black carbon and to amended activated carbon. Environ. Toxicol. Chem. 28, 503–508.
  • Bräunig, J., Tang, J. Y. M., Warne, M. S. J., and Escher, B. I. (2016). Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon. Chemosphere 156, 181–190.
  • Brennan, A., Moreno Jiménez, E., Alburquerque, J. A., Knapp, C. W., and Switzer, C. (2014). Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ. Pollut. 193, 79–87.
  • Brewer, C. E., Schmidt‐Rohr, K., Satrio, J. A., and Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy 28, 386–396.
  • Brodowski, S., Amelung, W., Haumaier, L., and Zech, W. (2007). Black carbon contribution to stable humus in German arable soils. Geoderma 139, 220–228.
  • Brodowski, S., Rodionov, A., Haumaier, L., Glaser, B., and Amelung, W. (2005). Revised black carbon assessment using benzene polycarboxylic acids. Organic Geochem. 36, 1299–1310.
  • Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., Dam-Johansen, K. (2011). Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35, 1182–1189.
  • Bucheli, T. D., Blum, F., Desaules, A., and Gustafsson, Ö. (2004). Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56, 1061–1076.
  • Bucheli, T. D., and Gustafsson, Ö. (2000). Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ. Sci. Technol. 34, 5144–5151.
  • Bucheli, T. D., and Gustafsson, Ö. (2003). Soot sorption of non-ortho and ortho substituted PCBs. Chemosphere 53, 515–522.
  • Burton, E. D., Phillips, I. R., Hawker, D. W., and Lamb, D. T. (2005). Copper behaviour in a Podosol. 1. pH-dependent sorptiondesorption, sorption isotherm analysis, and aqueous speciation modelling. Soil Res. 43, 491–501.
  • Bushnaf, K. M., Puricelli, S., Saponaro, S., and Werner, D. (2011). Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J. Contam. Hydrol. 126, 208–215.
  • Cabrera, A., Cox, L., Spokas, K. A., Celis, R., Hermosín, M. C., Cornejo, J., and Koskinen, W. C. (2011). Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. J. Agric. Food Chem. 59, 12550–12560.
  • Cai, M. H., Lin, J., Hong, Q. Q., Wang, Y., and Cai, M. G. (2011). Content and distribution of trace metals in surface sediments from the northern Bering Sea, Chukchi Sea and adjacent Arctic areas. Mar. Pollut. Bull. 63, 523–527.
  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., and Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419–428.
  • Cao, X., and Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 101, 5222–5228.
  • Cao, X., Ma, L., Gao, B., and Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 43, 3285–3291.
  • Cao, X., Ma, L., Liang, Y., Gao, B., and Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ. Sci. Technol. 45, 4884–4889.
  • Chai, Y., Currie, R. J., Davis, J. W., Wilken, M., Martin, G. D., Fishman, V. N., and Ghosh, U. (2012). Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ. Sci. Technol. 46, 1035–1043.
  • Chai, Y., Davis, J. W., Wilken, M., Martin, G. D., Mowery, D. M., and Ghosh, U. (2011). Role of black carbon in the distribution of polychlorinated dibenzo-p-dioxins/dibenzofurans in aged field-contaminated soils. Chemosphere 82, 639–647.
  • Chan, K. Y., and Xu, Z. (2009). Biochar: nutrient properties and their enhancement. Biochar for environmental management: science and technology (pp. 67–84). London. Sterling, VA: Earthscan.
  • Chen, Z., Luo, L., Xiao, D., Lv, J., Wen, B., Ma, Y., and Zhang, S. (2017). Selected dark sides of biomass-derived biochars as environmental amendments. J. Environ. Sci. 54, 13–20.
  • Chen, X., Xia, X., Zhao, Y., and Zhang, P. (2010). Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 181, 640–646.
  • Chen, B., and Yuan, M. (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J. Soils Sedim. 11, 62–71.
  • Chen, B., Yuan, M., and Qian, L. (2012). Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J. Soils Sedim. 12, 1350–1359.
  • Chen, B., Zhou, D., and Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137–5143.
  • Chen, S.-B., Zhu, Y.-G., Ma, Y.-B., and McKay, G. (2006). Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environ. Pollut. 139, 433–439.
  • Chen, J., Zhu, D., and Sun, C. (2007). Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol. 41, 2536–2541.
  • Cheng, C. H., Lin, T. P., Lehmann, J., Fang, L. J., Yang, Y. W., Menyailo, O. V., Chang, K. H., and Lai, J. S. (2014a). Sorption properties for black carbon (wood char) after long term exposure in soils. Organic Geochem. 70, 53–61.
  • Cheng, G., Zhu, L., Sun, M., Deng, J., Chen, H., Xu, X., Lou, L., and Chen, Y. (2014b). Desorption and distribution of pentachlorophenol (PCP) on aged black carbon containing sediment. J. Soils Sedim. 14, 344–352.
  • Cheng, C.-H., Lehmann, J., Thies, J. E., and Burton, S. D. (2008). Stability of black carbon in soils across a climatic gradient. J. Geophys. Res.: Biogeosci. 113, G02027.
  • Cheng, C.-H., Lehmann, J., Thies, J. E., Burton, S. D., and Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochem. 37, 1477–1488.
  • Cheng, C. H., Lin, T. P., Lehmann, J., Fang, L. J., Yang, Y. W., Menyailo, O. V., Chang, K. H., and Lai, J. S. (2014). Sorption properties for black carbon (wood char) after long term exposure in soils. Organic Geochem. 70, 53–61.
  • Chiou, C. T., and Kile, D. E. (1998). Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ. Sci. Technol. 32, 338–343.
  • Choppala, G., Bolan, N., Kunhikrishnan, A., and Bush, R. (2016). Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere 144, 374–381.
  • Choppala, G., Bolan, N., Kunhikrishnan, A., Skinner, W., and Seshadri, B. (2015). Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environ. Sci. Pollut. Res. 22, 8969–8978.
  • Choppala, G., Bolan, N., Megharaj, M., Chen, Z., and Naidu, R. (2012). The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J. Environ. Qual. 41, 1175–1184.
  • Choung, S., Allen-King, R. M. (2010). Can chlorofluorocarbon sorption to black carbon (Char) affect groundwater age determinations? Environ. Sci. Technol. 44, 4459–4464.
  • Chun, Y., Sheng, G., Chiou, C. T., and Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38, 4649–4655.
  • Claessens, M., De Laender, F., Monteyne, E., Roose, P., and Janssen, C. R. (2015). Modelling the fate of micropollutants in the marine environment using passive sampling. Mar. Pollut. Bull. 96, 103–109.
  • Cornelissen, G., Breedveld, G. D., Kalaitzidis, S., Christanis, K., Kibsgaard, A., and Oen, A. M. (2006). Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environ. Sci. Technol. 40, 1197–1203.
  • Cornelissen, G., Elmquist, M., Groth, I., and Gustafsson, Ö. (2004). Effect of sorbate planarity on environmental black carbon sorption. Environ. Sci. Technol. 38, 3574–3580.
  • Cornelissen, G., and Gustafsson, Ö. (2004). Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environ. Sci. Technol. 38, 148–155.
  • Cornelissen, G., and Gustafsson, Ö. (2006). Effects of added PAHs and precipitated humic acid coatings on phenanthrene sorption to environmental Black carbon. Environ. Pollut. 141, 526–531.
  • Cornelissen, G., Gustafsson, Ö., Bucheli, T. D., Jonker, M. T. O., Koelmans, A. A., van Noort, P. C. M. (2005a). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils:  Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 39, 6881–6895.
  • Cornelissen, G., Haftka, J., Parsons, J., and Gustafsson, Ö. (2005b). Sorption to black carbon of organic compounds with varying polarity and planarity. Environ. Sci. Technol. 39, 3688–3694.
  • Cotrufo, M. F., Boot, C., Abiven, S., Foster, E. J., Haddix, M., Reisser, M., Wurster, C. M., Bird, M. I., and Schmidt, M. W. I. (2016). Quantification of pyrogenic carbon in the environment: An integration of analytical approaches. Organic Geochem. 100, 42–50.
  • Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., and Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy 5, 122–131.
  • Cross, A., and Sohi, S. P. (2013). A method for screening the relative long-term stability of biochar. GCB Bioenergy 5, 215–220.
  • Crutzen, P. J., and Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669–1678.
  • Currie, L. A., Benner, B., Cachier, H., Cary, R., Chow, J., Urban, D., Eglinton, T., Gustafsson, O., Hartmann, P., and Hedges, J. (2002). A critical evaluation of inter-laboratory data on total, elemental and isotopic carbon in the carbonaceous particle reference material. J. Res. Natl. Inst. Std. Technol. 107(3), 279–298.
  • Cusack, D. F., Chadwick, O. A., Hockaday, W. C., and Vitousek, P. M. (2012). Mineralogical controls on soil black carbon preservation. Global Biogeochem. Cycles 26, GB2019, 1–10.
  • Czimczik, C. I., Preston, C. M., Schmidt, M. W., and Schulze, E. D. (2003). How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal). Global Biogeochem. Cycles 17, 20-1–20-13.
  • Dai, X., Boutton, T., Glaser, B., Ansley, R., and Zech, W. (2005). Black carbon in a temperate mixed-grass savanna. Soil Biol. Biochem. 37, 1879–1881.
  • Denyes, M. J., Langlois, V. S., Rutter, A., and Zeeb, B. A. (2012). The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci. Total Environ. 437, 76–82.
  • Denyes, M. J., Rutter, A., and Zeeb, B. A. (2013). In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime. Environ. Pollut. 182, 201–208.
  • Dickens, A. F., Gélinas, Y., and Hedges, J. I. (2004). Physical separation of combustion and rock sources of graphitic black carbon in sediments. Mar. Chem. 92, 215–223.
  • Dong, X., Ma, L. Q., and Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 190, 909–915.
  • Echeverria, J., Morera, M., Mazkiaran, C., and Garrido, J. (1998). Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments. Environ. Pollut. 101, 275–284.
  • Eckmeier, E., Gerlach, R., Skjemstad, J., Ehrmann, O., and Schmidt, M. (2007). Only small changes in soil organic carbon and charcoal concentrations found one year after experimental slash-and-burn in a temperate deciduous forest. Biogeosci. Discuss. 4, 595–614.
  • Elmer, W., Lattao, C., and Pignatello, J. (2015). Active removal of biochar by earthworms (Lumbricus terrestris). Pedobiologia 58, 1–6.
  • Elmquist, M., Cornelissen, G., Kukulska, Z., and Gustafsson, Ö. (2006). Distinct oxidative stabilities of char versus soot black carbon: Implications for quantification and environmental recalcitrance. Global Biogeochem. Cycles 20, GB2009, 1–11.
  • Elmquist, M., Gustafsson, O., and Andersson, P. (2004). Quantification of sedimentary black carbon using the chemothermal oxidation method: an evaluation of ex situ pre-treatments and standard additions approaches. Limnol. Oceanogr.: Methods 2, 417–427.
  • Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., and Senior, E. (2012). Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit. Rev. Environ. Sci. Technol. 42, 2311–2364.
  • Fabbri, D., Rombolà, A. G., Torri, C., and Spokas, K. A. (2013). Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J. Anal. Appl. Pyrol. 103, 60–67.
  • Fang, G., Zhu, C., Dionysiou, D. D., Gao, J., and Zhou, D. (2015). Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 176, 210–217.
  • Fearnside, P. M., Graça, P. M. c. L. d. A., and Rodrigues, F. J. A. (2001). Burning of Amazonian rainforests: burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. For. Ecol. Manage. 146, 115–128.
  • Foereid, B., Lehmann, J., and Major, J. (2011). Modeling black carbon degradation and movement in soil. Plant Soil 345, 223–236.
  • Forbes, M. S., Raison, R. J., and Skjemstad, J. O. (2006). Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 370, 190–206.
  • Forján, R., Asensio, V., Rodríguez-Vila, A., and Covelo, E. F. (2016). Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. CATENA 137, 120–125.
  • Frankenberger Jr, W. T., and Arshad, M. (2002). Volatilization of arsenic. In William T. and Frankenberger Jr (Eds.), Environmental chemistry of arsenic ( Chapter 16, pp. 363–380). New York.Basel, Marcel Dekker, Inc.
  • Freddo, A., Cai, C., and Reid, B. J. (2012). Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ. Pollut. 171, 18–24.
  • Ghimire, B., Williams, C. A., Collatz, G. J., and Vanderhoof, M. (2012). Fire‐induced carbon emissions and regrowth uptake in western US forests: Documenting variation across forest types, fire severity, and climate regions. J. Geophys. Res.: Biogeosci. 117, 2005–2012.
  • Glaser, B., and Amelung, W. (2003). Pyrogenic carbon in native grassland soils along a climosequence in North America. Global Biogeochem. Cycles 17, 1064, 33-1–33-8.
  • Glaser, B., and Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51.
  • Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W. (2001). The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41.
  • Glaser, B., Lehmann, J., and Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol. Fertil. Soils 35, 219–230.
  • Goldberg, E. D. 1985. Black carbon in the environment: properties and distribution. New York: John Wiley.
  • Gomez-Eyles, J. L., Sizmur, T., Collins, C. D., and Hodson, M. E. (2011). Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ. Pollut. 159, 616–622.
  • Graber, E. R., Tsechansky, L., Lew, B., and Cohen, E. (2014). Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. Eur. J. Soil Sci. 65, 162–172.
  • Gregory, S. J., Anderson, C. W., Camps-Arbestain, M., Biggs, P. J., Ganley, A. R., O'Sullivan, J. M., and McManus, M. T. (2015). Biochar in co-contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation. PloS One 10, e0125393.
  • Grossman, A., and Ghosh, U. (2009). Measurement of activated carbon and other black carbons in sediments. Chemosphere 75, 469–475.
  • Guggenberger, G., Rodionov, A., Shibistova, O., Grabe, M., Kasansky, O. A., Fuchs, H., Mikheyeva, N., Zrazhevskaya, G., and Flessa, H. (2008). Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Global Change Biol. 14, 1367–1381.
  • Guinto, D. F., Xu, Z. H., Saffigna, P. G., House, A. P. N., and Perera, M. C. S. (1999). Soil nitrogen mineralisation and organic matter composition revealed by 13C NMR spectroscopy under repeated prescribed burning in eucalypt forests of south-east Queensland. Soil Res. 37, 123–136.
  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., and Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 206, 46–59.
  • Gunasekar, A. S., Dela Cruz, I. D. P., Curtis, M. J., Claassen, V. P., and Tjeerdema, R. S. (2009). The behavior of clomazone in the soil environment. Pest Manage. Sci. 65, 711–716.
  • Guo, L., Semiletov, I., Gustafsson, Ö., Ingri, J., Andersson, P., Dudarev, O., and White, D. (2004). Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export. Global Biogeochem. Cycles 18, GB1036.
  • Gustafsson, Ö., Bucheli, T. D., Kukulska, Z., Andersson, M., Largeau, C., Rouzaud, J.-N., Reddy, C. M., and Eglinton, T. I. (2001). Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochem. Cycles 15, 881–890.
  • Gustafsson, Ö., and Gschwend, P. M. (1998). The flux of black carbon to surface sediments on the New England continental shelf. Geochim. Cosmochim. Acta 62, 465–472.
  • Gustafsson, Ö., Haghseta, F., Chan, C., MacFarlane, J., and Gschwend, P. M. (1996). Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ. Sci. Technol. 31, 203–209.
  • Hagner, M., Hallman, S., Jauhiainen, L., Kemppainen, R., Rämö, S., Tiilikkala, K., and Setälä, H. (2015). Birch (Betula spp.) wood biochar is a potential soil amendment to reduce glyphosate leaching in agricultural soils. J. Environ. Manage. 164, 46–52.
  • Hale, S. E., Arp, H. P. H., Kupryianchyk, D., and Cornelissen, G. (2016). A synthesis of parameters related to the binding of neutral organic compounds to charcoal. Chemosphere 144, 65–74.
  • Hammes, K., Schmidt, M. W., Smernik, R. J., Currie, L. A., Ball, W. P., Nguyen, T. H., Louchouarn, P., Houel, S., Gustafsson, Ö., and Elmquist, M. (2007). Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem. Cycles 21, GB3016, 1–18.
  • Hammes, K., Smernik, R. J., Skjemstad, J. O., and Schmidt, M. W. (2008a). Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Appl. Geochem. 23, 2113–2122.
  • Hammes, K., Torn, M. S., Lapenas, A. G., and Schmidt, M. W. (2008b). Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5, 1339–1350.
  • Han, Y. M., Cao, J. J., Chow, J. C., Watson, J. G., An, Z. S., and Liu, S. X. (2009). Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution. Atmos. Environ. 43, 2464–2470.
  • Han, L., Sun, K., Jin, J., and Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biol. Biochem. 94, 107–121.
  • Hao, R., Wang, P., Wu, Y., Hu, R., Zhang, J., and Song, Y. (2017). Impacts of water level fluctuations on the physicochemical properties of black carbon and its phenanthrene adsorption-desorption behaviors. Ecol. Eng. 100, 130–137.
  • Hardy, B., Leifeld, J., Knicker, H., Dufey, J. E., Deforce, K., Cornélis, J.-T. (2017). Long term change in chemical properties of preindustrial charcoal particles aged in forest and agricultural temperate soil. Organic Geochem. 107, 33–45.
  • He, L., Gielen, G., Bolan, N. S., Zhang, X., Qin, H., Huang, H., and Wang, H. (2015). Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron. Sustain. Dev. 35, 519–534.
  • He, L., Fan, S., Müller, K., Hu, G., Huang, H., Zhang, X., Lin, X., Che, L., and Wang, H. (2016). Biochar reduces the bioavailability of di-(2-ethylhexyl) phthalate in soil. Chemosphere 142, 24–27.
  • He, Y., Zhang, G.-L. (2009). Historical record of black carbon in urban soils and its environmental implications. Environ. Pollut. 157, 2684–2688.
  • Hedges, J., Eglinton, G., Hatcher, P., Kirchman, D., Arnosti, C., Derenne, S., Evershed, R., Kögel-Knabner, I., De Leeuw, J., and Littke, R. (2000). The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochem. 31, 945–958.
  • Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., and Vithanage, M. (2014). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J. Soils Sedim. 15, 126–138.
  • Hong, L., and Luthy, R. G. (2007). Availability of polycyclic aromatic hydrocarbons from lampblack‐impacted soils at former oil‐gas plant sites in California, USA. Environ. Toxicol. Chem. 26, 394–405.
  • Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., and Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 92, 223–228.
  • Hossain, M. K., Strezov, V., and Nelson, P. F. (2015). Comparative assessment of the effect of wastewater sludge biochar on growth, yield and metal bioaccumulation of cherry tomato. Pedosphere 25, 680–685.
  • Houben, D., Evrard, L., and Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92, 1450–1457.
  • Houben, D., and Sonnet, P. (2015). Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 139, 644–651.
  • Hsu, S. H., Wang, S. L., Huang, J. H., Huang, S. T., and Wang, M. K. (2014). Effects of rice straw ash amendment on Cd solubility and distribution in a contaminated paddy soil under submergence. Paddy Water Environ. 13, 135–143.
  • Huang, W., Peng, P. A., Yu, Z., and Fu, J. (2003). Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl. Geochem. 18, 955–972.
  • Hung, C.-C., Gong, G.-C., Chen, H.-Y., Hsieh, H.-L., Santschi, P. H., Wade, T. L., and Sericano, J. L. (2007). Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan. Environ. Pollut. 148, 546–554.
  • Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., Ammara, U., Ok, Y. S., and Siddique, K. H. M. (2016). Biochar for crop production: potential benefits and risks. J. Soils Sedim. 17, 685–716.
  • Igalavithana, A. D., Ok, Y. S., Usman, A. R. A., Al-Wabel, M. I., Oleszczuk, P., Lee, S. S. 2016. The effects of biochar amendment on soil fertility. In: M. Guo, Z. He, and S. M. Uchimiya (Eds.), Agricultural and environmental applications of biochar: Advances and barriers (pp. 123–144). Madison, WI: Soil Science Society of America, Inc.
  • Initiative, I. (2012). Standardized product definition and product testing guidelines for biochar that is used in soil. IBI Biochar Stand.
  • Inyang, M., and Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 134, 232–240.
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., and Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 44, 406–433.
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., and Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 110, 50–56.
  • Ippolito, J. A., Strawn, D. G., Scheckel, K. G., Novak, J. M., Ahmedna, M., and Niandou, M. A. S. (2012). Macroscopic and molecular investigations of copper sorption by a steam-activated biochar. J. Environ. Qual. 41, 1150–1156.
  • Israelachvili, J. N. (1992). Adhesion forces between surfaces in liquids and condensable vapours. Surf. Sci. Rep. 14, 109–159.
  • James, G., Sabatini, D. A., Chiou, C. T., Rutherford, D., Scott, A. C., and Karapanagioti, H. K. (2005). Evaluating phenanthrene sorption on various wood chars. Water Res/ 39, 549–558.
  • Janik, L. J., Skjemstad, J. O., Shepherd, K. D., and Spouncer, L. R. (2007). The prediction of soil carbon fractions using mid-infrared-partial least square analysis. Soil Res. 45, 73–81.
  • Jeffery, S., Verheijen, F. G. A., van der Velde, M., and Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144, 175–187.
  • Jeong, C. Y., Wang, J. J., Dodla, S. K., Eberhardt, T. L., and Groom, L. (2012). Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils. J. Environ. Qual. 41, 1185–1192.
  • Jia, J., Li, B., Chen, Z., Xie, Z., and Xiong, Z. (2012). Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Sci. Plant Nutr. 58, 503–509.
  • Jiang, J., Xu, R.-k., Jiang, T.-y., and Li, Z. (2012). Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 229–230, 145–150.
  • Jiang, S., Huang, L., Nguyen, T. A. H., Ok, Y. S., Rudolph, V., Yang, H., and Zhang, D. (2016). Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 142, 64–71.
  • Jiang, T.-Y., Jiang, J., Xu, R.-K., and Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89, 249–256.
  • Jiang, J., Peng, Y., Yuan, M., Hong, Z., Wang, D., and Xu, R. (2015). Rice straw-derived biochar properties and functions as Cu(II) and cyromazine sorbents as influenced by pyrolysis temperature. Pedosphere 25, 781–789.
  • Jiang, J., Xu, R.-k. (2013). Application of crop straw derived biochars to Cu(II) contaminated Ultisol: Evaluating role of alkali and organic functional groups in Cu(II) immobilization. Bioresour. Technol. 133, 537–545.
  • Jones, D. L., Edwards-Jones, G., and Murphy, D. V. (2011). Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol. Biochem. 43, 804–813.
  • Jones, D. L., and Quilliam, R. S. (2014). Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J. Hazard. Mater. 276, 362–370.
  • Jonker, M. T. O., and Koelmans, A. A. (2002). Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment:  Mechanistic considerations. Environ. Sci. Technol. 36, 3725–3734.
  • Jonker, M. T. O., Sinke, A. J. C., Brils, J. M., and Koelmans, A. A. (2003). Sorption of polycyclic aromatic hydrocarbons to oil contaminated sediment:  Unresolved complex? Environ. Sci. Technol. 37, 5197–5203.
  • Jonker, M. T. O., and Smedes, F. (2000). Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, The Netherlands. Environ. Sci. Technol. 34, 1620–1626.
  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J., and Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Soil Res. 48, 501–515.
  • Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., and Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 191, 41–48.
  • Karer, J., Wawra, A., Zehetner, F., Dunst, G., Wagner, M., Pavel, P. B., Puschenreiter, M., Friesl-Hanl, W., and Soja, G. (2015). Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water, Air, Soil Pollut. 226, 342.
  • Kasassi, A., Rakimbei, P., Karagiannidis, A., Zabaniotou, A., Tsiouvaras, K., Nastis, A., and Tzafeiropoulou, K. (2008). Soil contamination by heavy metals: Measurements from a closed unlined landfill. Bioresour. Technol. 99, 8578–8584.
  • Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., and Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ. Sci. Technol. 44, 6189–6195.
  • Khan, S., Chao, C., Waqas, M., Arp, H. P. H., and Zhu, Y. G. (2013a). Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol. 47, 8624–8632.
  • Khan, S., Wang, N., Reid, B. J., Freddo, A., and Cai, C. (2013b). Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ. Pollut. 175, 64–68.
  • Kilduff, J. E., and Wigton, A. (1999). Sorption of TCE by humic-preloaded activated carbon: Incorporating size-exclusion and pore blockage phenomena in a competitive adsorption model. Environ. Sci. Technol. 33, 250–256.
  • Kim, H. S., Kim, K. R., Kim, H. J., Yoon, J. H., Yang, J. E., Ok, Y. S., Owens, G., and Kim, K. H. (2015a). Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 74, 1249–1259.
  • Kim, H. S., Kim, K. R., Ok, Y. S., Lee, Y. K., Kluge, B., Wessolek, G., Kim, W. I., and Kim, K. H. (2015b). Examination of three different organic waste biochars as soil amendment for metal-contaminated agricultural soils. Water, Air, Soil Pollut. 226, 1–11.
  • Kleineidam, S., Schüth, C., and Grathwohl, P. (2002). Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants. Environ. Sci. Technol. 36, 4689–4697.
  • Klimkowicz-Pawlas, A., Smreczak, B., Ukalska-Jaruga, A. (2017). The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure. Environ. Sci. Pollut. Res. 24, 10955–10965.
  • Kloss, S., Zehetner, F., Buecker, J., Oburger, E., Wenzel, W. W., Enders, A., Lehmann, J., and Soja, G. (2015). Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars. Environ. Sci. Pollut. Res. 22, 4513–4526.
  • Kloss, S., Zehetner, F., Oburger, E., Buecker, J., Kitzler, B., Wenzel, W. W., Wimmer, B., and Soja, G. (2014). Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Sci. Total Environ. 481, 498–508.
  • Knicker, H., Hilscher, A., González-Vila, F. J., and Almendros, G. (2008). A new conceptual model for the structural properties of char produced during vegetation fires. Organic Geochem. 39, 935–939.
  • Knicker, H. (2011). Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quater. Int. 243, 251–263.
  • Knicker, H., González-Vila, F. J., González-Vázquez, R. (2013). Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 56, 31–39.
  • Koelmans, A. A., and Jonker, M. T. (2011). Effects of black carbon on bioturbation-induced benthic fluxes of polychlorinated biphenyls. Chemosphere 84, 1150–1157.
  • Koelmans, A. A., Jonker, M. T. O., Cornelissen, G., Bucheli, T. D., Van Noort, P. C. M., and Gustafsson, Ö. (2006). Black carbon: The reverse of its dark side. Chemosphere 63, 365–377.
  • Koelmans, A. A., Meulman, B., Meijer, T., and Jonker, M. T. O. (2009). Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids. Environ. Sci. Technol. 43, 736–742.
  • Kuhlbusch, T. A. (1998). Black carbon and the carbon cycle. Science 280, 1903–1904.
  • Kuhlbusch, T., Andreae, M., Cachier, H., Goldammer, J., Lacaux, J.-P., Shea, R., and Crutzen, P. (1996). Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle. J. Geophys. Res. 101, 23651–23623, 23665.
  • Kuhlbusch, T. A., and Crutzen, P. J. (1996). Black carbon, the global carbon cycle, and atmospheric carbon dioxide. Biomass Burn. Global Change 1, 160–169.
  • Kuhlbusch, T. A. J., and Crutzen, P. J. (1995). Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem. Cycles 9, 491–501.
  • Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., and Naidu, R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 87, 1–12.
  • Kwon, S., and Pignatello, J. J. (2005). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Environ. Sci. Technol. 39, 7932–7939.
  • Lehmann, J. 2003. Amazonian dark earths: origin, properties, management. Kluwer Academic Pub, New York.
  • Lehmann, J. (2007). Bio-energy in the black. Front. Ecol. Environ. 5, 381–387.
  • Lehmann, J., Gaunt, J., and Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strategies Global Change 11, 395–419.
  • Lehmann, J., Joseph, S. 2015. Biochar for environmental management: science, technology and implementation. London and New York, Routledge.
  • Lehmann, J., Kern, D., German, L., Mccann, J., Martins, G. C., and Moreira, A. (2003). Soil fertility and production potential. In J. Lehmann, D. C. Kern, B. Glaser and W. I. Wodos (Eds.), Amazonian dark earths: Origin, properties, management, Netherlands, Springer ( Chapter 6, pp. 105–124).
  • Lehmann, J., and Kleber, M. (2015). The contentious nature of soil organic matter. Nature 528, 60–68.
  • Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., Coleman, K., Woodbury, P., and Krull, E. (2008). Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835.
  • Li, J., Li, S., Dong, H., Yang, S., Li, Y., and Zhong, J. (2015). Role of alumina and montmorillonite in changing the sorption of herbicides to biochars. J. Agric. Food Chem. 63, 5740–5746.
  • Li, M., Lou, Z., Wang, Y., Liu, Q., Zhang, Y., Zhou, J., and Qian, G. (2015). Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar. Chemosphere 119, 778–785.
  • Li, L., Qiu, Y., Huang, J., Li, F., and Sheng, G. D. (2014). Mechanisms and factors influencing adsorption of microcystin-LR on biochars. Water, Air, Soil Pollut. 225, 2220.
  • Lian, F., Sun, B., Song, Z., Zhu, L., Qi, X., and Xing, B. (2014). Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J. 248, 128–134.
  • Liang, Y., Cao, X., Zhao, L., and Arellano, E. (2014). Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater. Environ. Sci. Pollut. Res. 21, 4665–4674.
  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J., and Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730.
  • Lim, B., and Cachier, H. (1996). Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays. Chem. Geol. 131, 143–154.
  • Lim, J. E., Lee, S. S., and Ok, Y. S. (2015). Efficiency of poultry manure biochar for stabilization of metals in contaminated soil. J. Appl. Biol. Chem. 58, 39–50.
  • Lin, Y., Munroe, P., Joseph, S., Kimber, S., and Zwieten, L. (2012). Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil 357, 369–380.
  • Lingamdinne, L. P., Roh, H., Choi, Y. L., Koduru, J. R., Yang, J. K., and Chang, Y. Y. (2015). Influencing factors on sorption of TNT and RDX using rice husk biochar. J. Ind. Eng. Chem. 32, 178–186.
  • Liu, Z., Han, Y., Jing, M., and Chen, J. (2017). Sorption and transport of sulfonamides in soils amended with wheat straw-derived biochar: effects of water pH, coexistence copper ion, and dissolved organic matter. J. Soils Sedim. 17, 771–779.
  • Liu, P., Ptacek, C. J., Blowes, D. W., and Landis, R. C. (2016). Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy. J. Hazard. Mater. 308, 233–242.
  • Liu, L., Wu, L., Luo, Y., Zhang, C., Jiang, Y., and Qiu, X. (2010). The impact of a copper smelter on adjacent soil zinc and cadmium fractions and soil organic carbon. J. Soils Sedim. 10, 808–817.
  • Loganathan, V. A., Feng, Y., Sheng, G. D., and Clement, T. P. (2009). Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils. Soil Sci. Soc. Am. J. 73, 967–974.
  • Loganathan, P., Hedley, M. J., Grace, N. D., Lee, J., Cronin, S. J., Bolan, N. S., and Zanders, J. M. (2003). Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine—a review. Soil Res. 41, 501–532.
  • Lohmann, R. (2003). The emergence of black carbon as a super-sorbent in environmental chemistry: The end of octanol? Environ. Forensics 4, 161–165.
  • Lohmann, R., MacFarlane, J. K., and Gschwend, P. M. (2004). Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York Harbor sediments. Environ. Sci. Technol. 39, 141–148.
  • Lohmann, R., Macfarlane, J. K., and Gschwend, P. M. (2005). Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York Harbor sediments. Environ. Sci. Technol. 39, 141–148.
  • Lou, L., Guanghuan, C., Jingyou, D., Mingyang, S., Huanyu, C., Qiang, Y., and Xinhua, X. (2014). Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment. Environ. Pollut. 190, 101–108.
  • Lou, L., Luo, L., Cheng, G., Wei, Y., Mei, R., Xun, B., Xu, X., Hu, B., and Chen, Y. (2012). The sorption of pentachlorophenol by aged sediment supplemented with black carbon produced from rice straw and fly ash. Bioresour. Technol. 112, 61–66.
  • Lü, J., Li, J., Li, Y., Chen, B., and Bao, Z. (2012). Use of rice straw biochar simultaneously as the sustained release carrier of herbicides and soil amendment for their reduced leaching. J. Agric. Food Chem. 60, 6463–6470.
  • Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., Xu, S., Yuan, G., Chen, X., and Zhang, X. (2016). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage. 186, 285–292.
  • Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., and Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric. Ecosyst. Environ. 191, 124–132.
  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., and Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 46, 854–862.
  • Lucchini, P., Quilliam, R. S., DeLuca, T. H., Vamerali, T., and Jones, D. L. (2014). Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environ. Sci. Pollut. Res. 21, 3230–3240.
  • Luo, F., Song, J., Xia, W., Dong, M., Chen, M., and Soudek, P. (2014). Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars. Environ. Sci. Pollut. Res. 21, 8707–8717.
  • Mahbub, K. R., Bahar, M. M., Labbate, M., Krishnan, K., Andrews, S., Naidu, R., and Megharaj, M. (2017). Bioremediation of mercury: not properly exploited in contaminated soils! Appl. Microbiol. Biotechnol. 101, 963–976.
  • Maia, C., Madari, B. E., and Novotny, E. H. (2011). Advances in biochar research in Brazil. Dyn. Soil, Dyn. Plant 5, 53–58.
  • Major, J., Lehmann, J., Rondon, M., and Goodale, C. (2010). Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biol. 16, 1366–1379.
  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939–7954.
  • Martin, S. M., Kookana, R. S., Van Zwieten, L., and Krull, E. (2012). Marked changes in herbicide sorption-desorption upon ageing of biochars in soil. J. Hazard. Mater. 231–232, 70–78.
  • Mašek, O., Brownsort, P., Cross, A., and Sohi, S. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel 103, 151–155.
  • Masiello, C. A. (2004). New directions in black carbon organic geochemistry. Mar. Chem. 92, 201–213.
  • McBeath, A. V., Smernik, R. J., and Krull, E. S. (2013). A demonstration of the high variability of chars produced from wood in bushfires. Organic Geochem. 55, 38–44.
  • Meier, S., Curaqueo, G., Khan, N., Bolan, N., Cea, M., Eugenia, G. M., Cornejo, P., Ok, Y. S., and Borie, F. (2015). Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J. Soils Sedim. 17, 741.
  • Melo, L. C. A., Coscione, A. R., Abreu, C. A., Puga, A. P., and Camargo, O. A. (2013). Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw-derived biochar. BioResources 8, 4992–5004.
  • Melo, L. C. A., Puga, A. P., Coscione, A. R., Beesley, L., Abreu, C. A., and Camargo, O. A. (2016). Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. J. Soils Sedim. 16, 226–234.
  • Méndez, A., Gómez, A., Paz-Ferreiro, J., and Gascó, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89, 1354–1359.
  • Meng, J., Wang, L., Liu, X., Wu, J., Brookes, P. C., and Xu, J. (2013). Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour. Technol. 142, 641–646.
  • Middelburg, J. J., Nieuwenhuize, J., van Breugel, P. (1999). Black carbon in marine sediments. Mar. Chem. 65, 245–252.
  • Moermond, C. T. A., Zwolsman, J. J. G., and Koelmans, A. A. (2005). Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes. Environ. Sci. Technol. 39, 3101–3109.
  • Mohan, D., Sarswat, A., Ok, Y. S., Pittman Jr, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 160, 191–202.
  • Montanarella, L., and Lugato, E. (2013). The application of biochar in the EU: Challenges and opportunities. Agronomy 3, 462.
  • Moon, D. H., Park, J.-W., Chang, Y.-Y., Ok, Y. S., Lee, S. S., Ahmad, M., Koutsospyros, A., Park, J.-H., and Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 20, 8464–8471.
  • Moreno-Jiménez, E., Fernández, J. M., Puschenreiter, M., Williams, P. N., and Plaza, C. (2016). Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agric. Ecosyst. Environ. 219, 171–178.
  • Mosley, L. M., Willson, P., Hamilton, B., Butler, G., and Seaman, R. (2015). The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage. Environ. Sci. Pollut. Res. 22, 15113–15122.
  • Mukherjee, A., Zimmerman, A. R., and Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247–255.
  • Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., and Parikh, S. J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agric. Food Chem. 61, 2196–2204.
  • Mukome, F. N. D., Kilcoyne, A. L. D., and Parikh, S. J. (2014). Alteration of biochar carbon chemistry during soil incubations: SR-FTIR and NEXAFS investigation. Soil Sci. Soc. Am. J. 78, 1632–1640.
  • Nagodavithane, C., Singh, B., and Fang, Y. (2014). The effect of ageing on surface charge characteristics and adsorption behaviour of cadmium and arsenate in two contrasting soils amended with biochar. Soil Res. 52, 155–163.
  • Naidu, R., Bolan, N. S., Kookana, R. S., and Tiller, K. (1994). Ionic‐strength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45, 419–429.
  • Naidu, R., Kookana, R. S., Sumner M. E., Harter, R. D., and Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils: A review. J. Environ. Qual. 26, 602.
  • Namgay, T., Singh, B., and Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res. 48, 638–647.
  • Navia, R., and Crowley, D. E. (2010). Closing the loop on organic waste management: biochar for agricultural land application and climate change mitigation. Waste Manage. Res. 28, 479–480.
  • Nguyen, T. H., Brown, R. A., and Ball, W. P. (2004). An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Organic Geochem. 35, 217–234.
  • Nguyen, B., Lehmann, J., Kinyangi, J., Smernik, R., Riha, S., and Engelhard, M. (2008). Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89, 295–308.
  • Nguyen, B. T., Lehmann, J., Kinyangi, J., Smernik, R., Riha, S. J., and Engelhard, M. H. (2009). Long-term black carbon dynamics in cultivated soil. Biogeochemistry 92, 163–176.
  • Nilsson, M.-C., and Zackrisson, O. (1992). Inhibition of Scots pine seedling establishment byEmpetrum hermaphroditum. J. Chem. Ecol. 18, 1857–1870.
  • Niu, L. Q., Jia, P., Li, S. P., Kuang, J. L., He, X. X., Zhou, W. H., Liao, B., Shu, W. S., and Li, J. T. (2015). Slash-and-char: An ancient agricultural technique holds new promise for management of soils contaminated by Cd, Pb and Zn. Environ. Pollut. 205, 333–339.
  • Nocentini, C., Certini, G., Knicker, H., Francioso, O., and Rumpel, C. (2010). Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Organic Geochem. 41, 682–689.
  • Norwood, M. J., Louchouarn, P., Kuo, L.-J., and Harvey, O. R. (2013). Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars. Organic Geochem. 56, 111–119.
  • Novak, J., Ro, K., Ok, Y. S., Sigua, G., Spokas, K., Uchimiya, S., and Bolan, N. (2016). Biochars multifunctional role as a novel technology in the agricultural, environmental, and industrial sectors. Chemosphere 142, 1–3.
  • Obia, A., Børresen, T., Martinsen, V., Cornelissen, G., and Mulder, J. (2017). Vertical and lateral transport of biochar in light-textured tropical soils. Soil Tillage Res. 165, 34–40.
  • Obst, M., Grathwohl, P., Kappler, A., Eibl, O., Peranio, N., and Gocht, T. (2011). Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles. Environ. Sci. Technol. 45, 7314–7322.
  • Oen, A. M. P., Cornelissen, G., and Breedveld, G. D. (2006). Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments. Environ. Pollut. 141, 370–380.
  • Ogbonnaya, U., and Semple, K. T. (2013). Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy 3, 349–375.
  • Oh, S. Y., and Seo, Y. D. (2014). Sorptive removal of nitro explosives and metals using biochar. J. Environ. Qual. 43, 1663–1671.
  • Oh, S.-Y., Son, J.-G., and Chiu, P. C. (2013). Biochar-mediated reductive transformation of nitro herbicides and explosives. Environ. Toxicol. Chem. 32, 501–508.
  • Ok, Y. S., Chang, S. X., Gao, B., Chung, H.-J. (2015a). SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environ. Technol. & Innovat. 4, 206–209.
  • Ok, Y. S., Uchimiya, S. M., Chang, S. X., Bolan, N. 2015b. Biochar: Production, characterization, and applications. Boca Raton. London. New York. CRC Press.
  • Oleszczuk, P., Ćwikła-Bundyra, W., Bogusz, A., Skwarek, E., and Ok, Y. S. (2016). Characterization of nanoparticles of biochars from different biomass. J. Anal. Appl. Pyrol. 121, 165–172.
  • Park, J. H., Cho, J. S., Ok, Y. S., Kim, S. H., Kang, S. W., Choi, I. W., Heo, J. S., Delaune, R. D., and Seo, D. C. (2015). Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment. J. Environ. Sci. Health A: Toxic/Hazard. Subst. Environ. Eng. 50, 1194–1204.
  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., and Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439–451.
  • Patel, K., Ambade, B., Jaiswal, N., Sharma, R., Patel, R., Blazhev, B., Lautent, M., Bhattacharya, P. Arsenic and other heavy metal contamination in central India. In: Proceedings of the Understanding the Geological and Medical Interface of Arsenic-As 2012: Proceedings of the 4th International Congress on Arsenic in the Environment, 22–27 July 2012, Cairns, Australia: CRC Press, p. 38.
  • Pee, G. Y., Na, S., Wei, Z., and Weavers, L. K. (2015). Increasing the bioaccessibility of polycyclic aromatic hydrocarbons in sediment using ultrasound. Chemosphere 122, 265–272.
  • Pehkonen, S., You, J., Akkanen, J., Kukkonen, J. V., and Lydy, M. J. (2010). Influence of black carbon and chemical planarity on bioavailability of sediment-associated contaminants. Environ. Toxicol. Chem. 29, 1976–1983.
  • Pellera, F. M., and Gidarakos, E. (2015). Effect of dried olive pomace—Derived biochar on the mobility of cadmium and nickel in soil. J. Environ. Chem. Eng. 3, 1163–1176.
  • Peng, X., Ye, L. L., Wang, C. H., Zhou, H., and Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res. 112, 159–166.
  • Petter, F. A., and Madari, B. E. (2012). Biochar: Agronomic and environmental potential in Brazilian savannah soils. Revista Brasileira de Engenharia Agrícola e Ambiental 16, 761–768.
  • Pietikäinen, J., Kiikkilä, O., and Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89, 231–242.
  • Pignatello, J. J. (2013). Role of natural organic matter as sorption suppressant in soil. In: Xu J., Wu J., He Y. (eds) Functions of natural organic matter in changing environment (pp. 501–504). Springer, Dordrecht.
  • Plata, D. L., Hemingway, J. D., and Gschwend, P. M. (2015). Polyparameter linear free energy relationship for wood char-water sorption coefficients of organic sorbates. Environ. Toxicol. Chem. 34, 1464–1471.
  • Ponge, J.-F., Topoliantz, S., Ballof, S., Rossi, J.-P., Lavelle, P., Betsch, J.-M., and Gaucher, P. (2006). Ingestion of charcoal by the Amazonian earthworm Pontoscolex corethrurus: A potential for tropical soil fertility. Soil Biol. Biochem. 38, 2008–2009.
  • Ponomarenko, E., and Anderson, D. (2001). Importance of charred organic matter in Black Chernozem soils of Saskatchewan. Can. J. Soil Sci. 81, 285–297.
  • Poucke, R., Nachenius, R. W., Agbo, K. E., Hensgen, F., Bühle, L., Wachendorf, M., Ok, Y. S., Tack, F. M. G., Prins, W., Ronsse, F., and Meers, E. (2016). Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass. Bioresour. Technol. 217, 104–112.
  • Preston, C., and Schmidt, M. (2006). Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420.
  • Qi, F., Dong, Z., Lamb, D., Naidu, R., Bolan, N. S., Ok, Y. S., Liu, C., Khan, N., Johir, M. A. H., and Semple, K. T. (2017a). Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere 180, 564–573.
  • Qi, W., Liu, H., Qu, J., Ren, H., and Xu, W. (2011). PAH desorption from sediments with different contents of organic carbon from wastewater receiving rivers. Environ. Sci. Pollut. Res. 18, 346–354.
  • Qi, F., Naidu, R., Bolan, N. S., Dong, Z., Yan, Y., Lamb, D., Bucheli, T. D., Choppala, G., Duan, L., and Semple, K. T. (2017b). Pyrogenic carbon in Australian soils. Sci. Total Environ. 586, 849–857.
  • Qian, L., and Chen, B. (2013). Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles. Environ. Sci. Technol. 47, 8759–8768.
  • Qian, L., and Chen, B. (2014). Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process. J. Agric. Food Chem. 62, 373–380.
  • Qian, L., Chen, M., and Chen, B. (2015). Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes. J. Soils Sedim. 15, 1130–1138.
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., and Huhnke, R. (2015). Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 42, 1055–1064.
  • Qian, L., Zhang, W., Yan, J., Han, L., Gao, W., Liu, R., and Chen, M. (2016). Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresour. Technol. 206, 217–224.
  • Qin, G., Gong, D., and Fan, M. Y. (2013). Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int. Biodeterior. Biodegrad. 85, 150–155.
  • Qiu, Y., Xiao, X., Cheng, H., Zhou, Z., and Sheng, G. D. (2009). Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter. Environ. Sci. Technol. 43, 4973–4978.
  • Qiu, M., Sun, K., Jin, J., Gao, B., Yan, Y., Han, L., Wu, F., and Xing, B. (2014). Properties of the plant-and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene. Sci. Rep. 4, 5295.
  • Qiu, Y., Cheng, H., Xu, C., and Sheng, G. D. (2008). Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res. 42, 567–574.
  • Qiu, Y., Zheng, Z., Zhou, Z., and Sheng, G. D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour. Technol. 100, 5348–5351.
  • Raison, R. J. (1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant Soil 51, 73–108.
  • Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K. R., Chang, J. Y., Lee, S. S., and Ok, Y. S. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environ. Geochem. Health 37, 931–942.
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N. S., and Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148, 276–291.
  • Rajapaksha, A. U., Vithanage, M., Lim, J. E., Ahmed, M. B. M., Zhang, M., Lee, S. S., and Ok, Y. S. (2014). Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere 111, 500–504.
  • Rakowska, M. I., Kupryianchyk, D., Harmsen, J., Grotenhuis, T., and Koelmans, A. A. (2012). In situ remediation of contaminated sediments using carbonaceous materials. Environ. Toxicol. Chem. 31, 693–704.
  • Ran, Y., Huang, W., Rao, P. S. C., Liu, D., Sheng, G., and Fu, J. (2002). The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments. J. Environ. Qual. 31, 1953–1962.
  • Ran, Y., Xiao, B., Huang, W., Peng, P. A., Liu, D., Fu, J., and Sheng, G. (2003). Kerogen in aquifer material and its strong sorption for nonionic organic pollutants. J. Environ. Qual. 32, 1701–1709.
  • Reddy, C. M., Pearson, A., Xu, L., McNichol, A. P., Benner, B. A., Wise, S. A., Klouda, G. A., Currie, L. A., and Eglinton, T. I. (2002). Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples. Environ. Sci. Technol. 36, 1774–1782.
  • Rees, F., Simonnot, M. O., and Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 65, 149–161.
  • Reisser, M., Purves, R. S., Schmidt, M. W. I., and Abiven, S. (2016). Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4.
  • Ren, X., Zhang, P., Zhao, L., and Sun, H. (2016). Sorption and degradation of carbaryl in soils amended with biochars: influence of biochar type and content. Environ. Sci. Pollut. Res. 23, 2724–2734.
  • Riedel, T., Hennessy, P., Iden, S. C., and Koschinsky, A. (2015). Leaching of soil-derived major and trace elements in an arable topsoil after the addition of biochar. Eur. J. Soil Sci. 66, 823–834.
  • Rizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M. I., and Ok, Y. S. (2016a). Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 130, 43–53.
  • Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., and Ok, Y. S. (2016b). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res. 23, 2230–2248.
  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Zia-ur-Rehman, M., Abbas, Z., and Hannan, F. (2016c). Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ. Geochem. Health 39, 1–19.
  • Ro, K. S., Cantrell, K. B., and Hunt, P. G. (2010). High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind. Eng. Chem. Res. 49, 10125–10131.
  • Roberts, D. A., Cole, A. J., Paul, N. A., de Nys, R. (2015). Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass. J. Environ. Manage. 161, 173–180.
  • Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., and Lehmann, J. (2009). Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 44, 827–833.
  • Rodionov, A., Amelung, W., Haumaier, L., Urusevskaja, I., and Zech, W. (2006). Black carbon in the zonal steppe soils of Russia. J. Plant Nutr. Soil Sci. 169, 363–369.
  • Rosenfeld, C., Kenyon, J., James, B., and Santelli, C. (2017). Selenium (IV, VI) reduction and tolerance by fungi in an oxic environment. Geobiology 15, 441–453.
  • Rumpel, C., Ba, A., Darboux, F., Chaplot, V., and Planchon, O. (2009). Erosion budget and process selectivity of black carbon at meter scale. Geoderma 154, 131–137.
  • Sánchez-García, L., de Andrés, J. R., Gélinas, Y., Schmidt, M. W. I., and Louchouarn, P. (2013). Different pools of black carbon in sediments from the Gulf of Cádiz (SW Spain): Method comparison and spatial distribution. Mar. Chem. 151, 13–22.
  • Sander, M., and Pignatello, J. J. (2005). Characterization of charcoal adsorption sites for aromatic compounds:  insights drawn from single-solute and bi-solute competitive experiments. Environ. Sci. Technol. 39, 1606–1615.
  • Santín, C., Doerr, S. H., Preston, C. M., González‐Rodríguez, G. (2015). Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biol. 21, 1621–1633.
  • Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., Rosa, J. M., Preston, C. M., and Dittmar, T. (2016). Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biol. 22, 76–91.
  • Schmidt, M. W. I., and Noack, A. G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles 14, 777–793.
  • Schmidt, M. W. I., Skjemstad, J. O., Czimczik, C. I., Glaser, B., Prentice, K. M., Gelinas, Y., and Kuhlbusch, T. A. J. (2001). Comparative analysis of black carbon in soils. Global Biogeochem. Cycles 15, 163–167.
  • Schmidt, M., Skjemstad, J., Gehrt, E., Kögel‐Knabner, I. (1999). Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 50, 351–365.
  • Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M. 2005. Environmental organic chemistry. Hoboken, New Jersey. John Wiley & Sons.
  • Schweiker, C., Wagner, A., Peters, A., Bischoff, W. A., and Kaupenjohann, M. (2014). Biochar reduces zinc and cadmium but not copper and lead leaching on a former sewage field. J. Environ. Qual.43, 1886–1893.
  • Scott, A. C. (1989). Observations on the nature and origin of fusain. Int. J. Coal Geol. 12, 443–475.
  • Seiler, W., and Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247.
  • Semple, K. T., Riding, M. J., McAllister, L. E., Sopena-Vazquez, F., and Bending, G. D. (2013). Impact of black carbon on the bioaccessibility of organic contaminants in soil. J. Hazard. Mater. 261, 808–816.
  • Shen, Z., Jin, F., Wang, F., McMillan, O., Al-Tabbaa, A. (2015). Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresour. Technol. 193, 553–556.
  • Shen, Z., Som, A. M., Wang, F., Jin, F., McMillan, O., Al-Tabbaa, A. (2016). Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Sci. Total Environ. 542, 771–776.
  • Shi, K., Xie, Y., and Qiu, Y. (2015). Natural oxidation of a temperature series of biochars: Opposite effect on the sorption of aromatic cationic herbicides. Ecotoxicol. Environ. Saf. 114, 102–108.
  • Shih, Y.-h., Su, Y.-f., Ho, R.-y., Su, P.-h., Yang, C.-y. (2012). Distinctive sorption mechanisms of 4-chlorophenol with black carbons as elucidated by different pH. Sci. Total Environ. 433, 523–529.
  • Shindo, H., Honna, T., Yamamoto, S., and Honma, H. (2004). Contribution of charred plant fragments to soil organic carbon in Japanese volcanic ash soils containing black humic acids. Organic Geochem. 35, 235–241.
  • Shinogi, Y., Yoshida, H., Koizumi, T., Yamaoka, M., and Saito, T. (2003). Basic characteristics of low-temperature carbon products from waste sludge. Adv. Environ. Res. 7, 661–665.
  • Siegel, F. R. 2002. Environmental geochemistry of potentially toxic metals. Berlin Heidelberg, Springer.
  • Singh, R., Babu, J. N., Kumar, R., Srivastava, P., Singh, P., and Raghubanshi, A. S. (2015). Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An ecological perspective. Ecol. Eng. 77, 324–347.
  • Singh, B. P., Cowie, A. L., and Smernik, R. J. (2012). Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778.
  • Singh, A., and Prasad, S. M. (2015). Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int. J. Environ. Sci. Technol. 12, 353–366.
  • Singh, B., Singh, B. P., and Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 48, 516–525.
  • Skjemstad, J., Clarke, P., Taylor, J., Oades, J., and Mcclure, S. (1996). The chemistry and nature of protected carbon in soil. Soil Res. 34, 251–271.
  • Skjemstad, J. O., Reicosky, D. C., Wilts, A. R., McGowan, J. A. (2002). Charcoal Carbon in U.S. Agricultural Soils. Soil Sci. Soc. Am. J. 66, 1249–1255.
  • Smernik, R. J., Kookana, R. S., and Skjemstad, J. O. (2006). NMR characterization of 13C-benzene sorbed to natural and prepared charcoals. Environ. Sci. Technol. 40, 1764–1769.
  • Sneath, H. E., Hutchings, T. R., de Leij, F. A. A. M. (2013). Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Environ. Pollut. 178, 361–366.
  • Sohi, S., Krull, E., Lopez-Capel, E., and Bol, R. (2010). A review of biochar and its use and function in soil. Adv. Agron. 105, 47–82.
  • Solomon, D., Lehmann, J., Wang, J., Kinyangi, J., Heymann, K., Lu, Y., Wirick, S., and Jacobsen, C. (2012). Micro- and nano-environments of C sequestration in soil: A multi-elemental STXM–NEXAFS assessment of black C and organomineral associations. Sci. Total Environ. 438, 372–388.
  • Song, Y., Ji, J., Yang, Z., Yuan, X., Mao, C., Frost, R. L., and Ayoko, G. A. (2011). Geochemical behavior assessment and apportionment of heavy metal contaminants in the bottom sediments of lower reach of Changjiang River. CATENA 85, 73–81.
  • Song, Y., Wang, F., Bian, Y., Kengara, F. O., Jia, M., Xie, Z., and Jiang, X. (2012a). Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J. Hazard. Mater. 217–218, 391–397.
  • Song, Y., Wang, F., Bian, Y., Kengara, F. O., Jia, M., Xie, Z., and Jiang, X. (2012b). Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J. Hazard. Mater. 217, 391–397.
  • Sopeña, F., Semple, K., Sohi, S., and Bending, G. (2012). Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88, 77–83.
  • Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manage. 1, 289–303.
  • Spokas, K. A. (2013). Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 5, 165–176.
  • Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., and Nichols, K. A. (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 41, 973–989.
  • Spokas, K., Koskinen, W., Baker, J., and Reicosky, D. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77, 574–581.
  • Srinivasan, P., and Sarmah, A. K. (2015). Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: A spectroscopic investigation. Sci. Total Environ. 502, 471–480.
  • Staniszewska, M., Koniecko, I., Falkowska, L., Burska, D., and Kiełczewska, J. (2016). The relationship between the black carbon and bisphenol A in sea and river sediments (Southern Baltic). J. Environ. Sci. 41, 24–32.
  • Stavi, I., and Lal, R. (2013). Agroforestry and biochar to offset climate change: a review. Agron. Sustain. Dev. 33, 81–96.
  • Streubel, J. D., Collins, H. P., Garcia-Perez, M., Tarara, J., Granatstein, D., and Kruger, C. E. (2011). Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 75, 1402–1413.
  • Stoffyn-Egli, P., Potter, T. M., Leonard, J. D., and Pocklington, R. (1997). The identification of black carbon particles with the analytical scanning electron microscope: methods and initial results. Sci. Total Environ. 198, 211–223.
  • Sun, K., Gao, B., Ro, K. S., Novak, J. M., Wang, Z., Herbert, S., and Xing, B. (2012). Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environ. Pollut. 163, 167–173.
  • Sun, J., Lian, F., Liu, Z., Zhu, L., and Song, Z. (2014). Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicol. Environ. Saf. 106, 226–231.
  • Suppadit, T., Kitikoon, V., Phubphol, A., and Neumnoi, P. (2012). Effect of quail litter biochar on productivity of four new physic nut varieties planted in cadmium-contaminated soil. Chil. J. Agric. Res. 72, 125–132.
  • Swift, R. S. (2001). Sequestration of carbon by soil. Soil Sci. 166, 858–871.
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., and Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85.
  • Tang, J., Zhu, W., Kookana, R., and Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 116, 653–659.
  • Teixidó, M., Hurtado, C., Pignatello, J. J., Beltrán, J. L., Granados, M., and Peccia, J. (2013). Predicting contaminant adsorption in black carbon (Biochar)-amended soil for the veterinary antimicrobial sulfamethazine. Environ. Sci. Technol. 47, 6197–6205.
  • Tessmer, C. H., Vidic, R. D., and Uranowski, L. J. (1997). Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environ. Sci. Technol. 31, 1872–1878.
  • Thevenon, F., Williamson, D., Bard, E., Anselmetti, F. S., Beaufort, L., and Cachier, H. (2010). Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human–climate interactions. Global Planet. Change 72, 381–389.
  • Thines, K. R., Abdullah, E. C., Mubarak, N. M., and Ruthiraan, M. (2017). Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renew. Sustain. Energy Rev. 67, 257–276.
  • Topoliantz, S., Ponge, J.-F. (2003). Burrowing activity of the geophagous earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in the presence of charcoal. Appl. Soil Ecol. 23, 267–271.
  • Trakal, L., Bingöl, D., Pohořelý, M., Hruška, M., and Komárek, M. (2014). Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: Engineering implications. Bioresour. Technol. 171, 442–451.
  • Trigo, C., Spokas, K. A., Cox, L., and Koskinen, W. C. (2014). Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine. J. Agric. Food Chem. 62, 10855–10860.
  • Uchimiya, M., and Bannon, D. I. (2013). Solubility of lead and copper in biochar-amended small arms range soils: Influence of soil organic carbon and pH. J. Agric. Food Chem. 61, 7679–7688.
  • Uchimiya, M., Chang, S., and Klasson, K. T. (2011a). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 190, 432–441.
  • Uchimiya, M., Klasson, K. T., Wartelle, L. H., and Lima, I. M. (2011b). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82, 1431–1437.
  • Uchimiya, M., Klasson, K. T., Wartelle, L. H., and Lima, I. M. (2011c). Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Chemosphere 82, 1438–1447.
  • Uchimiya, M., Lima, I. M., Klasson, K. T., and Wartelle, L. H. (2010a). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 80, 935–940.
  • Uchimiya, M., Lima, I. M., Thomas Klasson, K., Chang, S., Wartelle, L. H., and Rodgers, J. E. (2010b). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 58, 5538–5544.
  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., and Lima, I. M. (2011d). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 59, 2501–2510.
  • Uchimiya, M., Bannon, D. I., and Wartelle, L. H. (2012a). Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J. Agric. Food Chem. 60, 1798–1809.
  • Uchimiya, M., Cantrell, K. B., Hunt, P. G., Novak, J. M., and Chang, S. (2012b). Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars. J. Environ. Qual. 41, 1138–1149.
  • Uchimiya, M., Wartelle, L. H., and Boddu, V. M. (2012c). Sorption of triazine and organophosphorus pesticides on soil and biochar. J. Agric. Food Chem. 60, 2989–2997.
  • Van ZwietenA L., KimberA S., SinclairA K., ChanB K., and Downie, A. (2008). Biochar: potential for climate change mitigation, improved yield and soil health. Carbon 27, 48.
  • Venegas, A., Rigol, A., and Vidal, M. (2015). Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 119, 190–198.
  • Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., and Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR 24099, 162.
  • Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S. E., and Ok, Y. S. (2014). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J. Environ. Manage. 141, 95–103.
  • Wagner, A., and Kaupenjohann, M. (2015). Biochar addition enhanced growth of Dactylis glomerata L. and immobilized Zn and Cd but mobilized Cu and Pb on a former sewage field soil. Eur. J. Soil Sci. 66, 505–515.
  • Wagner, A., Kaupenjohann, M., Hu, Y., Kruse, J., and Leinweber, P. (2015). Biochar-induced formation of Zn-P-phases in former sewage field soils studied by P K-edge XANES spectroscopy. J. Plant Nutr. Soil Sci. 178, 582–585.
  • Wang, X. (2010). Black carbon in urban topsoils of Xuzhou (China): environmental implication and magnetic proxy. Environ. Monit. Assess. 163, 41–47.
  • Wang, T. T., Li, Y. S., Jiang, A. C., Lu, M. X., Liu, X. J., and Yu, X. Y. (2015). Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. Bull. Environ. Contam. Toxicol. 95, 401–406.
  • Wang, H., Lin, K., Hou, Z., Richardson, B., and Gan, J. (2010). Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J. Soils Sedim. 10, 283–289.
  • Wang, X., Sato, T., and Xing, B. (2006). Competitive sorption of pyrene on wood chars. Environ. Sci. Technol. 40, 3267–3272.
  • Wang, C., Walter, M., Parlange, J.-Y. (2013). Modeling simple experiments of biochar erosion from soil. J. Hydrol. 499, 140–145.
  • Wang, Y., Wang, L., Fang, G., Herath, H. M. S. K., Wang, Y., Cang, L., Xie, Z., and Zhou, D. (2013a). Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations. Environ. Pollut. 172, 86–93.
  • Wang, Y., Wang, Y.-J., Wang, L., Fang, G.-D., Cang, L., Herath, H., Zhou, D.-M. (2013b). Reducing the bioavailability of PCBs in soil to plant by biochars assessed with triolein-embedded cellulose acetate membrane technique. Environ. Pollut. 174, 250–256.
  • Wang, X. S., Zhang, P., Zhou, H. Y., and Fu, J. (2012). Association of black carbon with polycyclic aromatic hydrocarbons and heavy metals in urban topsoils and environmental implications. Int. J. Environ. Stud. 69, 705–713.
  • Waqas, M., Khan, S., Qing, H., Reid, B. J., and Chao, C. (2014). The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 105, 53–61.
  • Wen, Q., Li, C., Cai, Z., Zhang, W., Gao, H., Chen, L., Zeng, G., Shu, X., and Zhao, Y. (2011). Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresour. Technol. 102, 942–947.
  • Werner, D., Hale, S. E., Ghosh, U., and Luthy, R. G. (2010). Polychlorinated biphenyl sorption and availability in field-contaminated sediments. Environ. Sci. Technol. 44, 2809–2815.
  • Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., and Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 119, 33–44.
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56.
  • Xiao, B., Yu, Z., Huang, W., Song, J., Peng, P. A. (2004). Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants. Environ. Sci. Technol. 38, 5842–5852.
  • Xie, T., Sadasivam, B. Y., Reddy, K. R., Wang, C., and Spokas, K. (2015). Review of the effects of biochar amendment on soil properties and carbon sequestration. J. Hazardous, Toxic, Radioactive Waste 20, 04015013.
  • Xin, J., Liu, R., Fan, H., Wang, M., Li, M., and Liu, X. (2013). Role of sorbent surface functionalities and microporosity in 2,2′,4,4′-tetrabromodiphenyl ether sorption onto biochars. J. Environ. Sci. 25, 1368–1378.
  • Xu, T., Lou, L., Luo, L., Cao, R., Duan, D., and Chen, Y. (2012). Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci. Total Environ. 414, 727–731.
  • Xu, G., Lv, Y., Sun, J., Shao, H., and Wei, L. (2012). Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. CLEAN–Soil, Air, Water 40, 1093–1098.
  • Xu, R. K., and Zhao, A. Z. (2013). Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China. Environ. Sci. Pollut. Res. 20, 8491–8501.
  • Xu, X., Cao, X., and Zhao, L. (2013a). Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 92, 955–961.
  • Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., and Gao, B. (2013b). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 20, 358–368.
  • Xu, X., Cao, X., Zhao, L., Zhou, H., and Luo, Q. (2014). Interaction of organic and inorganic fractions of biochar with Pb(II) ion: Further elucidation of mechanisms for Pb(II) removal by biochar. RSC Adv. 4, 44930–44937.
  • Xu, Y., and Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour. Technol. 146, 485–493.
  • Xu, Y., and Chen, B. (2015). Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution. J. Soils Sedim. 15, 60–70.
  • Xu, W., Pignatello, J. J., and Mitch, W. A. (2013). Role of black carbon electrical conductivity in mediating hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) transformation on carbon surfaces by sulfides. Environ. Sci. Technol. 47, 7129–7136.
  • Yang, X., Lu, K., McGrouther, K., Che, L., Hu, G., Wang, Q., Liu, X., Shen, L., Huang, H., and Ye, Z. (2015). Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. J. Soils Sedim., 1–12.
  • Yang, Y., and Sheng, G. (2003a). Pesticide adsorptivity of aged particulate matter arising from crop residue burns. J. Agric. Food Chem. 51, 5047–5051.
  • Yang, Y., and Sheng, G. (2003b). Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ. Sci. Technol. 37, 3635–3639.
  • Yang, Y., Chun, Y., Sheng, G., and Huang, M. (2004). pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir 20, 6736–6741.
  • Yang, Y., Ligouis, B., Pies, C., Achten, C., and Hofmann, T. (2008). Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils. Chemosphere 71, 2158–2167.
  • Yang, Y., Sheng, G., and Huang, M. (2006). Bioavailability of diuron in soil containing wheat-straw-derived char. Sci. Total Environ. 354, 170–178.
  • Yang, K., Yang, J., Jiang, Y., Wu, W., and Lin, D. (2016). Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environ. Pollut. 210, 57–64.
  • Yang, X.-B., Ying, G.-G., Peng, P.-A., Wang, L., Zhao, J.-L., Zhang, L.-J., Yuan, P., He, H.-P. (2010). Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J. Agric. Food Chem. 58, 7915–7921.
  • Yao, F. X., Arbestain, M. C., Virgel, S., Blanco, F., Arostegui, J., Maciá-Agulló, J. A., and Macías, F. (2010). Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere 80, 724–732.
  • Yi, S., Gao, B., Sun, Y., Wu, J., Shi, X., Wu, B., and Hu, X. (2016). Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere 150, 694–701.
  • You, J., Landrum, P. F., Trimble, T. A., and Lydy, M. J. (2007). Availability of polychlorinated biphenyls in field‐contaminated sediment. Environ. Toxicol. Chem. 26, 1940–1948.
  • Yu, T.-R. (1997). Chemistry of variable charge soils. New York, Oxford University Press.
  • Yu, X., Gong, W., Liu, X., Shi, L., Han, X., and Bao, H. (2011). The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides. J. Hazard. Mater. 198, 340–346.
  • Yuan, J. H., and Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manage. 27, 110–115.
  • Yuan, J.-H., Xu, R.-K., and Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102, 3488–3497.
  • Yu, X.-Y., Ying, G.-G., and Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. J. Agric. Food Chem. 54, 8545–8550.
  • Yu, X.-Y., Ying, G.-G., and Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76, 665–671.
  • Yu, L., Yuan, Y., Tang, J., Wang, Y., and Zhou, S. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci. Rep. 5, 16221.
  • Zackrisson, O., Nilsson, M.-C. (1992). Allelopathic effects by Empetrumhermaphroditum on seed germination of two boreal tree species. Can. J. For. Res. 22, 1310–1319.
  • Zhan, C., Cao, J., Han, Y., Huang, S., Tu, X., Wang, P., and An, Z. (2013). Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau. Sci. Total Environ. 465, 255–266.
  • Zhang, X., He, L., Sarmah, A. K., Lin, K., Liu, Y., Li, J., and Wang, H. (2014). Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. J. Soils Sedim. 14, 1790–1799.
  • Zhang, M., Liu, Z. 2010. Surface and adsorption characteristics of black carbon from different sources. In: J. Xu and P. Huang (Eds.), Molecular environmental soil science at the interfaces in the earth's critical zone (pp. 279–281). Berlin/Heidelberg: Springer.
  • Zhang, H., Lin, K., Wang, H., and Gan, J. (2010). Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ. Pollut. 158, 2821–2825.
  • Zhang, M., and Ok, Y. S. (2014). Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Manage. 5, 255–257.
  • Zhang, X., Sarmah, A. K., Bolan, N. S., He, L., Lin, X., Che, L., Tang, C., and Wang, H. (2016). Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere 142, 28–34.
  • Zhang, W., Sun, H., and Wang, L. (2013a). Influence of the interactions between black carbon and soil constituents on the sorption of pyrene. Soil Sedim. Contam. 22, 469–482.
  • Zhang, P., Sun, H., Yu, L., and Sun, T. (2013). Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J. Hazard. Mater. 244–245, 217–224.
  • Zhang, P., Sun, H., Yu, L., and Sun, T. (2013b). Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. J. Hazard. Mater. 244–245, 217–224.
  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N., Pei, J., and Huang, H. (2013c). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 20, 8472–8483.
  • Zhao, L., Cao, X., Wang, Q., Yang, F., and Xu, S. (2013). Mineral constituents profi le of biochar derived from diversified waste biomasses: Implications for agricultural applications. J. Environ. Qual.42, 545–552.
  • Zhao, L., Cao, X., Zheng, W., Wang, Q., and Yang, F. (2015). Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere 136, 133–139.
  • Zheng, R., Chen, Z., Cai, C., Wang, X., Huang, Y., Xiao, B., and Sun, G. (2013). Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. BioResources 8, 5965–5982.
  • Zheng, W., Guo, M., Chow, T., Bennett, D. N., and Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. J. Hazard. Mater. 181, 121–126.
  • Zhou, J., Chen, H., Huang, W., Arocena, J. M., and Ge, S. (2016). Sorption of atrazine, 17α-estradiol, and phenanthrene on wheat straw and peanut shell biochars. Water, Air, Soil Pollut. 227, 7.
  • Zhou, F., Wang, H., Fang, S., Zhang, W., and Qiu, R. (2015). Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. Environ. Sci. Pollut. Res. 22, 16031–16039.
  • Zhu, D., and Pignatello, J. J. (2005). Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol. 39, 2033–2041.
  • Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 44, 1295–1301.
  • Zimmerman, A. R., Gao, B., and Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 43, 1169–1179.
  • Zong, Y., Xiao, Q., and Lu, S. (2016). Black carbon (BC) of urban topsoil of steel industrial city (Anshan), Northeastern China: Concentration, source identification and environmental implication. Sci. Total Environ. 569–570, 990–996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.