827
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

An overview on the application of advanced oxidation processes for the removal of naphthenic acids from water

, , , , , , & show all
Pages 1337-1370 | Published online: 02 Nov 2017

References

  • Afzal, A., Chelme-Ayala, P., Drzewicz, P., Martin, J.W., and Gamal El-Din, M. (2015). Effects of ozone and ozone/hydrogen peroxide on the degradation of model and real oil-sands-process-affected-water naphthenic acids. Ozone: Sci. Eng. 37(1), 45–54.
  • Afzal, A., Drzewicz, P., Martin, J.W., and Gamal El-Din, M. (2012a). Decomposition of cyclohexanoic acid by the UV/H2O2 process under various conditions. Sci. Total. Environ. 426, 387–392.
  • Afzal, A., Drzewicz, P., Pérez-Estrada, L. n. A., Chen, Y., Martin, J.W., and Gamal El-Din, M. (2012b). Effect of molecular structure on the relative reactivity of naphthenic acids in the UV/H2O2 advanced oxidation process. Environ. Sci. Technol. 46(19), 10727–10734.
  • Al-jibouri, A.K.H., Wu, J., and Upreti, S.R. (2015). Ozonation of naphthenic acids in water: Kinetic study. Water, Air, Soil Pollut. 226(10), 1–11.
  • Alam, M.S., Cossio, M., Robinson, L., Wang, X., Kenney, J.P., Konhauser, K.O., MacKenzie, M.D., Ok, Y.S., and Alessi, D.S. (2016). Removal of organic acids from water using biochar and petroleum coke. Environ. Technol. Innov. 6, 141–151.
  • Alberta Environmental Protection (AEP). (1996). Naphthenic acids background information, discussion report. Environmental Criteria Branch, Environmental Assessment Branch, Environmental Regulatory Services, Alberta Environmental Protection.
  • Alharbi, H.A., Alcorn, J., Al-Mousa, A., Giesy, J.P., and Wiseman, S.B. (2017). Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands process-affected water: evidence for inhibition of P-glycoprotein. J. Appl. Toxicol. 37, 591–601.
  • Andreozzi, R., Caprio, V., Insola, A., and Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53(1), 51–59.
  • Anipsitakis, G.P., and Dionysiou, D.D. (2003). Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 37(20), 4790–4797.
  • Anipsitakis, G.P., and Dionysiou, D.D. (2004). Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38(13), 3705–3712.
  • Armstrong, S.A. (2008). Dissipation and phytotoxicity of oil sands naphthenic acids in wetland plants. (Doctoral dissertation). University of Saskatchewan. Saskatchewan, Canada.
  • Baffes, J., Kose, M.A., Ohnsorge, F., and Stocker, M. (2015). The great plunge in oil prices: Causes, consequences, and policy responses. Consequences, and policy responses. Amsterdam, Netherland. Available at SSRN:http://dx.doi.org/10.2139/ssrn.2624398.
  • Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., and Derrick, P.J. (2003). Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion. Anal. Chem. 75(4), 860–866.
  • Barrow, M.P., Peru, K.M., Fahlman, B., Hewitt, L.M., Frank, R.A., and Headley, J.V. (2015). Beyond naphthenic acids: Environmental screening of water from natural sources and the Athabasca oil sands industry using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectr. 26(9), 1508–1521.
  • Barrow, M.P., Witt, M., Headley, J.V., and Peru, K.M. (2010). Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 82(9), 3727–3735.
  • Bataineh, M., Scott, A., Fedorak, P., and Martin, J. (2006). Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation. Anal. Chem. 78(24), 8354–8361.
  • Bauer, A.E., Frank, R.A., Headley, J.V., Peru, K.M., Hewitt, L.M., and Dixon, D.G. (2015). Enhanced characterization of oil sands acid extractable organics fractions using electrospray ionization–high resolution mass spectrometry and synchronous fluorescence spectroscopy. Environ. Toxicol. Chem. 34(5), 1001–1008.
  • Bautista, P., Mohedano, A., Casas, J., Zazo, J., and Rodriguez, J. (2008). An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biot. 83(10), 1323–1338.
  • Beltran, F.J. (2003). Ozone reaction kinetics for water and wastewater systems, CRC Press. Florida, USA.
  • Biryukova, O.V., Fedorak, P.M., and Quideau, S.A. (2007). Biodegradation of naphthenic acids by rhizosphere microorganisms. Chemosphere 67(10), 2058–2064.
  • Boudens, R., Reid, T., VanMensel, D., MR, S.P., Ciborowski, J.J., and Weisener, C.G. (2016). Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings. Sci. Total. Environ. 539, 114–124.
  • Brient, J.A., Wessner, P.J., and Doyle, M.N. (1995). Naphthenic acids. Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, Inc. New Jersey, USA.
  • Brown, L.D., and Ulrich, A.C. (2015). Oil sands naphthenic acids: A review of properties, measurement, and treatment. Chemosphere 127, 276–290.
  • Brunswick, P., Hewitt, L.M., Frank, R.A., van Aggelen, G., Kim, M., and Shang, D. (2016). Specificity of high resolution analysis of naphthenic acids in aqueous environmental matrices. Anal. Methods 8(37), 6764–6773.
  • Clemente, J.S., and Fedorak, P.M. (2005). A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60(5), 585–600.
  • Council of Canadian Academies. (2015). Technological prospects for reducing the environmental footprint of canadian oil sands. The Expert Panel on the Potential for New and Emerging Technologies to Reduce the Environmental Impacts of Oil Sands Development, Council of Canadian Academies.
  • Da Campo, R., Barrow, M.P., Shepherd, A.G., Salisbury, M., and Derrick, P.J. (2009). Characterization of naphthenic acid singly charged noncovalent dimers and their dependence on the accumulation time within a hexapole in Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel 23(11), 5544–5549.
  • Dias, H.P., Pereira, T.M., Vanini, G., Dixini, P.V., Celante, V.G., Castro, E.V., Vaz, B.G., Fleming, F.P., Gomes, A.O., and Aquije, G.M. (2014). Monitoring the degradation and the corrosion of naphthenic acids by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and atomic force microscopy. Fuel 126, 85–95.
  • Dissanayake, A., Scarlett, A.G., and Jha, A.N. (2016). Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels. Environ. Sci. Pollut. Res., 23(7), 7060–7066.
  • Dokholyan, B., and Magomedov, A. (1984). The effect of sodium naphthenate on the viability and physiological and biochemical indices of fish. Voprosy Ikhtiologii 23(6), 1013–1019.
  • Drzewicz, P., Afzal, A., El-Din, M.G., and Martin, J.W. (2010). Degradation of a model naphthenic acid, cyclohexanoic acid, by vacuum UV (172 nm) and UV (254 nm)/H2O2. J. Phys. Chem. A 114(45), 12067–12074.
  • Drzewicz, P., Perez-Estrada, L., Alpatova, A., Martin, J.W., and Gamal El-Din, M. (2012). Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water. Environ. Sci. Technol. 46(16), 8984–8991.
  • El-Din, M.G., Fu, H., Wang, N., Chelme-Ayala, P., Pérez-Estrada, L., Drzewicz, P., Martin, J.W., Zubot, W., and Smith, D.W. (2011). Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water. Sci. Total. Environ. 409(23), 5119–5125.
  • Fang, G.-D., Dionysiou, D.D., Al-Abed, S.R., and Zhou, D.-M. (2013). Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs. Appl. Catal. B-Environ. 129, 325–332.
  • Fang, G.-D., Dionysiou, D.D., Wang, Y., Al-Abed, S.R., and Zhou, D.-M. (2012). Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J. Hazard. Mater. 227, 394–401.
  • Folwell, B.D., McGenity, T.J., Price, A., Johnson, R.J., and Whitby, C. (2016). Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters. Int. Biodeter. Biodegr. 108, 214–221.
  • Frank, R.A., Fischer, K., Kavanagh, R., Burnison, B.K., Arsenault, G., Headley, J.V., Peru, K.M., Kraak, G.V.D., and Solomon, K.R. (2008). Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environ. Sci. Technol. 43(2), 266–271.
  • Furman, O.S., Teel, A.L., and Watts, R.J. (2010). Mechanism of base activation of persulfate. Environ. Sci. Technol. 44(16), 6423–6428.
  • Gautier, D.L., Bird, K.J., Charpentier, R.R., Grantz, A., Houseknecht, D.W., Klett, T.R., Moore, T.E., Pitman, J.K., Schenk, C.J., and Schuenemeyer, J.H. (2009). Assessment of undiscovered oil and gas in the Arctic. Science 324(5931), 1175–1179.
  • Gosselin, P., Hrudey, S.E., Naeth, M.A., Plourde, A., Therrien, R., Van Der Kraak, G., and Xu, Z. (2010). Environmental and health impacts of Canada's oil sands industry. Royal Society of Canada Expert panel report, Ottawa, ON.
  • Grewer, D.M., Young, R.F., Whittal, R.M., and Fedorak, P.M. (2010a). Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Sci. Total. Environ. 408(23), 5997–6010.
  • Grewer, D.M., Young, R.F., Whittal, R.M., and Fedorak, P.M. (2010b). Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Sci. Total. Environ. 408(23), 5997–6010.
  • Han, X., MacKinnon, M.D., and Martin, J.W. (2009). Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS. Chemosphere 76(1), 63–70.
  • Han, X., Scott, A.C., Fedorak, P.M., Bataineh, M., and Martin, J.W. (2008). Influence of molecular structure on the biodegradability of naphthenic acids. Environ. Sci. Technol. 42(4), 1290–1295.
  • Hao, C., Headley, J.V., Peru, K.M., Frank, R., Yang, P., and Solomon, K.R. (2005). Characterization and pattern recognition of oil–sand naphthenic acids using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. J. Chromatogr. A 1067(1), 277–284.
  • Hayes, T.M.E. (2006). Examining the ecological effects of naphthenic acids and major ions on phytoplankton in the Athabasca oil sands region. (Doctoral dissertation). University of Waterloo. Waterloo, Canada.
  • He, Y., Patterson, S., Wang, N., Hecker, M., Martin, J.W., El-Din, M.G., Giesy, J.P., and Wiseman, S.B. (2012). Toxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas). Water Res. 46(19), 6359–6368.
  • Headley, J.V., Du, J.-L., Peru, K.M., and McMartin, D.W. (2009). Electrospray ionization mass spectrometry of the photodegradation of naphthenic acids mixtures irradiated with titanium dioxide. J. Environ. Sci. Health A 44(6), 591–597.
  • Headley, J.V., and McMartin, D.W. (2004). A Review of the Occurrence and Fate of Naphthenic Acids in Aquatic Environments. J. Environ. Sci. Health A 39(8), 1989–2010.
  • Headley, J.V., Peru, K.M., and Barrow, M.P. (2016). Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectrom. Rev. 35(2), 311–328.
  • Headley, J.V., Peru, K.M., Mishra, S., Meda, V., Dalai, A.K., McMartin, D.W., Mapolelo, M.M., Rodgers, R.P., and Marshall, A.G. (2010). Characterization of oil sands naphthenic acids treated with ultraviolet and microwave radiation by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 24(21), 3121–3126.
  • Headley, J.V., Peru, K.M., Mohamed, M.H., Wilson, L., McMartin, D.W., Mapolelo, M.M., Lobodin, V.V., Rodgers, R.P., and Marshall, A.G. (2013). Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry characterization of tunable carbohydrate-based materials for sorption of oil sands naphthenic acids. Energy Fuel 28(3), 1611–1616.
  • Herman, D.C., Fedorak, P.M., MacKinnon, M.D., and Costerton, J. (1994). Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings. Can. J. Microbiol. 40(6), 467–477.
  • Hindle, R., Noestheden, M., Peru, K., and Headley, J. (2013). Quantitative analysis of naphthenic acids in water by liquid chromatography-accurate mass time-of-flight mass spectrometry. J. Chromatogr. A 1286, 166–174.
  • Huang, C. (2016). Treatment of oil sands process-affected water (OSPW) using integrated fixed-film activated sludge (IFAS) reactors, University of Alberta.
  • Huang, C., Shi, Y., Xue, J., Zhang, Y., El-Din, M.G., and Liu, Y. (2017). Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass. J. Hazard. Mater. 326, 120–129.
  • Hughes, J.D. (2013). Energy: A reality check on the shale revolution. Nature 494(7437), 307–308.
  • Hwang, G., Dong, T., Islam, M.S., Sheng, Z., Pérez-Estrada, L.A., Liu, Y., and El-Din, M.G. (2013). The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors. Bioresour. Technol. 130, 269–277.
  • Iranmanesh, S., Harding, T., Abedi, J., Seyedeyn-Azad, F., and Layzell, D.B. (2014). Adsorption of naphthenic acids on high surface area activated carbons. J. Environ. Sci. Health A 49(8), 913–922.
  • Islam, M.S., Moreira, J., Chelme-Ayala, P., and Gamal El-Din, M. (2014). Prediction of naphthenic acid species degradation by kinetic and surrogate models during the ozonation of oil sands process-affected water. Sci. Total. Environ. 493, 282–290.
  • Janfada, A., Headley, J.V., Peru, K.M., and Barbour, S. (2006). A laboratory evaluation of the sorption of oil sands naphthenic acids on organic rich soils. J. Environ. Sci. Health A 41(6), 985–997.
  • Jia, L., Anthony, E., and Charland, J. (2002). Investigation of vanadium compounds in ashes from a CFBC firing 100 petroleum coke. Energy Fuel 16(2), 397–403.
  • Jia, W., He, Y., Ling, Y., Hei, D., Shan, Q., Zhang, Y., and Li, J. (2015). Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation. Radiat. Phys. Chem. 109, 17–22.
  • Johnson, R.J., Smith, B.E., Rowland, S.J., and Whitby, C. (2013). Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440. Int. Biodeter. Biodegr. 81, 3–8.
  • Johnson, R.J., Smith, B.E., Sutton, P.A., McGenity, T.J., Rowland, S.J., and Whitby, C. (2011). Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J 5(3), 486–496.
  • Johnson, R.J., West, C.E., Swaih, A.M., Folwell, B.D., Smith, B.E., Rowland, S.J., and Whitby, C. (2012). Aerobic biotransformation of alkyl branched aromatic alkanoic naphthenic acids via two different pathways by a new isolate of Mycobacterium. Environ. Microbiol. 14(4), 872–882.
  • Jones, D., Scarlett, A.G., West, C.E., and Rowland, S.J. (2011). Toxicity of individual naphthenic acids to Vibrio fischeri. Environ. Sci. Technol. 45(22), 9776–9782.
  • Jones, D., Watson, J., Meredith, W., Chen, M., and Bennett, B. (2001). Determination of naphthenic acids in crude oils using nonaqueous ion exchange solid-phase extraction. Anal. Chem. 73(3), 703–707.
  • Jones, D., West, C.E., Scarlett, A.G., Frank, R.A., and Rowland, S.J. (2012). Isolation and estimation of the ‘aromatic’ naphthenic acid content of an oil sands process-affected water extract. J. Chromatogr. A 1247, 171–175.
  • Kamaluddin, M., and Zwiazek, J.J. (2002). Naphthenic acids inhibit root water transport, gas exchange and leaf growth in aspen (Populus tremuloides) seedlings. Tree Physiol. 22(17), 1265–1270.
  • Kannel, P.R., and Gan, T.Y. (2012). Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environments: a review. J. Environ. Sci. Health A 47(1), 1–21.
  • Kavanagh, R.J., Burnison, B.K., Frank, R.A., Solomon, K.R., and Van Der Kraak, G. (2009). Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy. Chemosphere 76(1), 120–126.
  • Kean, S. (2009). Eco-alchemy in Alberta. Science 326(5956), 1052–1055.
  • Kister, J., Pieri, N., Alvarez, R., Diez, M., and Pis, J. (1996). Effects of preheating and oxidation on two bituminous coals assessed by synchronous UV fluorescence and FTIR spectroscopy. Energy Fuel 10(4), 948–957.
  • Klamerth, N., Moreira, J., Li, C., Singh, A., McPhedran, K.N., Chelme-Ayala, P., Belosevic, M., and El-Din, M.G. (2015). Effect of ozonation on the naphthenic acids’ speciation and toxicity of pH-dependent organic extracts of oil sands process-affected water. Sci. Total. Environ. 506, 66–75.
  • Langlais, B., Legube, B., Beuffe, H., and Dore, M. (1993). Study of the nature of the by-products formed and the risks of toxicity when disinfecting a secondary effluent with ozone. Water. Sci. Technol. 27, 135–135.
  • Lari, E., Steinkey, D., Morandi, G., Rasmussen, J.B., Giesy, J.P., and Pyle, G.G. (2017). Oil sands process-affected water impairs feeding by Daphnia magna. Chemosphere 175, 465–472.
  • Leshuk, T., Wong, T., Linley, S., Peru, K.M., Headley, J.V., and Gu, F. (2016). Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water. Chemosphere 144, 1854–1861.
  • Leung, S.S.C., MacKinnon, M.D., and Smith, R.E. (2001). Aquatic reclamation in the Athabasca, Canada, oil sands: naphthenate and salt effects on phytoplankton communities. Environ. Toxicol. Chem. 20(7), 1532–1543.
  • Leung, S.S., MacKinnon, M.D., and Smith, R.E. (2003). The ecological effects of naphthenic acids and salts on phytoplankton from the Athabasca oil sands region. Aquat. Toxicol. 62(1), 11–26.
  • Liang, X., Zhu, X., and Butler, E.C. (2011). Comparison of four advanced oxidation processes for the removal of naphthenic acids from model oil sands process water. J. Hazard. Mater. 190(1–3), 168–176.
  • Liu, H., Bruton, T.A., Li, W., Buren, J.V., Prasse, C., Doyle, F.M., and Sedlak, D.L. (2016a). Oxidation of benzene by persulfate in the presence of Fe (III)-and Mn (IV)-containing oxides: stoichiometric efficiency and transformation products. Environ. Sci. Technol. 50(2), 890–898.
  • Liu, J., Wang, L., Tang, J., and Ma, J. (2016b). Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial. Chemosphere 149, 328–335.
  • Luna, F.M.T., Pontes-Filho, A.A., Trindade, E.D., Silva, I.J., Azevedo, D.C., and Cavalcante, C.L. (2008). Removal of aromatic compounds from mineral naphthenic oil by adsorption. J. Ind. Eng. Chem. 47(9), 3207–3212.
  • Madhavan, V., Levanon, H., and Neta, P. (1978). Decarboxylation by SO4-radicals. Rad. Res. 76(1), 15–22.
  • Madill, R.E., Orzechowski, M.T., Chen, G., Brownlee, B.G., and Bunce, N.J. (2001). Preliminary risk assessment of the wet landscape option for reclamation of oil sands mine tailings: bioassays with mature fine tailings pore water. Environ. Toxicol. 16(3), 197–208.
  • Mahaffey, A., and Dube, M. (2017). Review of the composition and toxicity of oil sands process-affected water. Environ. Rev. 25, 97–114.
  • Mahdavi, H., Prasad, V., Liu, Y., and Ulrich, A.C. (2015). In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium. Bioresour. Technol. 187, 97–105.
  • Marentette, J.R., Frank, R.A., Bartlett, A.J., Gillis, P.L., Hewitt, L.M., Peru, K.M., Headley, J.V., Brunswick, P., Shang, D., and Parrott, J.L. (2015). Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos. Aquat. Toxicol. 164, 108–117.
  • Marsh, W.P. (2006). Sorption of naphthenic acids to soil minerals. (Doctoral dissertation). University of Alberta. Edmonton, Canada.
  • Martin, J.W., Barri, T., Han, X., Fedorak, P.M., El-Din, M.G., Perez, L., Scott, A.C., and Jiang, J.T. (2010). Ozonation of oil sands process-affected water accelerates microbial bioremediation. Environ. Sci. Technol. 44(21), 8350–8356.
  • Martin, N., Burkus, Z., McEachern, P., and Yu, T. (2014). Naphthenic acids quantification in organic solvents using fluorescence spectroscopy. J. Environ. Sci. Health A 49(3), 294–306.
  • McQueen, A.D., Kinley, C.M., Kiekhaefer, R.L., Calomeni, A.J., Rodgers Jr, J.H., and Castle, J.W. (2016). Photocatalysis of a commercial naphthenic acid in water using fixed-film TiO2. Water, Air, Soil Pollut. 227(5), 1–11.
  • Melvin, S.D., and Trudeau, V.L. (2012). Toxicity of naphthenic acids to wood frog tadpoles (Lithobates sylvaticus). J. Toxicol. Environ. Health A 75(3), 170–173.
  • Mohamed, M.H., Wilson, L.D., Headley, J.V., and Peru, K.M. (2011). Sequestration of naphthenic acids from aqueous solution using β-cyclodextrin-based polyurethanes. Phys. Chem. Chem. Phys. 13(3), 1112–1122.
  • Munoz, M., de Pedro, Z.M., Casas, J.A., and Rodriguez, J.J. (2015). Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—a review. Appl. Catal. B-Environ. 176, 249–265.
  • Myhre, O., and Fonnum, F. (2001). The effect of aliphatic, naphthenic, and aromatic hydrocarbons on production of reactive oxygen species and reactive nitrogen species in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase, mitochondria, and phospholipase A. Biochem. Pharmacol. 62(1), 119–128.
  • Neta, P., Huie, R.E., and Ross, A.B. (1988). Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 17(3), 1027–1284.
  • Neyens, E., and Baeyens, J. (2003). A review of classic Fenton's peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98(1), 33–50.
  • Ortiz, X., Jobst, K.J., Reiner, E.J., Backus, S.M., Peru, K.M., McMartin, D.W., O'Sullivan, G., Taguchi, V.Y., and Headley, J.V. (2014). Characterization of naphthenic acids by gas chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86(15), 7666–7673.
  • Pereira, A.S., Bhattacharjee, S., and Martin, J.W. (2013a). Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry. Environ. Sci. Technol. 47(10), 5504–5513.
  • Pereira, A.S., Islam, M., Gamal El-Din, M., and Martin, J.W. (2013b). Ozonation degrades all detectable organic compound classes in oil sands process-affected water; an application of high-performance liquid chromatography/obitrap mass spectrometry. Rapid Commun. Mass Spectrom. 27(21), 2317–2326.
  • Pérez-Estrada, L.A., Han, X., Drzewicz, P., Gamal El-Din, M., Fedorak, P.M., and Martin, J.W. (2011). Structure–reactivity of naphthenic acids in the ozonation process. Environ. Sci. Technol. 45(17), 7431–7437.
  • Pliego, G., Zazo, J.A., Garcia-Muñoz, P., Munoz, M., Casas, J.A., and Rodriguez, J.J. (2015). Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit. Rev. Environ. Sci. Technol. 45(24), 2611–2692.
  • Pollard, S.J., Hrudey, S.E., Fuhr, B.J., Alex, R.F., Holloway, L.R., and Tosto, F. (1992). Hydrocarbon wastes at petroleum-and creosote-contaminated sites: rapid characterization of component classes by thin-layer chromatography with flame ionization detection. Environ. Sci. Technol. 26(12), 2528–2534.
  • Purcell, J.M., Hendrickson, C.L., Rodgers, R.P., and Marshall, A.G. (2006). Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis. Anal. Chem. 78(16), 5906–5912.
  • Quagraine, E., Peterson, H., and Headley, J. (2005). In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region—demonstrated field studies and plausible options: a review. J. Environ. Sci. Health A 40, 685–722.
  • Quinlan, P.J., and Tam, K.C. (2015). Water treatment technologies for the remediation of naphthenic acids in oil sands process-affected water. Chem. Eng. J. 279, 696–714.
  • Ré-Poppi, N., Almeida, F., Cardoso, C., Raposo, J., Viana, L., Silva, T., Souza, J., and Ferreira, V. (2009). Screening analysis of type C Brazilian gasoline by gas chromatography–Flame ionization detector. Fuel 88(3), 418–423.
  • Reinardy, H.C., Scarlett, A.G., Henry, T.B., West, C.E., Hewitt, L.M., Frank, R.A., and Rowland, S.J. (2013). Aromatic naphthenic acids in oil sands process-affected water, resolved by GCxGC-MS, only weakly induce the gene for vitellogenin production in zebrafish (Danio rerio) larvae. Environ. Sci. Technol. 47(12), 6614–6620.
  • Rontani, J., and Bonin, P. (1992). Utilization of n-alkyl-substituted cyclohexanes by a marine Alcaligenes. Chemosphere 24(10), 1441–1446.
  • Rowland, S.M., Robbins, W.K., Corilo, Y.E., Marshall, A.G., and Rodgers, R.P. (2014). Solid-phase extraction fractionation to extend the characterization of naphthenic acids in crude oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel 28(8), 5043–5048.
  • Rowland, S.J., Scarlett, A.G., Jones, D., West, C.E., and Frank, R.A. (2011a). Diamonds in the rough: identification of individual naphthenic acids in oil sands process water. Environ. Sci. Technol. 45(7), 3154–3159.
  • Rowland, S.J., West, C.E., Jones, D., Scarlett, A.G., Frank, R.A., and Hewitt, L.M. (2011b). Steroidal aromatic ‘naphthenic acids’ in oil sands process-affected water: structural comparisons with environmental estrogens. Environ. Sci. Technol. 45(22), 9806–9815.
  • Rowland, S.J., West, C.E., Scarlett, A.G., Ho, C., and Jones, D. (2012). Differentiation of two industrial oil sands process-affected waters by two-dimensional gas chromatography/mass spectrometry of diamondoid acid profiles. Rapid Commun. Mass Spectrom. 26(5), 572–576.
  • Sabyasachi, M., Venkatesh, M., Ajay, K. D., Dena, W. M., John, V. H., and Kerry, M. P. (2010). Photocatalysis of naphthenic acids in water. J. Water Resour. Prot. 2010(2), 644–650.
  • Scarlett, A., Reinardy, H., Henry, T., West, C., Frank, R., Hewitt, L., and Rowland, S. (2013). Acute toxicity of aromatic and non-aromatic fractions of naphthenic acids extracted from oil sands process-affected water to larval zebrafish. Chemosphere 93(2), 415–420.
  • Schindler, D. (2010). Tar sands need solid science. Nature 468(7323), 499–501.
  • Schramm, L.L., Stasiuk, E.N., and MacKinnon, M. (2000). Surfactants in Athabasca oil sands slurry conditioning, flotation recovery, and tailings processes. Cambridge: Cambridge University Press.
  • Scott, A.C., Young, R.F., and Fedorak, P.M. (2008a). Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples. Chemosphere 73(8), 1258–1264.
  • Scott, A.C., Zubot, W., MacKinnon, M.D., Smith, D.W., and Fedorak, P.M. (2008b). Ozonation of oil sands process water removes naphthenic acids and toxicity. Chemosphere 71(1), 156–160.
  • Shu, Z., Li, C., Belosevic, M., Bolton, J.R., and El-Din, M.G. (2014). Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation. Environ. Sci. Technol. 48(16), 9692–9701.
  • Smith, B.E., Lewis, C.A., Belt, S.T., Whitby, C., and Rowland, S.J. (2008). Effects of alkyl chain branching on the biotransformation of naphthenic acids. Environ. Sci. Technol. 42(24), 9323–9328.
  • Tokic, D. (2015). The 2014 oil bust: Causes and consequences. Energy Policy 85, 162–169.
  • Tollefsen, K.E., Petersen, K., and Rowland, S.J. (2012). Toxicity of synthetic naphthenic acids and mixtures of these to fish liver cells. Environ. Sci. Technol. 46(9), 5143–5150.
  • Toor, N.S., Han, X., Franz, E., MacKinnon, M.D., Martin, J.W., and Liber, K. (2013). Selective biodegradation of naphthenic acids and a probable link between mixture profiles and aquatic toxicity. Environ. Toxicol. Chem. 32(10), 2207–2216.
  • Vaiopoulou, E., Misiti, T.M., and Pavlostathis, S.G. (2015). Removal and toxicity reduction of naphthenic acids by ozonation and combined ozonation-aerobic biodegradation. Bioresour. Technol. 179, 339–347.
  • Valencia-Davila, J.A., Blanco-Tirado, C., and Combariza, M.Y. (2017). Analysis of naphthenic acids by matrix assisted laser desorption ionization time of flight mass spectrometry. Fuel 193, 168–177.
  • Wang, B., Wan, Y., Gao, Y., Yang, M., and Hu, J. (2013a). Determination and characterization of oxy-naphthenic acids in oilfield wastewater. Environ. Sci. Technol. 47(16), 9545–9554.
  • Wang, N., Chelme-Ayala, P., Perez-Estrada, L., Garcia-Garcia, E., Pun, J., Martin, J.W., Belosevic, M., and Gamal El-Din, M. (2013b). Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to Vibrio fischeri and mammalian immune system. Environ. Sci. Technol. 47(12), 6518–6526.
  • Wang, B., Wan, Y., Gao, Y., Zheng, G., Yang, M., Wu, S., and Hu, J. (2015a). Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant. Environ. Sci. Technol. 49(9), 5796–5804.
  • Wang, J., Feng, L., Steve, M., Tang, X., Gail, T.E., and Mikael, H. (2015b). China's unconventional oil: A review of its resources and outlook for long-term production. Energy 82, 31–42.
  • Wang, C., Klamerth, N., Messele, S.A., Singh, A., Belosevic, M., and El-Din, M.G. (2016). Comparison of UV/hydrogen peroxide, potassium ferrate (VI), and ozone in oxidizing the organic fraction of oil sands process-affected water (OSPW). Water Res. 100, 476–485.
  • Wang, X., and Kasperski, K.L. (2010). Analysis of naphthenic acids in aqueous solution using HPLC-MS/MS. Anal. Methods 2(11), 1715.
  • Wang, J., and Wang, J. (2007). Application of radiation technology to sewage sludge processing: a review. J. Hazard. Mater. 143(1), 2–7.
  • Wang, Z., Yang, C., Hollebone, B., and Fingas, M. (2006). Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products. Environ. Sci. Technol. 40(18), 5636–5646.
  • West, C.E., Jones, D., Scarlett, A.G., and Rowland, S.J. (2011). Compositional heterogeneity may limit the usefulness of some commercial naphthenic acids for toxicity assays. Sci. Total Environ. 409(19), 4125–4131.
  • Wort, D., and Patel, K. (1970). Response of plants to naphthenic and cycloalkanecarboxylic acids. Agron. J. 62(5), 644–646.
  • Wu, J., and Upreti, S.R. (2017). Application of mass balance models in the process of ozone removal of naphthenic acids from water. Can. J. Chem. Eng. 95(1), 39–45.
  • Xu, X., Pliego, G., Zazo, J.A., Casas, J.A., and Rodriguez, J.J. (2016). Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen. J. Hazard. Mater. 318, 355–362.
  • Xu, X.-Y., Zeng, G.-M., Peng, Y.-R., and Zeng, Z. (2012). Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon. Chem. Eng. J. 200, 25–31.
  • Xue, J., Zhang, Y., Liu, Y., and El-Din, M.G. (2016). Effects of ozone pretreatment and operating conditions on membrane fouling behaviors of an anoxic-aerobic membrane bioreactor for oil sands process-affected water (OSPW) treatment. Water Res. 105, 444–455.
  • Yang, Y., Pignatello, J.J., Ma, J., and Mitch, W.A. (2014). Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. 48(4), 2344–2351.
  • Zhang, Y., Klamerth, N., Chelme-Ayala, P., and El-Din, M.G. (2017). Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid. Chemosphere 175, 178–185.
  • Zhang, Y., Klamerth, N., Chelme-Ayala, P., and Gamal El-Din, M. (2016a). Comparison of nitrilotriacetic acid and [S, S]-ethylenediamine-N, N’-disuccinic acid in UV-Fenton for the treatment of oil sands process-affected water at natural pH. Environ. Sci. Technol., 50(19), 10535–10544.
  • Zhang, Y., Klamerth, N., and El-Din, M.G. (2016b). Degradation of a model naphthenic acid by nitrilotriacetic acid–modified Fenton process. Chem. Eng. J. 292, 340–347.
  • Zhang, Y., Klamerth, N., Messele, S.A., Chelme-Ayala, P., and El-Din, M.G. (2016c). Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N, N’-disuccinic acid-modified Fenton process. J. Hazard. Mater. 318, 371–378.
  • Zhang, Y., Xue, J., Liu, Y., and El-Din, M.G. (2016d). Treatment of oil sands process-affected water using membrane bioreactor coupled with ozonation: A comparative study. Chem. Eng. J. 302, 485–497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.