824
Views
34
CrossRef citations to date
0
Altmetric
Articles

The impact of estrogens on aquatic organisms and methods for their determination

ORCID Icon, , , , & ORCID Icon
Pages 909-963 | Published online: 04 Aug 2017

References

  • Abd El-Hady, H.H., Fathey, S.A., Alic, G.H., and Gabra, Y.G. (2016). Biochemical profile of phytoplankton and its nutritional aspects in some khors of Lake Nasser, Egypt. EJBAS, 3, 187–193.
  • Adeel, M., Song, X., Wang, Y., Francis, D., and Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int., 99, 107–119.
  • Aftafa, C., Pelit, F.O., Yalçinkaya, E.E., Turkmen, H., Kapdan, I., and Nil Ertaş, F. (2014). Ionic liquid intercalated clay sorbents for micro solid phase extraction of steroid hormones from water samples with analysis by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 1361, 43–52.
  • Albero, B., Sánchez-Brunete, C, and Tadeo, J.L. (2003). Determination of organophosphorus pesticides in fruit juices by matrix solid-phase dispersion and gas chromatography. J. Agric. Food Chem., 51, 6915–6921.
  • Andrew, M.N., O'Connor, A.M.W., Dunstan, R., and MacFarlane, G. (2010). Exposure to 17α-ethenylestradiol causes dose and temporally dependent changes in intersex, females and vitellogenin production in the Sydney rock oyster. Ecotoxicology, 19, 1440–1451.
  • Aris, A.Z., Shamsuddin, A.S., and Praveena, S.M. (2014). Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ. Int., 69, 104–19.
  • Armstrong, B.M., Lazorchak, J.M., Jensen, K.M., Haring, H.J., Smith, M.E., Flick, R.W., Bencic, D.C., and Biales, A.D. (2016). Reproductive effects in fathead minnows (Pimphales promelas) following a 21 d exposure to 17α-ethinylestradiol. Chemosphere, 144, 366–73.
  • Armstrong, B.M., Lazorchak, J.M., Murphy, C.A., Haring, H.J., Jensen, K.M., and Smith, M.E. (2015). Determining the effects of a mixture of an endocrine disrupting compound, 17α-ethinylestradiol, and ammonia on fathead minnow (Pimephales promelas) reproduction. Chemosphere, 120, 108–14.
  • Balina, K., Balode, M., Muzikante, L., and Blumberga, D. (2015). Impact of synthetic hormone 17α-ethinylestradiol on growth of microalgae Desmodesmus communis. Argon. Res., 13, 445–454.
  • Baltussen, E., Sandra, P., David, F., and Cramers, C. (1999). Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep., 11(10), 737–747.
  • Barel-Cohen, K., Shore, L.S., Shemesh, M., Wenzel, A., Mueller, J., and Kronfeld-Schor, N. (2006). Monitoring of natural and synthetic hormones in a polluted river. J. Environ. Manage., 78(1), 16–23.
  • Bartelt-Hunt, S.L., Snow, D.D., Damon-Powell, T., Brown, D.L., Prasai, G., Schwarz, M., and Kolok, A.S. (2011). Quantitative evaluation of laboratory uptake rates for pesticides, pharmaceuticals, and steroid hormones using POCIS. Environ. Toxicol. Chem., 30(6), 1412–1420.
  • Basheer, C., Alnedhary, A.A., Rao, B.S., Valliyaveettil, S., and Lee, H.K. (2006). Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal. Chem., 78, 2853–8.
  • Benstead, R.S., Baynes, A., Casey, D., Routledge, E.J., and Jobling, S. (2011). 17β-Oestradiol may prolong reproduction in seasonally breeding freshwater gastropod molluscs. Aquat. Toxicol., 101, 326–34.
  • Blewett, T.A., Chow, T.L., MacLatchy, D.L., and Wood, C.M. (2014). A species comparison of 17-α-ethynylestradiol uptake and tissue-specific distribution in six teleost fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 161, 33–40.
  • Borysko, L., and Ross, P.M. (2014). Adult exposure to the synthetic hormone 17α-ethynylestradiol affects offspring of the gastropods Nassarius burchardi and Nassarius jonasii. Ecotoxicol. Environ, Saf, 103, 91–100.
  • Bosker, T., Munkittrick, K.R., Lister, A., and MacLatchy, D.L. (2016). Mummichog (Fundulus heteroclitus) continue to successfully produce eggs after exposure to high levels of 17α-ethinylestradiol. Environ Toxicol. Chem., 35, 1107–1112.
  • Briciu, R.D., Kot-Wasik, A., and Namiesnik, J. (2009). Analytical challenges and recent advances in the determination of estrogens in water environments. J. Chromatogr. Sci., 47, 127–39.
  • Brix, R., Postigo, C., González, S., Villagrasa, M., Navarro, A., Kuster, M., de Alda, M.J., and Barceló, D. (2010). Analysis and occurrence of alkylphenolic compounds and estrogens in a European river basin and an evaluation of their importance as priority pollutants. Anal. Bioanal. Chem., 396, 1301–1309.
  • Browne, D.J., Zhou, L., Luong, J.H., and Glennon, J.D. (2013). CE with a boron-doped diamond electrode for trace detection of endocrine disruptors in water samples. Electrophoresis, 34, 2025–2032.
  • Buszewski, B., Ričanyová, J., Gadzała-Kopciuch, R., and Szumski, M. (2010). Supramolecular recognition of estrogens via molecularly imprinted polymers. Anal. Bioanal. Chem., 397, 2977–2986.
  • Bykova, L., Archer-Hartmann, S.A., Holland, L.A., Iwanowicz, L.R., and Blazer, V.S. (2010). Steroid determination in fish plasma using capillary electrophoresis. Environ. Toxicol. Chem., 29, 1950–1956.
  • Campanha, M.B., Awan, A.T., de Sousa, D.N., Grosseli, G.M., Mozeto, A.A., and Fadini, P.S. (2015). A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil. Environ. Sci. Pollut. Res. Int., 22, 7936–47.
  • Capriotti, A.L., Cavaliere, C., La Barbera, G., Piovesana, S., Samperi, R., Zenezini Chiozzi, R., and Laganà, A. (2016). Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination. Anal. Bioanal. Chem., 408, 4011–4020.
  • Chen, L., Mei, M., Huang, X., and Yuan, D. (2016). Sensitive determination of estrogens in environmental waters treated with polymeric ionic liquid-based stir cake sorptive extraction and liquid chromatographic analysis. Talanta, 152, 98–104.
  • Chen, W., Xue, M., Xue, F., Mu, X., Xu, Z., Meng, Z., Zhu, G., and Shea, K.J. (2015). Molecularly imprinted hollow spheres for the solid phase extraction of estrogens. Talanta, 140, 68–72.
  • Cheong, W.J., Yang, S.H., and Ali, F. (2013). Molecular imprinted polymers for separation science: a review of reviews. J. Sep. Sci., 36, 609–628.
  • Cocci, P., Palermo, F.A., Quassinti, L., Bramucci, M., Miano, A., and Mosconi, G. (2016). Determination of estrogenic activity in the river Chienti (Marche Region, Italy) by using in vivo and in vitro bioassays. J. Environ. Sci., 43, 48–53.
  • Colborn, T., vom Saal, F.S., and Soto, A.M. (1993). Developmental effects of endocrine- disrupting chemicals in wildlife and humans. Environ. Health Perspect., 101, 378–384.
  • Colosi, L.M., Resurreccion, E.P., and Zhang, Y. (2015). Assessing the energy and environmental performance of algae-mediated tertiary treatment of estrogenic compounds. Environ. Sci. Process Impacts, 17, 421–428.
  • Cosme, M.M., Lister, A.L., and Van Der Kraak, G. (2015). Inhibition of spawning in zebrafish (Danio rerio): adverse outcome pathways of quinacrine and ethinylestradiol. Gen. Comp. Endocrinol., 219, 89–101.
  • Costa, D.D.M., Neto, F.F., Costa, M.D.M., Moraisc, R.N., Garcia, J.R.E., Esquivel, B.M., and Ribeiroa, C.A.O. (2010). Vitellogenesis and other physiological responses induced by 17-β-estradiol in males of freshwater fish Rhamdia quelen. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 151, 248–257.
  • Crago, J., Tran, K., Budicin, A., Schreiber, B., Lavado, R., and Schlenk, D. (2015). Exploring the impacts of two separate mixtures of pesticide and surfactants on estrogenic activity in male fathead minnows and rainbow trout. Arch. Environ. Contam. Toxicol., 68, 362–370.
  • Da Cuña, R.H., Rey Vázquez, G., Dorelle, L., Rodríguez, E.M., Guimarães Moreira, R., and Lo Nostro, F.L. (2016). Mechanism of action of endosulfan as disruptor of gonadal steroidogenesis in the cichlid fish Cichlasoma dimerus. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 187, 74–80.
  • Dai, C., Zhao, M., and Yu, H. (2016). Dynamics induced by delay in a nutrient–phytoplankton model with diffusion. Ecol. Complex, 26, 29–36.
  • Dammann, A.A., Shappell, N.W., Bartell, S.E., and Schoenfuss, H.L. (2011). Comparing biological effects and potencies of estrone and 17β-estradiol in mature fathead minnows, Pimephales promelas. Aquat. Toxicol., 105, 559–568.
  • de Mes, T., Zeeman, G., and Lettinga, G. (2005). Occurrence and fate of estrone, 17β-estradiol and 17α-ethynylestradiol in STPs for domestic wastewater. Rev. Environ. Sci. Biotechnol., 4, 275–311.
  • Depiereux, S., Liagre, M., Danis, L., De Meulder, B., Depiereux, E., Segner, H., and Kestemont, P. (2014). Intersex occurrence in rainbow trout (Oncorhynchus mykiss) male fry chronically exposed to ethynylestradiol. PLoS One, 9, e98531.
  • Dietrich, S., Ploessl, F., Bracher, F., and Laforsch, C. (2010). Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna—a multigenerational study. Chemosphere, 79, 60–66.
  • D'Orazio, G., Asensio-Ramos, M., Hernández-Borges, J., Fanali, S., and Rodríguez-Delgado, M.Á. (2014). Oestrogenic compounds determination in water samples by dispersive liquid-liquid microextraction and micellar electrokinetic chromatography coupled to mass spectrometry. J. Chromatogr. A, 1344, 109–121.
  • Dragomirescu, A., Andoni, M., and Craina, M. (2015). Endocrine disrupting compounds in environment—a review. J. Food Agric. Environ., 13, 117–119.
  • EC (2012). Proposal for a directive of the European Parliament and of the council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. COM (2011), 876.
  • Fang, T.Y., Praveena, S.M., deBurbure, C., Aris, A.Z., Ismail, S.N., and Rasdi, I. (2016). Analytical techniques for steroid estrogens in water samples—A review. Chemosphere, 165, 358–368.
  • Fatemi, M.H., Hadjmohammadi, M.R., and Shakeri, P. (2014). Evaluation of alcoholic-assisted dispersive liquid-liquid microextraction of bisphenol a in water samples using an experimental design. Acta Chromatogr., 26, 401–412.
  • Fatemi, M.H., Hadjmohammadi, M.R., Shakeri, P., and Biparva, P. (2012). Extraction optimization of polycyclic aromatic hydrocarbons by alcoholic-assisted dispersive liquid-liquid microextraction and their determination by HPLC. J. Sep. Sci., 35, 86–92.
  • Fioravante, I.A., Albergaria, B., Teodoro, T.S., Magalhães, S.M.S., Barbosab, F., and Augustic, R. (2012). Removal of 17α-ethinylestradiol from a sterile WC medium by the cyanobacteria Microcystis novacekii. J. Environ. Monit., 14, 2362–2366.
  • Gadzała-Kopciuch, R., Ricanyová, J., and Buszewski, B. (2010). Isolation and detection of steroids from human urine by molecularly imprinted solid-phase extraction and liquid chromatography. J. Chromatogr. B., 877, 1177–84.
  • Gadzała-Kopciuch, R., Sadowski, R., Piwońska, A., and Buszewski, B. (2016). Applications of molecularly imprinted polymers for isolation of estrogens from environmental water samples. Curr. Anal. Chem., 12, 315–323.
  • Gárriz, Á., Menéndez-Helman, R.J., and Miranda, L.A. (2015). Effects of estradiol and ethinylestradiol on sperm quality, fertilization, and embryo-larval survival of pejerrey fish (Odontesthes bonariensis). Aquat. Toxicol., 167, 191–199.
  • González, A., Avivar, J., and Cerdà, V. (2015). Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography. J. Chromatogr. A, 1413, 1–8.
  • Gore, A.C., Chappell, V.A., Fenton, S.E., Flaws, J.A., Nadal, A., Prins, G.S., Toppari, J., and Zoeller, R.T. (2015). Executive summary to EDC-2: the endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocr. Rev., 36, 593–602.
  • Gorga, M., Insa, S., Petrovic, M., and Barceló, D. (2015). Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers. Sci. Total Environ., 503–504, 69–86.
  • Gröner, F., Ziková, A., and Kloas, W. (2015). Effects of the pharmaceuticals diclofenac and metoprolol on gene expression levels of enzymes of biotransformation, excretion pathways and oestrogenicity in primary hepatocytes of Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 167, 51–57.
  • Guedes-Alonso, R., Santana-Viera, S., Sosa-Ferrera, Z., and Santana-Rodríguez, J.J. (2015a). Molecularly imprinted solid-phase extraction coupled with ultra high performance liquid chromatography and fluorescence detection for the determination of estrogens and their metabolites in wastewater. J. Sep. Sci., 38, 3961–3968.
  • Guedes-Alonso, R., Sosa-Ferrera, Z., and Santana-Rodríguez, J.J. (2015b). An on-line solid phase extraction method coupled with UHPLC-MS/MS for the determination of steroid hormone compounds in treated water samples from waste water treatment plants. Anal. Methods, 7, 5996–6005.
  • Guo, F., Liu, Q., Qu, G.B., Song, S.J., Sun, J.T., Shi, J.B., and Jiang, G.B. (2013). Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 1281, 9–18.
  • Guyón, N.F., Roggio, M.A., Amé, M.V., Hued, A.C., Valdés, M.E., Giojalas, L.C., Wunderlin, D.A., and Bistoni, M.A. (2012). Impairments in aromatase expression, reproductive behavior, and sperm quality of male fish exposed to 17β-estradiol. Environ. Toxicol. Chem., 31, 935–940.
  • Ha, K., Joo, G., Jha, S.K., and Kim, J.S. (2009). Monitoring of endocrine disruptors by capillary electrophoresis amperometric detector. Microelectron. Eng., 86, 1407–1410.
  • Hallgren, P., Nicolle, A., Hansson, L.A., Brönmark, C., Nikoleris, L., Hyder, M., and Persson, A. (2014). Synthetic estrogen directly affects fish biomass and may indirectly disrupt aquatic food webs. Environ. Toxicol. Chem., 33, 930–936.
  • Hanselman, T.A., Graetz, D.A., and Wilkie, A.C. (2003). Manure-borne estrogens as potential environmental contaminants:  a review. Environ. Sci. Technol., 37, 5471–5478.
  • Hassell, K., Pettigrove, V., Beresford, N., Jobling, S., and Kumar, A. (2016). No evidence of exposure to environmental estrogens in two feral fish species sampled from the Yarra River, Australia: a comparison with Northern Hemisphere studies. Ecotoxicol. Environ. Saf., 131, 104–117.
  • Hense, B.A., Jaser, W., Welzl, G., Pfister, G., Wöhler-Moorhoff, G.F., and Schramm, K.W. (2008). Impact of 17a-ethinylestradiol on the plankton in freshwater microcosms—II: Responses of phytoplankton and the interrelation within the ecosystem. Ecotoxicol. Environ Saf., 69, 453–465.
  • Hirakawa, I., Miyagawa, S., Mitsui, N., Miyahara, M., Onishi, Y., Kagami, Y., Kusano, T., Takeuchi, T., Ohta, Y., and Iguchi, T. (2013). Developmental disorders and altered gene expression in the tropical clawed frog (Silurana tropicalis) exposed to 17α-ethinylestradiol. J. Appl. Toxicol., 33, 1001–1010.
  • Holbech, H., Kinnberg, K., Petersen, G.I., Jackson, P., Hylland, K., Norrgren, L., and Bjerregaard, P. (2006). Detection of endocrine disrupters: evaluation of a Fish Sexual Development Test (FSDT). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 144, 57–66.
  • Hu, J., Cheng, S., Aizawa, T., Terao, Y., and Kunikane, S. (2003). Products of aqueous chlorination of 17beta-estradiol and their estrogenic activities. Environ. Sci. Technol., 37, 5665–5670.
  • Hu, C., He, M., Chen, B., Zhong, C., and Hu, B. (2013). Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples. J. Chromatogr. A, 1310, 21–30.
  • Huang, X., Chen, L., Lin, F., and Yuan, D. (2011). Novel extraction approach for liquid samples: stir cake sorptive extraction using monolith. J. Sep. Sci., 34, 2145–2151.
  • Huang, Z., and Lee, H.K. (2015a). Performance of metal-organic framework MIL-101 after surfactant modification in the extraction of endocrine disrupting chemicals from environmental water samples. Talanta, 143, 366–373.
  • Huang, Z., and Lee, H.K. (2015b). Study and comparison of polydopamine and its derived carbon decorated nanoparticles in the magnetic solid-phase extraction of estrogens. J. Chromatogr. A, 1414, 41–50.
  • Huang, G.Y., Liu, Y.S., Chen, X.W., Liang, Y.Q., Liu, S.S., Yang, Y.Y., Hu, L.X., Shi, W.J., Tian, F., Zhao, J.L., Chen, J., and Ying, G.G. (2016). Feminization and masculinization of western mosquitofish (Gambusia affinis) observed in rivers impacted by municipal wastewaters. Sci. Rep., 6, 20884.
  • Huang, B., Wang, B., Ren, D., Jin, W., Liu, J., Peng, J., and Pan, X. (2013). Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment, China. Environ. Int., 59, 262–273.
  • Iparraguirre, A., Navarro, P., Rodil, R., Prieto, A., Olivares, M., Etxebarria, N., and Zuloaga, O. (2014). Matrix effect during the membrane-assisted solvent extraction coupled to liquid chromatography tandem mass spectrometry for the determination of a variety of endocrine disrupting compounds in wastewater. J. Chromatogr. A, 1356, 163–170.
  • IUPAC (2003). Endocrine disruptors in the environment (IUPAC Technical Report). Pure Appl. Chem., 75, 631–681.
  • Janicki, T., Krupiński, M., and Długoński, J. (2016). Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina. Bioresour. Technol., 200, 223–229.
  • Jiang, Y., Tang, T., Cao, Z., Shi, G., and Zhou, T. (2015). Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection. J. Sep. Sci., 382, 2158–2166.
  • Jin, S., Yang, F., Liao, T., Hui, Y., Wen, S., and Xu, Y. (2012). Enhanced effects by mixtures of three estrogenic compounds at environmentally relevant levels on development of Chinese rare minnow (Gobiocypris rarus). Environ. Toxicol. Pharmacol., 33, 277–283.
  • Johnson, E.L., Weinersmith, K.L., and Earley, R.L. (2016). Changes in reproductive physiology of mangrove rivulus Kryptolebias marmoratus following exposure to environmentally relevant doses of ethinyl oestradiol. J. Fish Biol., 88, 774–786.
  • Jürgens, M.D., Holthaus, K.I.E., Johnson, A.C., Smith, J.J.L., Hetheridge, M., and Williams, R.J. (2002). The potential for estradiol and ethinylestradiol degradationin English rivers. Environ. Toxicol. Chem., 21(3), 480–488.
  • Kabir, A., and Furton, K.G. (2014). Fabric phase sorptive extractors (FPSE). United States Patent and Trademark Office 14/216, 121.
  • Khanal, S.K., Xie, B., Thompson, M.L., Sung, S., Ong, S.K., and Van Leeuwent, J. (2006). Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ. Sci. Technol., 40, 6537–6546.
  • Kidd, K.A., Paterson, M.J., Rennie, M.D., Podemski, C.L., Findlay, D.L., Blanchfield, P.J., and Liber, K. (2014). Direct and indirect responses of a freshwater food web to a potent synthetic estrogen. Philos. Trans. R. Soc. Lond. B Sci., 369, 20130578. doi: 10.1098/rstb.2013.0578
  • Klabunde, K.J. (2001). Nanoscale material in chemistry. New York: Wiley-Interscience.
  • Koger, C.S., The, S.J., and Hinton, D.E. (2000). Determining the sensitive developmental stages of intersex induction in medaka (Oryzias latipes) exposed to 17b-estradiol or testosterone). Mar. Environ. Res., 50, 201–206.
  • Kong, H.J., Lee, I.K., Kim, J., Kim, W.J., Kim, H.S., Cho, W.S., Kim, D.W., Park, J.Y., and An, C.M. (2015). RNA-Seq-based transcriptome analysis of Korean rose bitterling (Rhodeus uyekii) exposed to synthetic estrogen 17-α-ethinylestradiol (EE2). Mar. Genom., 3, 233–236.
  • Kudłak, B., Szczepańska, N., Owczarek, K., Mazerska, Z., and Namieśnik, J. (2015). Revision of biological methods serving determination of EDC presence and their endocrine potential. Crit. Rev. Anal. Chem., 3, 45, 191–200.
  • Kumar, R., Gaurav, H., Malik, A.K., Kabir, A., and Furton, K.G. (2014). Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. J. Chromatogr. A., 1359, 16–25.
  • Kuster, M., de Alda, M.J.L., Hernando, M.D., Petrovic, M., Martín-Alonsod, J., and Barceló, D. (2008). Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J. Hydrol., 358, 112–123.
  • Kwaśniewska, K., Gadzała-Kopciuch, R., and Buszewski, B. (2015). Magnetic molecular imprinted polymers as a tool for isolation and purification of biological samples. Open Chem., 13, 1228–1235.
  • Lafleur, A.D., and Schug, K.A. (2011). A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems. Anal. Chim. Acta, 696(1–2), 6–26.
  • Lai, K.M., Johnson, K.L., Scrimshaw, M.D., and Lester, J.N. (2000). Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ. Sci. Technol., 34, 3890–3894.
  • Lai, K.M., Scrimshaw, M.D., and Lester, J.N. (2002). Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. Sci. Total Environ., 289, 159–168.
  • Lange, A., Katsu, Y., Miyagawa, S., Ogino, Y., Urushitani, H., Kobayashi, T., Hirai, T., Shears, J.A., Nagae, M., Yamamoto, J., Ohnishi, Y., Oka, T., Tatarazako, N., Ohta, Y., Tyler, C.R., and Iguchi, T. (2012). Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. Aquat. Toxicol., 109, 250–258.
  • Laurenson, J.P., Bloom, R.A., Page, S., and Sadrieh, N. (2014). Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data. AAPS J, 16, 299–310.
  • Leet, J.K., Gall, H.E., and Sepúlveda, M.S. (2011). A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. J. Appl. Toxicol., 31, 379–398.
  • Lei, B., Huang, S., Zhou, Y., Wang, D., and Wang, Z. (2009). Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere, 76, 36–42.
  • Lei, B., Kang, J., Yu, Y., Zha, J., Li, W., Wang, Z., Wang, Y., and Wen, Y. (2014). Long-term exposure investigating the estrogenic potency of estriol in Japanese medaka (Oryzias latipes). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 160, 86–92.
  • Lei, B., Wen, Y., Wang, X., Zha, J., Li, W., Wang, Z., Sun, Y., Kang, J., and Wang, Y. (2013). Effects of estrone on the early life stages and expression of vitellogenin and estrogen receptor genes of Japanese medaka (Oryzias latipes). Chemosphere, 93, 1104–1110.
  • Leonard, J.A., Cope, W.G., Hammer, E.J., Barnhart, M.C., and Bringolf, R.B. (2016). Extending the toxicity-testing paradigm for freshwater mussels: Assessing chronic reproductive effects of the synthetic estrogen 17α-ethinylestradiol on the unionid mussel Elliptio complanata. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 191, 14–25.
  • Li, W.C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut., 187, 193–201.
  • Li, R., Chen, G.Z., Tam, N.F.Y., Luan, T.G., Shin, P.K.S., Cheung, S.G., and Liu, Y. (2009). Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol. Environ. Saf., 72, 321–328.
  • Li, J., Sun, X., and Zheng, S. (2016). In situ study on photosynthetic characteristics of phytoplankton in the Yellow Sea and East China Sea in summer 2013. J. Mar. Syst., 160, 94–106.
  • Lin, Z.K., He, Q.Y., Wang, L.T., Wang, X.D., Dong, Q.X., and Huang, C.J. (2013). Preparation of magnetic multifunctional molecularly imprinted polymer beads for determining environmental estrogens in water samples. J. Hazard. Mater., 252–253, 57–63.
  • Lin, A.Y.-C.N, and Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals andoestrogens in river water. Environ. Toxicol. Chem., 24(6), 1303–1309.
  • Liu, Y., Guan, Y., Gao, Q, Tam, N.F., and Zhu, W. (2010). Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere, 80, 592–599.
  • Liu, J., Lu, W., Liu, H., Wu, X., Li, J., and Chen, L. (2016). Dispersive liquid-liquid microextraction for four phenolic environmental estrogens in water samples followed by determination using capillary electrophoresis. Electrophoresis, 37, 2502–2508.
  • Liu, N., Shi, Y.E., Li, M., Zhang, T.D., and Gao, S. (2015). Simultaneous determination of four trace estrogens in feces, leachate, tap and groundwater using solid-liquid extraction/auto solid-phase extraction and high-performance liquid chromatography with fluorescence detection. J. Sep. Sci., 38, 3494–3501.
  • Liu, H., Yang, X., and Lu, R. (2016). Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin. Chemosphere, 56, 1–7.
  • López de Alda, M.J., Barceló, D. (2001). Review of analytical methods for the determination of estrogens and progestogens in waste waters. Fres. J. Anal. Chem., 371, 437–47.
  • Lu, H., and Xu, S. (2015). Mesoporous structured estrone imprinted Fe3O4@SiO2@mSiO2 for highly sensitive and selective detection of estrogens from water samples by HPLC. Talanta, 144, 303–311.
  • Lucci, P., Núñez, O., and Galceran, M.T. (2011). Solid-phase extraction using molecularly imprinted polymer for selective extraction of natural and synthetic estrogens from aqueous samples. J. Chromatogr. A, 1218, 4828–4833.
  • Luo, J., Lei, B., Ma, M., Zha, J., and Wang, Z. (2011). Identification of estrogen receptor agonists in sediments from Wenyu River, Beijing, China. Water Res., 45, 3908–3914.
  • Machado, K.S., Cardoso, F.D., Azevedo, J.C.R., and Braga, C.B. (2014). Occurrence of female sexual hormones in the Iguazu river basin, Curitiba. Acta Scientiarum. Technol., Maringá, 36, 421–427.
  • Meijide, F.J., Rey Vázquez, G., Piazza, Y.G., Babay, P.A., Itria, R.F, and Lo Nostro, F.L. (2016). Effects of waterborne exposure to 17β-estradiol and 4-tert-octylphenol on early life stages of the South American cichlid fish Cichlasoma dimerus. Ecotoxicol. Environ. Saf., 124, 82–90.
  • Moeller, K., Kobler, J., and Bein, T. (2007). Colloidal Suspensions of Nanometer- sized Mesoporous Silica. Adv. Funct. Mater., 17, 605–612.
  • Muldoon, B.M., and Hogan, N.S. (2016). Biomarker responses to estrogen and androgen exposure in the brook stickleback (Culaea inconstans): A new bioindicator species for endocrine disrupting compounds. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 180, 1–10.
  • Naing, N.N., Li, S.F., and Lee, H.K. (2016). Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography. J. Chromatogr. A, 1427, 29–36.
  • Nakamura, S., Sian, T.H., and Daishima, S. (2001). Determination of estrogens in river water by gas chromatography-negative-ion chemical-ionization mass spectrometry. J. Chromatogr. A, 919, 275–282.
  • Naldi, A.C., Fayad, P.B., Prévost, M., and Sauvé, S. (2016). Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J. 10, 30(17).
  • Nazari, E., and Suja, F. (2016). Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: A review. Rev. Environ. Health, 31(4), 465–491.
  • Nie, M., Yang, Y., Liu, M., Yan, C., Shi, H., Dong, W., and Zhou, J.L. (2014). Environmental estrogens in a drinking water reservoir area in Shanghai: occurrence, colloidal contribution and risk assessment. Sci. Total Environ., 487, 785–791.
  • Nikoleris, L., Hultin, C.L., Hallgren, P., and Hansson, M.C. (2016). 17α-Ethinylestradiol (EE2) treatment of wild roach (Rutilus rutilus) during early life development disrupts expression of genes directly involved in the feedback cycle of estrogen. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 180, 56–64.
  • Nogueira, J.M. (2012). Novel sorption-based methodologies for static microextraction analysis: A review on SBSE and related techniques. Anal. Chim. Acta, 13,757, 1–10.
  • Nováková, L., Matysová, L., and Solich, P. (2006). Advantages of application of UPLC in pharmaceutical analysis. Talanta, 68, 908–918.
  • Nováková, L., and Vlcková, H. (2009). A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal. Chim. Acta, 656, 8–35.
  • Nyakubaya, V.T., Durney, B.C., Ellington, M.C., Kantes, A.D., Reed, P.A., Walter, S.E., Stueckle, J.R., and Holland, L.A. (2015). Quantification of circulating steroids in individual zebrafish using stacking to achieve nanomolar detection limits with capillary electrophoresis and UV-visible absorbance detection. Anal. Bioanal. Chem., 407, 6985–6993.
  • Oliferova, L., Statkus, M., Tsysin, G., and Zolotov, Y. (2007). On-line solid-phase extraction and high performance liquid chromatography determination of polycyclic aromatic hydrocarbons in water using polytetrafluoroethylene capillary. Talanta, 72, 1386–1391.
  • Pacáková, V., Loukotková, L., Bosáková, Z., and Stulík, K. (2009). Analysis for estrogens as environmental pollutants—a review. J. Sep. Sci., 32, 867–882.
  • Park, C.B., Aoki, J., Lee, J.S., Nagae, M., Lee, Y.D., Nagae, M., Lee, Y.D., Sakakura, Y., Hagiwara, A., and Soyano, K. (2010). The effects of 17β-estradiol on various reproductive parameters in the hermaphrodite fish Kryptolebias marmoratus. Aquat. Toxicol., 96, 273–279.
  • Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., and Wang, Z. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ., 397, 158–66.
  • Pérez, R.L., and Escandar, G.M. (2014). Liquid chromatography with diode array detection and multivariate curve resolution for the selective and sensitive quantification of estrogens in natural waters. Anal. Chim. Acta, 835, 19–28.
  • Perron, M.C., and Juneau, P. (2011). Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ. Res., 111, 520–529.
  • Petrie, B., Youdan, J., Barden, R., and Kasprzyk-Hordern, B. (2016). Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 1431, 64–78.
  • Phuge, S.K., and Gramapurohit, N.P. (2015). Sex hormones alter sex ratios in the Indian skipper frog, Euphlyctis cyanophlyctis: determining sensitive stages for gonadal sex reversal. Gen. Comp. Endocrinol., 220, 70–77.
  • Płotka-Wasylka, J., Szczepańska, N., de la Guardia, M., and Namieśnik, J. (2015). Miniaturized solid-phase extraction techniques. Trends Anal. Chem., 73, 19–38.
  • Pocock, T., and Falk, S. (2014). Negative impact on growth and photosynthesis in the green alga Chlamydomonas reinhardtii in the presence of the estrogen 17α-ethynylestradiol. PLoS One, 9, e109289.
  • Pojana, G., Gomiero, A., Jonkers, N., and Marcomini, A. (2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ. Int., 33, 929–936.
  • Puckowski, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J., and Stepnowski, P. (2016). Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. J. Pharm. Biomed. Anal., 127, 232–55.
  • Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F., and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A, 1116, 1–9.
  • Rezaee, M., Yamin, Y., and Faraji, M. (2010). Evolution of dispersive liquid-liquid microextraction method. J. Chromatogr. A, 1217, 2342–2357.
  • Robinson, J.A., Ma, Q., Staveley, J.P., Smolenski, W.J., and Ericson, J. (2017). Degradation and transformation of 17α-estradiol in water–sediment systems under controlled aerobic and anaerobic conditions. Environ. Toxicol. Chem., 36, 621–629.
  • Rocha, M.J., Cruzeiro, C., Reis, M., Pardal, M., and Rocha, E. (2014). Spatial and seasonal distribution of 17 endocrine disruptor compounds in an urban estuary (Mondego River, Portugal): evaluation of the estrogenic load of the area. Environ. Monit. Assess., 186, 3337–3350.
  • Rogers, J.A., Metz, L., and Yong, V.W. (2013). Review: endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol. Immunol., 53, 421–430.
  • Rossier, N.M., Chew, G., Zhang, K., Riva, F., and Fent, K. (2016). Activity of binary mixtures of drospirenone with progesterone and 17α-ethinylestradiol in vitro and in vivo. Aquat. Toxicol., 174, 109–22.
  • Rujiralai, T., Bull, I.D., Llewellyn, N., and Evershed, R.P. (2011). In situ polar organic chemical integrative sampling (POCIS) of steroidal estrogens in sewage treatment works discharge and river water. J. Environ. Monit., 13(5), 1427–1434.
  • Runnalls, T.J., Beresford, N., Kugathasa, S., Margiotta-Casalucia, L., Scholze, M., Scott, A.P., and Sumptera, J.P. (2015). From single chemicals to mixtures—Reproductive effects of levonorgestrel and ethinylestradiol on the fathead minnow. Aquat. Toxicol., 169, 152–167.
  • Saaristo, M., Craft, J.A., Lehtonen, K.K., and Lindström, K. (2010). Exposure to 17alpha-ethinyl estradiol impairs courtship and aggressive behavior of male sand gobies (Pomatoschistus minutus). Chemosphere, 79, 541–546.
  • Sadowski, R., and Gadzała-Kopciuch, R. (2013). Isolation and determination of estrogens in water samples by solid-phase extraction using molecularly imprinted polymers and HPLC. J. Sep. Sci., 36, 2299–2305.
  • Salomão, A.L., Soroldoni, S., Marques, M., Hogland, W., and Bila, D.M. (2014). Effects of single and mixed estrogens on single and combined cultures of D. subspicatus and P. subcapitata. Bull. Environ. Contam. Toxicol., 93, 215–221.
  • Šandrejová, J., Campillo, N., Viñas, P., and Andruch, V. (2016). Classification and terminology in dispersive liquid–liquid microextraction. Microchem. J., 127, 184–186.
  • Schellin, M., Hauser, B., and Popp, P. (2004). Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injection–gas chromatography-mass spectrometric detection. J. Chromatogr. A, 1040, 251–258.
  • Schramm, K.W., Jaser, W., Welzl, G., Pfister, G., Wöhler-Moorhoff, G.F., and Hense, B.A. (2008). Impact of 17a-ethinylestradiol on the plankton in freshwater microcosms - I: Response of zooplankton and abiotic variables. Ecotoxicol. Environ. Saf., 69, 437–452.
  • Schug, T.T., Janesick, A., Blumberg, B., and Heindel, J.J. (2011). Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol., 127, 204–215.
  • Schwendiman, A.L., and Propper, C.R. (2012). A common environmental contaminant affects sexual behavior in the clawed frog, Xenopus tropicalis. Physiol. Behav., 106, 520–526.
  • Shakeri, P., Kiasari, Z.M., Hadjmohammadi, M.R., and Fatemi, M.H. (2014). Optimization of parameters for the alcoholic-assisted dispersive liquid–liquid microextraction of estrogens in water. J. Iran Chem. Soc., 11, 1337–1343.
  • Shappell, N.W., Hyndman, K.M., Bartell, S.E., and Schoenfuss, H.L. (2010). Comparative biological effects and potency of 17α- and 17β-estradiol in fathead minnows. Aquat. Toxicol., 100, 1–8.
  • Shi, W., Wang, L., Rousseau, D.P., and Lens, P.N. (2010). Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems. Environ. Sci. Pollut. Res. Int., 17, 824–33.
  • Silva, C.P., Otero, M., and Esteves, V. (2012). Processes for the elimination of estrogenic steroid hormones from water: a review. Environ. Pollut., 165, 38–58.
  • Socas-Rodríguez, B., Hernández-Borges, J., Asensio-Ramos, M., Herrera-Herrera, A.V., Palenzuela, J.A., and Rodríguez-Delgado, M.Á. (2014). Determination of estrogens in environmental water samples using 1,3-dipentylimidazolium hexafluorophosphate ionic liquid as extraction solvent in dispersive liquid-liquid microextraction. Electrophoresis, 35, 2479–2487.
  • Socas-Rodríguez, B., Hernández-Borges, J., Salazar, P., Martín, M., and Rodríguez-Delgado, M.Á. (2015). Core-shell polydopamine magnetic nanoparticles as sorbent in micro-dispersive solid-phase extraction for the determination of estrogenic compounds in water samples prior to high-performance liquid chromatography-mass spectrometry analysis. J. Chromatogr. A, 1397, 1–10.
  • Sohn, J., Kim, S., Koschorreck, J., Kho, Y., and Choi, K. (2016). Alteration of sex hormone levels and steroidogenic pathway by several low molecular weight phthalates and their metabolites in male zebrafish (Danio rerio) and/or human adrenal cell (H295R) line. J. Hazard. Mater., 320, 45–54.
  • Song, W.T., Wang, Z.J., and Liu, H.C. (2014). Effects of individual and binary mixtures of estrogens on male goldfish (Carassius auratus). Fish Physiol. Biochem., 40, 1927–35.
  • Song, Y., Zhao, S., Tchounwou, P., and Liu, Y.M. (2007). A nanoparticle-based solid-phase extraction method for liquid chromatography-electrospray ionization-tandem mass spectrometric analysis. J. Chromatogr. A, 1166, 79–84.
  • Sosa-Ferrera, Z., Mahugo-Santana, C., and Santana-Rodríguez, J.J. (2013). Analytical methodologies for the determination of endocrine disrupting compounds in biological and environmental samples. Biomed. Res. Int., 2013, 1–23.
  • Souza, M.S., Hallgren, P., Balseiro, E., and Hansson, L.A. (2013). Low concentrations, potential ecological consequences: synthetic estrogens alter life-history and demographic structures of aquatic invertebrates. Environ. Pollut., 178, 237–243.
  • Söffker, M., and Tyler, C.R. (2012). Endocrine disrupting chemicals and sexual behaviors in fish a critical review on effects and possible consequences. Crit. Rev. Toxicol., 42(8), 653–668.
  • Staniszewska, M., Koniecko, I., Falkowska, L., and Krzymyk, E. (2015a). Occurrence and distribution of bisphenol A and alkylphenols in the water of the Gulf of Gdansk (Southern Baltic). Mar. Pollut. Bull., 91, 372–379.
  • Staniszewska, M., Nehring, I., and Zgrundo, A. (2015b). The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk). Environ. Pollut., 207, 319–328.
  • Szczepańska, N., Owczarek, K., Kudłak, B., Pokrywka, A., Mazerska, Z., Gałuszka, A., and Namieśnik, J. (2016). Analysis and Bioanalysis – the effective tool for the data collection of the environmental conditions and processes occurring. Pol. J. Environ. Stud., 25, 45–53.
  • Tahmasebi, E., and Yamini, Y. (2014). Extraction and preconcentration of 17a-ethynylestradiol as an endocrine-disrupting agent from environmental water samples by a modified magnetic nanosorbent. J. Iran Chem. Soc., 11, 1681–1686.
  • Tamayo, F.G., Turiel, E., and Martín-Esteban, A. (2007). Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J. Chromatogr. A, 1152, 32–40.
  • Teitelbaum, S.L., Belpoggi, F., and Reinlib, L. (2015). Advancing research on endocrine disrupting chemicals in breast cancer: Expert panel recommendations. Reprod. Toxicol., 54, 141–147.
  • Toft, G., and Baatrup, E. (2003). Altered sexual characteristics in guppies (Poecilia reticulata) exposed to 17beta-estradiol and 4-tert-octylphenol during sexual development. Ecotoxicol, Environ, Saf., 56, 228–237.
  • Tompsett, A.R., Wiseman, S., Higley, E., Giesy, J.P., and Hecker, M. (2013). Effects of exposure to 17α-ethynylestradiol during sexual differentiation on the transcriptome of the African clawed frog (Xenopus laevis). Environ. Sci. Technol., 47, 4822–4828.
  • Tompsett, A.R., Wiseman, S., Higley, E., and Heckre, M. (2012). Effects of exposure to 17α-ethynylestradiol during larval development on growth, sexual differentiation, and abundances of transcripts in the liver of the wood frog (Lithobates sylvaticus). Aquat. Toxicol., 126C, 42–51.
  • Trujillo-Rodríguez, M.J., Rocío-Bautista, P., Pino, V., and Afonso, A.M. (2013). Ionic liquids in dispersive liquid-liquid microextraction. Trends Anal. Chem., 51, 87–106.
  • Truter, J.C., van Wyk, J.H., Oberholster, P.J., Botha, A.M., and de Klerk, A.R. (2016). An in vitro and in vivo assessment of endocrine disruptive activity in a major South African river. Water Air Soil. Pollut., 227, 54.
  • US EPA (1997). Special report on environmental endocrine disruption: an effect assessment and 1290 analysis. EPA/630/R-96/012; https://archive.epa.gov/raf/web/html/special-rpt-endocrine-disruption.html
  • US EPA (1998). Endocrine Disruptor Screening Program: Statement of Policy & Priority-Setting Workshop; Notice, https://www.epa.gov/sites/production/files/2015-08/documents/122898frnotice.pdf
  • US EPA (2011). Endocrine Disruptor Screening Program for the 21st Century: (EDSP21 Work Plan) The Incorporation of In Silico Models and In Vitro High Throughput Assays in the Endocrine Disruptor Screening Program (EDSP) for Prioritization and Screening; https://www.epa.gov/sites/production/files/2015-07/documents/edsp21_work_plan_summary_overview_final.pdf
  • Volkova, K., Reyhanian Caspillo, N., Porseryd, T., Hallgren, S., Dinnetz, P., Olsén, H., and Porsch Hällström, I. (2015). Transgenerational effects of 17α-ethinyl estradiol on anxiety behavior in the guppy, Poecilia reticulata. Gen. Comp. Endocrinol., 223, 66–72.
  • Vutukuru, S.S., Ganugapati, J., Ganesh, V., Atheeksha, P., and Potti, R.B. (2016). Endocrine disruption by Bisphenol A, polychlorinated biphenyls and polybrominated diphenyl ether, in zebra fish (Danio rerio) model: an in silico approach. Fish. Physiol. Biochem., 5, 1–15.
  • Wang, Y., Wang, Q., Hu, L., Lu, G., and Li, Y. (2015). Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. Environ. Geochem. Health, 37, 147–156.
  • WHO; United Nations Environment Programme (2013). State of the science of endocrine disrupting chemicals-2012. Å. Bergman, J.J. Heindel, S. Jobling, K.A. Kiddand, R.T. Zoeller (Eds), An assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme (UNEP) and WHO; http://www.who.int/ceh/publications/endocrine/en/
  • Wisniewska, M., and Szaniawska, A. (2015). Effect of 17α-Ethinylestradiol on the Time Needed for Males and Females of Gammarus tigrinus Sexton, 1939 to Re-couple. J. Environ. Sci. Engineer. B, 4, 419–425.
  • Woods, M., and Kumar, A. (2011). Vitellogenin induction by 17b-estradiol and 17a ethynylestradiol in male Murray rainbowfish (Melanotaenia fluviatilis). Environ. Toxicol. Chem., 30, 2620–2627.
  • Woźniak, B., Kłopot, A., Matraszek-Żuchowska, I., Sielska, K., and Żmudzki, J. (2014). Determination of natural and synthetic estrogens in surface water using gas chromatography-mass spectrometry. Bull. Vet. Inst. Pulawy, 58, 603–611.
  • Writer, J.H., Barber, L.B., Ryan, J.N., and Bradley, P.M. (2011). Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments. Environ. Sci. Technol., 45, 4370–4376.
  • Xu, Z., Yang, Z., and Liu, Z. (2014). Development of dual-templates molecularly imprinted stir bar sorptive extraction and its application for the analysis of environmental estrogens in water and plastic samples. J. Chromatogr. A, 1358, 52–59.
  • Yan, H., and Wang, H. (2013). Recent development and applications of dispersive liquid-liquid microextraction. J. Chromatogr. A, 1295, 1–15.
  • Yan, W., Zhao, L., Feng, Q., and Lin, J.M. (2008). Determination of estrogens and their metabolites in water using C30 SPE-LC-MS. J. Sep. Sci., 31, 3581–3587.
  • Yin, G.G., Kookana, R.S., and Ru, Y.J. (2002). Occurrence and fate of hormone steroids in the environment. Environ. Int., 28, 545–551.
  • Ying, G.G., Kookana, R.S., and Ru, Y.J. (2002). Review article. Occurrence and fate of hormone steroids in the environment. Environ. Int., 28, 545–551.
  • Zacs, D., Perkons, I., and Bartkevics, V. (2016). Determination of steroidal estrogens in tap water samples using solid-phase extraction on a molecularly imprinted polymer sorbent and quantification with gas chromatography-mass spectrometry (GC-MS). Environ. Monit. Assess., 188, 433(12).
  • Zha, J., Sun, L., Zhou, Y., Spear, P.A., Ma, M., and Wang, Z. (2008). Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicol. Appl. Pharmacol., 226, 298–308.
  • Zhang, Y., Dong. S., Wang, H., Tao, S., and Kiyama, R. (2016). Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut., 213, 809–824.
  • Zhang, P., Hu, L., Lu, R., Zhou, W., and Gao, H. (2013). Application of ionic liquids for liquid–liquid microextraction. Anal. Methods, 5, 5376–5385.
  • Zhang, Z., Ren, N., Kannan, K., Nan, J., Liu, L., Ma, W., Qi, H., and Li, Y. (2014). Occurrence of endocrine disrupting phenols and estrogens in water and sediment of the Songhua River, Northeastern China. Arch. Environ. Contam. Toxicol., 66, 361–369.
  • Zhang, X., Zhang, D., Zhang, H., Luo, Z., and Yan, C. (2012). Occurrence, distribution, and seasonal variation of estrogenic compounds and antibiotic residues in Jiulongjiang River, South China. Environ. Sci. Pollut. Res. Int., 19, 1392–1404.
  • Zhou, Y., Zhou, J., Xu, Y., Zha, J., Ma, M., and Wang, Z. (2009). An alternative method for the determination of estrogens in surface water and wastewater treatment plant effluent using pre-column trimethylsilyl derivatization and gas chromatography/mass spectrometry. Environ. Monit. Assess., 158, 35–49.
  • Yin, G.G., Kookana, R.S., Ru, Y.J. (2002). Occurrence and fate of hormone steroids in the environment. Environ. Int., 28, 545–551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.