589
Views
13
CrossRef citations to date
0
Altmetric
Articles

Almost 25 years of chromatographic and spectroscopic analytical method development for petroleum hydrocarbons analysis in soil and sediment: state-of-the-art, progress and trends

, , , & ORCID Icon
Pages 1497-1527 | Published online: 11 Dec 2017

References

  • American Society for Testing and Materials (1992). Standard testing methods for Boiling Range Distribution of Petroleum Fraction by Gas Chromatography D2887–89, ASTM Annual Book of Standards, vol. 05.02, Philadelphia: ASTM, 483.
  • Aske, N., Kallevik, H., and Sjöblom, J. (2001). Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy & Fuels, 15, 1304–1312.
  • Avila, B. M. F., Aguirar, A., Gomes, A. O., and Azevedo, D. A. (2010). Characterization of extra heavy gas oil biomarkers using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Organic Geochemistry, 41, 863.
  • Barman, B. N., Cebolla, V. L., and Membrado, L. (2000). Chromatographic techniques for petroleum and related products. Critical Reviews in Analytical Chemistry, 30, 75–120.
  • Barnes, B. (2009). Framework for the use of rapid measurement techniques (RMT) in the risk management of land contamination. Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol BS32 4UD, UK, pp. 1–90.
  • Becker, R., Koch, M., Wachholz, S., and Win, T. (2002). Quantification of total petrol hydrocarbons (TPH) in soil by IR-spectrometry and gas chromatography – conclusions from three proficiency testing rounds. Accreditation and Quality Assurance, 7, 286–289.
  • Boczkaj, G., Przyjazny, A, and Kaminski, M. (2011). A new procedure for the determination of distillation temperature distribution of high-boiling petroleum products and fractions. Analytical and Bioanalytical Chemistry, 399, 3253–3260.
  • Brassington, K.J, Pollard, S. T. J., and Coulon, F. (2010). Weathered hydrocarbon wastes: a risk assessment primer,” in Handbook of hydrocarbon and Lipid Microbiology. In: Timmis, K. N., McGenity, T., Van Der Meer, J. R., De Lorenzo, V. (Eds.), Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer, pp. 2488–2499.
  • Bray, J. G. P., Rossel, R. V., and McBratney, A. B. (2009). Diagnostic screening of urban soil contaminants using diffuse reflectance spectroscopy. Soil Research, 47, 433–442.
  • Cavanagh, J. E., Juhasz, A. L., Nichols, P. D., Franzmann, P. D., and McMeekin, T. A. (1995). Analysis of microbial hydrocarbon degradation using TLC-FID. Journal of Microbiological Methods, 22, 119–130.
  • California Geotechnical Services (2016). Portable GC Frog 4000 for Environmental Remediation, Air Quality Testing, and More. ( Available at: http://www.geotechnical.net/portable-gc-frog-4000.shtml, accessed 10.04.2016)
  • Chakraborty, S., Weindorf, D. C., Li, B., Aldabaa, A. A. A., Ghosh, R. K., Paul, S., and Ali, M. N. (2015). Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils. Science of the Total Environment, 514, 399–408.
  • Chakraborty, S., Weindorf, D. C., Morgan, C. L. S., Ge, Y., Galbraith, J. M., Li, B., and Kahlon, C. S. (2010). Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy. Journal of Environmental Quality, 39, 1378–1387.
  • Chibwe, L., Davie-Martin, C. L., Aitken, M. D., Hoh, E., and Massey Simonich, S. L. (2017). Identification of polar transformation products and high molecular weight polycyclic aromtaic hydrocarbons (PAHs) in contaminated soil floolowing remediation. Science of the Total Environment, 599–600, 1099–1107.
  • Chimezie, A., Anthony, O., Pete, P., Herbert, C., Ukpo, G., and Ogah, C. (2005). GC/MS analysis of polynuclear aromatic hydrocarbons in sediment samples from the Niger Delta region. Chemosphere, 60, 990–997.
  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., and Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95 (B8), 12653–12680.
  • Cortes, J. E., Suspes, A., Roa, S., Gonzalex, C, and Castro, H. E. (2012). Total petroleum hydrocarbons by gas chromatography incolombian waters and soils. American Journal of Environmental Science, 8(4), 396–402.
  • Cloutis, E. A. (1989). Spectral reflectance properties of hydrocarbons: remote-sensing implications. Science, 245, 165–168.
  • Coulon, F., Whelan, M. J., Paton, G. I., Semple, K. T., Villa, R., and Pollard, S. J. T. (2010). Multimedia fate of petroleum hydrocarbons in the soil: oil matrix of constructed biopiles. Chemosphere, 81, 1454–1462.
  • Coulon, F., Brassington, K. J., Bazin, R., Linnet, P. E., Thomas, K. A., Mitchell, T. R., Lethbridge, G., Smith, J. W. N., and Pollard, S. J. T. (2012). Effect of fertiliser formulation and bioaugmentation on biodegradation and leaching of crude oils and refined products in soils. Environmental Technology, 33, 1879–1893.
  • Coulon, F., and Wu, G. 2017. Determination of petroleum hydrocarbon compounds from soils and sediments using ultrasonic extraction. In: Hydrocarbon and Lipid Microbiology Protocols In: McGenity, T.J et al. (eds.) Berlin Heidelberg: Springer-Verlag, pp. 31–46.
  • Cozzolino, D. (2015). Near infrared spectroscopy as a tool to monitor contaminants in soil, sediments and water – state of the art, advantages and pitfalls. Trends in Environmental Analytical Chemistry, 9, 1–7.
  • Current, R. W., and Tilotta, D. C. (1997). Determination of total petroleum hydrocarbons in soil by on-line supercritical fluid extraction-infrared spectroscopy using a fibre-optic transmission cell and a simple filter spectrometer. Journal of Chromatography A, 785, 269–277.
  • Deeks, L., Coulon, F., Tibeth, M., Kirk, G., Mouazen, A. M., Tothill, L., and Walton, C. (2014). Practical guidance document for field screening technologies of hydrocarbons and associated metals in soil and water. Energy Institute Technology Publication, ISBN 9780852937044. Available at: http://publishing.energyinst.org/publication/ei-technical-publications/environment/refinery-emissions/practical-guidance-on-technologies-for-field-screening-hydrocarbons-and-associated-metals-in-soil-and-water.
  • Dettmer-Wilde, K., and Engewald, W. (ed) (2014). Practical gas chromatography – A comprehensive reference, Heidelberg: Springer , ISBN 978-3-642-54639-6, 893 pp
  • Dunn, K., Chilingarian, G. V., Lian, H., Wang, Y. Y., and Yen, T. F. (2000). Chapter 11: Analysis of Asphalt and its components by Thin-Layer Chromatography. Development in Petroleum Science, 40, 305–317.
  • European Standard ENISO 22155 (2016). Soil quality-gas chromatographic determination of volatile aromatic and halogenated hydrocarbons and selected ethers-static headspace method.
  • EPA (1997). Chapter VI Field methods for the analysis of petroleum hydrocarbons.In: EPA Expedited Site Assessment Tools for Underground Storage Tank Sites: A 87 Final draft guide for regulators. United States Environmental Protection Agency Office of Underground Storage Tanks, Washington DC: OSWER, pp. VI-1–VI-52.
  • EPA Method 418.1. (1978). Total Recoverable Petroleum Hydrocarbons by IR. Washington, DC, USA: Government Printing Office.
  • Fan, C. Y., Krishnamurthy, S., and Chen, C. T. (1994). A critical review of analytical approaches for petroleum contaminated soil. In: T. A. O'Shay, and K. B. Hoddinott ( Editors). Analysis of soil contaminated with petroleum constituents. American Society for Testing and Materials, Philadelphia, PA: ASTM STP 1221, pp. 61–74.
  • Forrester, S., Janik, L., McLaughlin, M., and Gilkes, R. J. (2010). An infrared spectroscopic test for total petroleum hydrocarbon (TPH) contamination in soils., in: Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. Working Group 1.5 Soil Sense: Rapid Soil Measurements. pp. 13–16.
  • Forrester, S. T., Janik, L. J., McLaughlin, M. J., Soriano-Disla, J. M., Stewart, R., and Dearman, B. (2013). Total petroleum hydrocarbon concentration prediction in soils using diffuse reflectance infrared spectroscopy. Soil Science Society of America Journal, 77(2), 450–460.
  • Gałuszka, A., Migaszewski, Z. M., and Namieśnik, J. (2015). Moving your laboratories to the field – Advantages and limitations of the use of field portable instruments in environmental sample analysis. Environmental Research, 140, 593–603.
  • Grunwald, S., Vasques, G. M., and Rivero, R. G. (2015). Fusion of Soil and Remote Sensing Data to Model Soil Properties. Advances in Agronomy, 131, 1–191.
  • Giri, A., Coutriade, M., Racaud, A., Okuda, K., Dane, J., Cody, R. B., and Focant, J-F. (2017). Molecular characterisation of volatiles and petrochemical base oils by photo-ionization GC×GC-TOF-MS. Analytical Chemistry, 89, 5395–5540.
  • Harris, C. M. (2003). Today's chemist at work. American Chemical Society, 33–38.
  • He, Y., Tang, L., Wu, X., Hou, X., and Lee, Y. I. (2007). Spectroscopy: The best way toward green analytical chemistry? Journal of Applied Spectroscopy, 42, 119–138.
  • Hibbert, D. B. (2012). Experimental design in chromatography: A tutorial review. Journal of Chromatography B, 919, 2–13.
  • Hoerig, B., Kuehn, F., Oschuetz, F., and Lehmann, F. (2001). HyMap hyperspectral remote sensing to detect hydrocarbon. International Journal of Remote Sensing, 8, 1413–1422.
  • Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T. F. A., McBratney, A. B., Pallasser, R., and Pozza, L. (2015). Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma, 241–242, 180–209.
  • Hou, X., He, Y., and Jones, B. T. (2004). Recent advances in portable X‐ray fluorescence spectrometry. Applied Spectroscopy Reviews, 39, 1–25.
  • Ji, W., Li, S., Chen, S., Shi, Z., Viscarra Rossel, R. A., and Mouazen, A. M. (2015). Prediction of soil attributes using the Chinese soil spectral library and standard spectra recorded at field conditions. Soil and Tillage Research, 155, 492–500.
  • Koshy, V. J., and Sudhakar, P. (2013). Gas chromatographs for environmental field analysis. Available in www.envirotech-online.com. Accessed 18 April 2017.
  • Kuang, B., Mahmood, H. S., Quraishi, Z., Hoogmoed, W. B., Mouazen, A. M., and van Henten, E. J. (2012). Sensing soil properties in the laboratory, in situ, and on-line: A review. In: Donald Sparks, editors: Advances in Agronomy, 114, AGRON, UK: Academic Press, pp. 155–224.
  • Li, S., Cao, J., and Hu, S. (2015). Analyzing hydrocarbon fractions in crude oils by two-dimensional gas chromatography/time-of-flight mass spectrometry under reversed-phase column system. Fuel, 158, 191–199.
  • Lorenzi, D., Cave, M., and Dean, J. R. (2010). An investigation into the occurrence and distribution of polycyclic aromatic hydrocarbons in two siil size fractions at a former industrial site in NE England, UK using in situ PFE-GC-MS. Environmental Geochemistry and Health, 32, 553–565.
  • Malley, D. F., Hunter, K. N., Webster, G. R. B., Malley, D. F., Hunter, K. N., Webster, G. R. B., and Barrie, G. R. (1999). Analysis of diesel fuel contamination in soils by near-infrared reflectance spectrometry and solid phase microextraction-gas chromatography. Soil and Sediment Contamination, 8, 481–489.
  • Marriot, P. J., Chin, S. T., Maikhunthod, B., Schmarr, H. G., and Bieri, S. (2012). Multidimensional gas chromatography. Trends in Analytical Chemistry, 34, 1–21.
  • McCarty, G. W., and Reeves, J. B. (2006). Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Science, 171, 94–102.
  • McCarty, G. W., Reeves, J. B., Reeves, V. B., Follett, R. F., and Kimble, J. M. (2002). Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Science Society of America Journal, 66, 640–646.
  • McMahon, G. (2007). Portable instruments in the laboratory, Analytical In strumentation: A Guide to Laboratory, Portable and Miniaturized Instruments. Chichester, UK: John Wiley & Sons, Ltd.
  • Mouazen, A. M., Steffens, M., and Borisover, M. (2016). Reflectance and fluorescence spectroscopy in soil science-Current and future research and developments. Soil and Tillage Research, 155, 448–449.
  • Mouazen, A. M., De Baerdemaeker, J., and Ramon, H. (2006). Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil and Tillage Research, 80, 171–183.
  • Napolitano, G. E., Richmong, J. E., and Stewart, A. J. (1998). Characterisation of petroleum-contaminated soils by Thin-Layer Chromatography with Flame Ionisation Detection. Journal of Soil Contamination, 7:6, 709–724.
  • O'Rourke, S. M., Minasny, B., Holden, N. M., and McBratney, A. B. (2016). Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry. Soil Science Society of America Journal, 80, 888–899.
  • Okparanma, R. N., Coulon, F., Mayr, T., and Mouazen, A. M. (2014b). Mapping polycyclic aromatic hydrocarbon and total toxicity equivalent soil concentrations by visible and near-infrared spectroscopy. Environmental Pollution, 192, 162–170.
  • Okparanma, R. N., Coulon, F., and Mouazen, A. M. (2014a). Analysis of petroleum-contaminated soils by diffuse reflectance spectroscopy and sequential ultrasonic solvent extraction-gas chromatography. Environmental Pollution, 184, 298–305.
  • Okparanma, R. N., and Mouazen, A. M. (2013). Combined effects of oil concentration, clay and moisture contents on diffuse reflectance spectra of diesel-contaminated soils. Water, Air, & Soil Pollution, 224, 1539.
  • Okparanma, R. N., and Mouazen, A. M. (2012). Risk-based characterisation of hydrocarbon contamination in soils with Visible and near-infrared diffuse reflectance spectroscopy. in: Soil and Water Engineering. International Conference of Agricultural Engineering-CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life, Valencia, Spain, 8–12 July 2012. pp. C–0657.
  • Osborne, B. G., Fearn, T., and Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis. Longman scientific and technical. Harlow UK: Addison-Wesley Longman Ltd.
  • Pan, D., Wang, J., Chen, C., Huang, C., Cai, Q., and Yao, S. (2013). Ultrasonic assisted extraction combined with titatnium plate based solid phase extraction for the anlysis of PAHs in soil samples by HPLC-FLD. Talenta, 108, 117–122.
  • Pasquini, C. (2003). Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society, 14, 198–219.
  • Pollard, S. J. T., Hrudey, S. E., Rawluk, M., and Fuhr, B. J. (2004). Characterisation of weathered hydrocarbon wastes at contaminated sites by GC-simulated distillation and nitrous oxide chemical ionisation GC/MS, with implications for bioremediation. Journal of Environmental Monitoring, 6, 713–718.
  • Poster, D. L., Schantz, M. M., Sander, L. C., and Wise, S. A. (2006). Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Analytical and Bioanalytical Chemistry, 386, 859–881.
  • Risdon, G., Pollard, S. J. T., Brassington, K. J., McEwan, J. N., Paton, G., Semple, K., and Coulon, F. 2008. Development of an analytical procedure for weathered hydrocarbon contaminated soils within a UK risk-based framework. Analytical Chemistry, 80, 7090–7096.
  • Reeves, J. B. (2010). Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma, 158, 3–14.
  • Sarowha, S. L. S., Sharma, B. K., Sharma, C. D., and Bhagat, S. D. (1997). Characterisation of petroleum Heavy Distillates using HPLC and Spectroscopic Methods. Energy & Fuel, 11, 566.
  • Schwartz, G., Ben-Dor, E., and Eshel, G. (2012). Quantitative analysis of total petroleum hydrocarbons in soils: comparison between reflectance spectroscopy and solvent extraction by 3 certified laboratories. Applied and Environmental Soil Science, 2012, 1–11.
  • Song, Y. F., Jing, X., Fleischmann, S., and Wilke B-M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere, 48, 993–1001.
  • Sorak, D., Herberholz, L., Iwascek, S., Altinpinar, S., Pfeifer, F., and Siesler, H. W. (2012). New development s and applications of handheld Raman, mid-infrared, and near-infrared spectrometers. Applied Spectroscopy Reviews, 47 (2), 83–115.
  • Stenberg, B., Rossel, R. A. V., Mouazen, A. M., and Wetterlind, J. (2010). Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 107, 163–215.
  • Tissot, B. P., and Welte, D. H. (1984). Petroleum formation and occurrence. Berlin Heidelberg: Springer-Verla
  • Tran, T. C., Logan, G. A., Grosjean, E., Ryan, D., and Marriott, P. J. (2010). Use of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry for the characterisation of biodegradation and unresolved complex mixtures in petroleum. Geochimica et Cosmochimica Acta, 74, 6468–6484.
  • Ulmanu, M., Anger, I., Gament, E., Mihalache, M., Plopeanu, G., Ilie, L., others (2011). Rapid determination of some heavy metals in soil using an X-ray fluorescence portable instrument. Agricultural Science Research Journal, 43, 235–241.
  • Vallejo, B., Izquierdo, A., Blasco, R., del Campo, P. P., and de Castro, M. D. L. (2001). Bioremediation of an area contaminated by a fuel spill. Journal of Environmental Monitoring, 3, 274–280.
  • Van Liedekerke, M., Prokop, G., Rbl-Berger, S., Kibblewhite, M., and Lowagie, G. (2014). Progress in the management of contaminated sites in Europe, Reference Report by the Joint Research Centre of the European Commission 72.
  • Viscarra Rossel, R. A., McGlynn, R. N., and McBratney, A. B. (2006). Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma, 137, 70–82.
  • Viscarra Rossel, R. A., Cattle, S. R., Ortega, A., and Fouad, Y. (2009). In situ measurement of soil colour, mineral composition and clay content by vis-NIR spectroscopy. Geoderma, 150, 253–266.
  • Vohland, M., Ludwig, M., Thiele-Bruhn, S., and Ludwig, B. (2014). Determination of soil properties with visible to near- and mid-infrared spectroscopy: Effects of spectral variable selection. Geoderma, 223–225, 88–96.
  • Wang, D., Chakraborty, S., Weindorf, D. C., Li, B., Sharma, A., Paul, S., and Ali, N. (2015). Geoderma Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen. Geoderma, 243–244, 157–167.
  • Wang, Z., and Fingas, M. (1995). Differentiation of the source of spilled oil and monitoring of the oil weathering process using gas chromatography-mass spectrometry. Journal of Chromatography A, 712 (2), 321–343.
  • Wartini, Ng., Brendan, P. M., and Budiman, M. (2017). Rapid assessment of petroleum-contaminated soils with infrared spectroscopy. Geoderma, 289, 150–160.
  • Weindorf, D. C., Bakr, N., and Zhu, Y. (2014). Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. Advances in Agronomy, 128, 1–45.
  • Weisman, W. (1998). Analysis of petroleum hydrocarbons in environmental media. In: W. Weisman (Editor). Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Series. Amherst, MA: Amherst Scientific Publishers. pp. 1–98.
  • Webster, G. T., Soriona-Disla, J. M., Kirk, J., Janik, L. J., Forester, S. T., McLaughlin, M. J., and Stewart, R. J. (2016). Rapid prediction of total petroleum hydrocarbons in soil using a handheld mid-infrared instrument. Talanta, 160, 410–416.
  • Whittaker, M., Pollard, S. J. T., and Fallick, T. E. (1995). Characterisation of refractory wastes at heavy oil-contaminated sites: A review of conventional and novel analytical methods. Environmental Technology, 16, 1009–1033.
  • Yang, C., Wang, Z. D., Hollebone, B., Brown, C. E., Yang, Z. Y., Landriault, M. (2015). Chapter 5: Chromatographic fingerprinting analysis of crude oil and petroleum products. In: Fingas, M. (Ed.), Handbook of Oil Spill Science and Technology. Hoboken, NJ: John Wiley & Sons, Inc, pp. 95–163.
  • Zhang, Y., Zhu, Y. G., Houot, S., Qiao, M., Nunan, N., and Garnier, P. (2011). Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. Environmental Science and Pollution Research, 8(9):1574–1584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.