1,594
Views
0
CrossRef citations to date
0
Altmetric
Articles

Elemental sulfur recovery of biological sulfide removal process from wastewater: A review

, , &
Pages 2079-2099 | Published online: 28 Dec 2017

References

  • Berg, J. S., Schwedt, A., Kreutzmann, A. C., Kuypers, M. M. M., and Milucka, J. (2014). Polysulfides as intermediates in the oxidation of sulfide to sulfate by Beggiatoa spp. Applied and Environmental Microbiology 80, 629–636. https://doi.org/10.1128/AEM.02852-13
  • Buisman, C. J., Geraats, B. G., Ijspeert, P., and Lettinga, G. (1990). Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnology & Bioengineering 35, 50–56. https://doi.org/10.1002/bit.260350108
  • Buisman, C., Post, R., Ijspeert, P., Geraats, G., and Lettinga, G. (2010). Biotechnological process for sulphide removal with sulphur reclamation. Engineering in Life Sciences 9, 255–267.
  • Cai, J., Zheng, P., and Mahmood, Q. (2008). Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresource Technology 99, 5520–5527. https://doi.org/10.1016/j.biortech.2007.10.053
  • Cai, J., Zheng, P., and Mahmood, Q. (2010a). Influence of various nitrogenous electron acceptors on the anaerobic sulfide oxidation. Bioresource Technology 101, 2931–2937. https://doi.org/10.1016/j.biortech.2009.11.047
  • Cai, J., Zheng, P., and Mahmood, Q. (2010b). Influence of transient pH and substrate shocks on simultaneous anaerobic sulfide and nitrate removal. Journal of Hazardous Materials 174, 162–166. https://doi.org/10.1016/j.jhazmat.2009.09.031
  • Cai, J., Zheng, P., and Mahmood, Q. (2016). Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Water Science and Technology: A Journal of the International Association on Water Pollution Research 73, 947.
  • Cai, J., and Zheng, P. (2013). Simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Bioresource Technology 128, 760–764. https://doi.org/10.1016/j.biortech.2012.08.046
  • Cai, J., Zheng, P., Mahmood, Q., Huang, K.-T., and Fu, L. (2006). Process performance of simultaneous anaerobic sulfide and nitrate removal. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology 22, 840–844.
  • Cai, J., Zheng, P., Mahmood, Q., Islam, E., Hu, B. L., and Wu, D. L. (2007). Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation. Journal of Zhejiang University-Science A 8, 1149–1156. https://doi.org/10.1631/jzus.2007.A1149
  • Cai, J., Zheng, P., Qaisar, M., and Luo, T. (2015). Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network. Environmental Science and Pollution Research 22, 8272. https://doi.org/10.1007/s11356-014-3976-3
  • Cai, J., Zheng, P., Qaisar, M., and Sun, P. (2014). Effect of electrode types on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Separation and Purification Technology 134, 20–25. https://doi.org/10.1016/j.seppur.2014.07.024
  • Cai, J., Zheng, P., Qaisar, M., and Xing, Y. (2014). Effect of operating modes on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Journal of Industrial Microbiology & Biotechnology 41, 795–802. https://doi.org/10.1007/s10295-014-1425-4
  • Cai, J., Zheng, P., Xing, Y., and Qaisar, M. (2015). Effect of electricity on microbial community of microbial fuel cell simultaneously treating sulfide and nitrate. Journal of Power Sources 281, 27–33. https://doi.org/10.1016/j.jpowsour.2015.01.165
  • Cai, J., Zheng, P., Zhang, J., Xie, Z., Li, W., and Sun, P. (2013). Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in Microbial Fuel Cell. Bioresource Technology 129, 224–228. https://doi.org/10.1016/j.biortech.2012.11.008
  • Camiloti, P. R., Oliveira, G. H. D., and Zaiat, M. (2016). Sulfur recovery from wastewater using a micro-aerobic external silicone membrane reactor (ESMR). Water, Air, & Soil Pollution 227, 31. https://doi.org/10.1007/s11270-015-2721-y
  • Chen, F. (2016). Research on load optimization and elemental sulfur recovery at high up-flow velocity for denitrifying sulfide removal: Harbin Institute of Technology.
  • Chen, F., Yuan, Y., Chen, C., Zhao, Y., Tan, W., Huang, C., Xu, X., and Wang, A. (2016). Investigation of colloidal biogenic sulfur flocculation: optimization using response surface analysis. Journal of Environmental Sciences 42, 227–235. https://doi.org/10.1016/j.jes.2015.07.007
  • Chen, C., Zhang, R. C., Xu, X. J., Fang, N., Wang, A. J., Ren, N. Q., and Lee, D. J. (2017). Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition. Bioresource Technology 232, 417–422. https://doi.org/10.1016/j.biortech.2017.02.031
  • Chen, C., Zhou, X., Wang, A., Wu, D. H., Liu, L. H., Ren, N., and Lee, D. J. (2012). Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II). Bioresource Technology 121, 441–444. https://doi.org/10.1016/j.biortech.2012.06.117
  • Chuang, S. H., Pai, T. Y., and Horng, R. Y. (2005). Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system. Environmental Technology 26, 993–1001. https://doi.org/10.1080/09593332608618487
  • Cirne, D. G., van der Zee, F. P., Fernandez-Polanco, M., and Fernandez-Polanco, F. (2008). Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Reviews in Environmental Science and Bio/Technology 7, 93–105. https://doi.org/10.1007/s11157-008-9128-9
  • Cline, C., Hoksberg, A., Abry, R., and Janssen, A. (2003). Biological process for H2S removal from gas streams: the shell-paques/THIOPAQ™ gas desulfurization process. Proceedings of the Laurance Reid gas conditioning conference 1–18. https://www.environmental-expert.com/Files/587/articles/5529/paques6.pdf.
  • Dean, J. A. (2010). Lange's handbook of chemistry. Naval Engineers Journal 53, 904–904.
  • Deng, L., Chen, H., Chen, Z., Liu, Y., Pu, X., and Song, L. (2009). Process of simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine wastewater. Bioresource Technology 100, 5600–5608. https://doi.org/10.1016/j.biortech.2009.06.012
  • Dogan, E. C., Turker, M., Dagasan, L., and Arslan, A. (2012). Simultaneous sulfide and nitrite removal from industrial wastewaters under denitrifying conditions. Biotechnology and Bioprocess Engineering 17, 661–668. https://doi.org/10.1007/s12257-011-0677-3
  • Dutta, P. K., Rozendal, R. A., Yuan, Z., Rabaey, K., and Keller, J. (2009). Electrochemical regeneration of sulfur loaded electrodes. Electrochemistry Communications 11, 1437–1440. https://doi.org/10.1016/j.elecom.2009.05.024
  • Eaktasang, N., Min, H. S., Kang, C., and Kim, H. S. (2013). Control of malodorous hydrogen sulfide compounds using microbial fuel cell. Bioprocess and Biosystems Engineering 36, 1417–1425. https://doi.org/10.1007/s00449-012-0881-3
  • Gadekar, S., Nemati, M., and Hill, G. A. (2006). Batch and continuous biooxidation of sulphide by Thiomicrospira sp CVO: reaction kinetics and stoichiometry. Water Research 40, 2436–2446. https://doi.org/10.1016/j.watres.2006.04.007
  • Garcia, A. A., and Druschel, G. K. (2014). Elemental sulfur coarsening kinetics. Geochemical Transactions 15, 11. https://doi.org/10.1186/s12932-014-0011-z
  • Gommers, P. J. F., Buleveld, W., Zuijderwijk, F. J. M., and Kuenen, J. G. (1988a). Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor. I: start-up and reactor performance. Water Research 22, 1075–1083. https://doi.org/10.1016/0043-1354(88)90001-2
  • Gommers, P. J. F., Buleveld, W., Zuijderwijk, F. J. M., and Kuenen, J. G. (1988b). Simultaneous sulfide and acetate oxidation in a dentrifying fluidized bed. reactor. II: measurements of activities and conversion. Water Research 22, 1085–1092. https://doi.org/10.1016/0043-1354(88)90002-4
  • Guerrero, L., Montalvo, S., Huiliñir, C., Campos, J.L., Barahona, A., and Borja, R. (2016). Advances in the biological removal of sulphides from aqueous phase in anaerobic processes: a review. Environmental Reviews 24, 84–100. https://doi.org/10.1139/er-2015-0046
  • Hao, T. W., Xiang, P. Y., Mackey, H. R., Chi, K., Lu, H., Chui, H.-k., van Loosdrecht, M. C. M., and Chen, G.-H. (2014). A review of biological sulfate conversions in wastewater treatment. Water Research 65, 1–21. https://doi.org/10.1016/j.watres.2014.06.043
  • Janssen, A. J. H., Keizer, A. D., and Lettinga, G. (1994). Colloidal properties of a microbiologically produced sulphur suspension in comparison to a LaMer sulphur sol. Colloids and Surfaces B Biointerfaces 3, 111–117. https://doi.org/10.1016/0927-7765(93)01122-8
  • Janssen, A., Keizer, A. D., Aelst, A. V., Fokkink, R., Yangling, H., and Lettinga, G. (1996). Surface characteristics and aggregation of microbiologically produced sulphur particles in relation to the process conditions. Colloids and Surfaces B Biointerfaces 6, 115–129. https://doi.org/10.1016/0927-7765(95)01246-X
  • Janssen, A. J. H., Arena, B. J., and Kijlstra, S. (2000). New developments of the thiopaq process for the removal of H2S from gaseous streams. Preprints of Sulphur Conference 29, 179–187. https://www.environmental-expert.com/Files/587/articles/5515/paques18.pdf.
  • Janssen, A. J. H., Lettinga, G., and Keizer, A. D. (1999). Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: colloidal and interfacial aspects of biologically produced sulphur particles. Colloids and Surfaces: A Physicochemical and Engineering Aspects 151, 389–397. https://doi.org/10.1016/S0927-7757(98)00507-X
  • Janssen, A. J., Ma, S. C., Lens, P., and Lettinga, G. (1997). Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnology and Bioengineering 53, 32–40. https://doi.org/10.1002/(SICI)1097-0290(19970105)53:1%3c32::AID-BIT6%3e3.0.CO;2-
  • Janssen, A. J., Ruitenberg, R., and Buisman, C. J. (2001). Industrial applications of new sulphur biotechnology. Water Science and Technology 44, 85–90.
  • Janssen, A. J., Sleyster, R., Van, d. K. C., Jochemsen, A., Bontsema, J., and Lettinga, G. (1995). Biological sulphide oxidation in a fed-batch reactor. Biotechnology & Bioengineering 47, 327–333. https://doi.org/10.1002/bit.260470307
  • Jensen, A. B., and Webb, C. (1995). Treatment of H 2 S-containing gases: a review of microbiological alternatives. Enzyme and Microbial Technology 17, 2–10. https://doi.org/10.1016/0141-0229(94)00080-B
  • Ji, Y., Feng, S., Chen, J., Xiao, Z., and Yang, H. (2016). Recovery of elemental sulfur from biodesulfurization waste sludge generated from wastewater containing sulfide. Chinese Journal of Environmental Engineering 10, 2969–2974. https://doi.org/10.12030/j.cjee.201501075
  • Jin, R., Yang, G. F., Zhang, Q. Q., Ma, C., Yu, J. J., and Xing, B. S. (2013). The effect of sulfide inhibition on the ANAMMOX process. Water Research 47, 1459–1469. https://doi.org/10.1016/j.watres.2012.12.018
  • Jing, C., Ping, Z., and Mahmood, Q. (2009). Simultaneous sulfide and nitrate removal in anaerobic reactor under shock loading. Bioresource Technology 100, 3010–3014. https://doi.org/10.1016/j.biortech.2008.12.041
  • Jing, C., Ping, Z., and Mahmood, Q. (2010). Influence of various nitrogenous electron acceptors on the anaerobic sulfide oxidation. Bioresource Technology 101, 2931–2937. https://doi.org/10.1016/j.biortech.2009.11.047
  • Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43, 4093–4103. https://doi.org/10.1016/j.watres.2009.03.001
  • Kanjanarong, J., Giri, B. S., Jaisi, D. P., Oliveira, F. R., Boonsawang, P., Chaiprapat, S., Singh, R. S., Balakrishna, A., and Khanal, S. K. (2017). Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms. Bioresource Technology 234, 115. https://doi.org/10.1016/j.biortech.2017.03.009
  • Krayzelova, L., Bartacek, J., Díaz, I., Jeison, D., Volcke, E. I. P., and Jenicek, P. (2015). Microaeration for hydrogen sulfide removal during anaerobic treatment: a review. Reviews in Environmental Science and Bio/Technology 14, 703–725. https://doi.org/10.1007/s11157-015-9386-2
  • Krishnakumar, B., Majumdar, S., Manilal, V. B., and Haridas, A. (2005). Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR). Water Research 39, 639–647. https://doi.org/10.1016/j.watres.2004.11.015
  • Lee, C., Ho, K., Lee, D., Su, A., and Chang, J. (2012). Electricity harvest from nitrate/sulfide-containing wastewaters using microbial fuel cell with autotrophic denitrifier, Pseudomonas sp C27. International Journal of Hydrogen Energy 37, 15827–15832. https://doi.org/10.1016/j.ijhydene.2012.01.092
  • Li, Y. X., Su, B. Q., Geng, Z. Y., Yao, B. B., and Chi, Y. Z. (2000). Biological treatment of acidic wastewater containing sulfate and recovery of elementary sulfur. Water & Wastewater Engineering 26, 28–30. https://doi.org/10.13789/j.cnki.wwe1964.2000.08.008
  • Likosova, E. M. (2015). Electrochemical abatement of hydrogen sulfide from waste streams. Critical Reviews in Environmental Science & Technology 45, 1555–1578. https://doi.org/10.1080/10643389.2014.966419
  • Liu, J., Feng, Y., He, W., Gong, Y., Qu, Y., and Ren, N. (2014). A novel boost circuit design and in situ electricity application for elemental sulfur recovery. Journal of Power Sources 248, 317–322. https://doi.org/10.1016/j.jpowsour.2013.09.098
  • Liu, H., Zhang, B., Liu, Y., Wang, Z., and Hao, L. (2015). Continuous bioelectricity generation with simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell. International Journal of Hydrogen Energy 40, 8128–8136. https://doi.org/10.1016/j.ijhydene.2015.04.103
  • Liu, C., Zhao, C., Wang, A., Guo, Y., and Lee, D. J. (2016). Denitrifying sulfide removal process on high-salinity wastewaters. Applied Microbiology and Biotechnology, 100, 1421–1426. https://doi.org/10.1007/s00253-015-7039-6
  • Logan, B. E., Hamelers, B., Rozendal, R. A., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology 40, 5181–5192. https://doi.org/10.1021/es0605016
  • Ma, S. (2013). Study on biological sulfur recovery by coagulation-sedimentation method and optimization of parameters: Harbin Institute of Technology.
  • Mahmood, Q., Zheng, P., Cai, J., Hayat, Y., Hassan, M. F., Wu, D. L., and Hu, B. L. (2007). Sources of sulfide in waste streams and current biotechnologies for its removal. Journal of Zhejiang University-Science A 8, 1126–1140. https://doi.org/10.1631/jzus.2007.A1126
  • Mahmood, Q., Zheng, P., Cai, J., Wu, D., Hu, B., and Li, J. (2007). Anoxic sulfide biooxidation using nitrite as electron acceptor. Journal of Hazardous Materials 147, 249–256. https://doi.org/10.1016/j.jhazmat.2007.01.002
  • Mahmood, Q., Zheng, P., Cai, J., Wu, D. L., Hu, B. L., Islam, E., and Azim, M. R. (2007). Comparison of anoxic sulfide biooxidation using nitrate/nitrite as electron acceptor. Environmental Progress 26, 169–177. https://doi.org/10.1002/ep.10201
  • Mahmood, Q., Zheng, P., Wu, D. L., Wang, X. S., Yousaf, H., Ul-Islam, E., Hassan, M. J., Jilani, G., and Azim, M. R. (2007). Prediction of anoxic sulfide biooxidation under various HRTs using artificial neural networks. Biomedical and Environmental Sciences 20, 398–403.
  • Moghanloo, G. M., Fatehifar, E., Saedy, S., Aghaeifar, Z., and Abbasnezhad, H. (2010). Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor. Bioresource Technology 101, 8330–8335. https://doi.org/10.1016/j.biortech.2010.05.093
  • Nanda, J., Whiteley, C. G., Chang, J. S., and Lee, D. J. (2013). Production of elemental sulfur from sulfide and nitrate-laden wastewaters by methanogenic culture via sulfide denitrifying removal process. Biochemical Engineering Journal 78, 128–131. https://doi.org/10.1016/j.bej.2012.12.011
  • Pokasoowan, C., Kanitchaidecha, W., K. C, B. K., and Annachhatre, A. P. (2009). Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering 44, 87–98. https://doi.org/10.1080/10934520802515426
  • Pokorna, D., and Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances 33, 1246. https://doi.org/10.1016/j.biotechadv.2015.02.007
  • Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Pham, H. T., Vermeulen, J., Verhaege, M., Lens, P., and Verstraete, W. (2006). Microbial fuel cells for sulfide removal. Environmental Science & Technology 40, 5218–5224. https://doi.org/10.1021/es060382u
  • Rabbani, K. A., Charles, W., Cord-Ruwisch, R., and Ho, G. (2015). Recovery of sulphur from contaminated air in wastewater treatment plants by biofiltration: a critical review. Reviews in Environmental Science and Bio/Technology 14, 523–534. https://doi.org/10.1007/s11157-015-9367-5
  • Reyes-Avila, J., Razo-Flores, E., and Gomez, J. (2004). Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Research 38, 3313. https://doi.org/10.1016/j.watres.2004.04.035
  • Sahinkaya, E., Hasar, H., Kaksonen, A. H., and Rittmann, B. E. (2011). Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent. Environmental Science & Technology 45, 4080–4087. https://doi.org/10.1021/es200140c
  • Sievert, S. M., Wieringa, E. B., Wirsen, C. O., and Taylor, C. D. (2007). Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environmental Microbiology 9, 271–276. https://doi.org/10.1111/j.1462-2920.2006.01156.x
  • Sousa, J. T. D., Lima, J. D. F., Silva, V. C. D., Leite, V. D., and Lopes, W. S. (2016). Recovery of elemental sulphur from anaerobic effluents through the biological oxidation of sulphides. Environmental Technology 38, 529–537. https://doi.org/10.1080/09593330.2016.1201148
  • Sposob, M., Bakke, R., and Dinamarca, C. (2017). Metabolic divergence in simultaneous biological removal of nitrate and sulfide for elemental sulfur production under temperature stress. Bioresource Technology 233, 209–215. https://doi.org/10.1016/j.biortech.2017.02.122
  • Sun, J., Dai, X., Liu, Y., Peng, L., and Ni, B.-J. (2017a). Sulfide removal and sulfur production in a membrane aerated biofilm reactor: model evaluation. Chemical Engineering Journal 309, 454–462. https://doi.org/10.1016/j.cej.2016.09.146
  • Sun, J., Dai, X., Liu, Y., Peng, L., and Ni, B. J. (2017b). Sulfide removal and sulfur production in a membrane aerated biofilm reactor: model evaluation. Chemical Engineering Journal 309, 454–462. https://doi.org/10.1016/j.cej.2016.09.146
  • Sun, M., Mu, Z.-X., Chen, Y.-P., Sheng, G.-P., Liu, X.-W., Chen, Y.-Z., Zhao, Y., Wang, H.-L., Yu, H.-Q., Wei, L., and Ma, F. (2009). Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environmental Science & Technology 43, 3372–3377. https://doi.org/10.1021/es802809m
  • Tan, W., Huang, C., Chen, C., Liang, B., and Wang, A. (2016). Bioaugmentation of activated sludge with elemental sulfur producing strain Thiopseudomonas denitrificans X2 against nitrate shock load. Bioresource Technology 220, 647–650. https://doi.org/10.1016/j.biortech.2016.08.093
  • Tang, K., Baskaran, V., and Nemati, M. (2009). Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal 44, 73–94. https://doi.org/10.1016/j.bej.2008.12.011
  • Taylor, C. D., and Wirsen, C. O. (1997). Microbiology and ecology of filamentous sulfur formation. Science 277, 1483–1485. https://doi.org/10.1126/science.277.5331.1483
  • Valdés, F., Camiloti, P. R., Rodriguez, R. P., Delforno, T. P., Carrillo-Reyes, J., Zaiat, M., and Jeison, D. (2016). Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater. Biodegradation 27, 119–130. https://doi.org/10.1007/s10532-016-9760-y
  • Wang, A. J., Du, D. Z., Ren, N. Q., Zhao, Q. S., and Wang, W. J. (2004). Application of Thiobacillus denitrificans in wastewater denitrification and de-sulfide treatment processes. Journal of Harbin Institute of Technology 36, 423–425+429.
  • Wang, X., Zhang, Y., Zhou, J., Zhang, T., and Chen, M. (2015). Regeneration of elemental sulfur in a simultaneous sulfide and nitrate removal reactor under different dissolved oxygen conditions. Bioresource Technology 182, 75–81. https://doi.org/10.1016/j.biortech.2015.01.123
  • Wirsen, C. O., Sievert, S. M., Cavanaugh, C. M., Molyneaux, S. J., Ahmad, A., Taylor, L. T., Delong, E. F., and Taylor, C. D. (2002). Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Applied and Environmental Microbiology 68, 316–325. https://doi.org/10.1128/AEM.68.1.316-325.2002
  • Xu, X. J., Chen, C., Wang, A. J., Fang, N., Yuan, Y., Ren, N. Q., and Lee, D. J. (2012). Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition. Bioresource Technology 116, 517–521. https://doi.org/10.1016/j.biortech.2012.03.095
  • Yang, W., Vollertsen, J., and Hvitved-Jacobsen, T. (2005). Anoxic sulfide oxidation in wastewater of sewer networks. Water Science and Technology 52, 191–199.
  • Yang, W., Zhao, Q., Lu, H., Ding, Z., Meng, L., and Chen, G.-H. (2016). Sulfide-driven autotrophic denitrification significantly reduces N2O emissions. Water Research 90, 176–184. https://doi.org/10.1016/j.watres.2015.12.032
  • Ye, Y., Wang, A., Suli, M. A., Chen, C., Zhao, Y., Tan, W., Cong, H., Xijun, X. U., and Sun, D. (2014). Distribution characteristics and separation of biological sulfur in denitrifying sulfide removal process. Journal of Harbin Institute of Technology 46, 34–39.
  • Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., and Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Research 42, 1–12. https://doi.org/10.1016/j.watres.2007.07.013
  • Zhang, K. Q., Huang, W. X., Min, J. I., Jun-Xing, L. I., Ye, L. I., Bin, L. I., and Zhang, J. F. (2006). Characteristics of microbiologically sulfur producing during biological treatment for wastewater containing sulfide. Journal of Agro-Environment Science 25, 522–526.
  • Zhang, L. H., Mao, Y. P., Ma, J. X., Li, D. M., Shi, H. F., Liu, Y. D., and Cai, L. K. (2013). Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater. Environmental Technology 34, 269–274. https://doi.org/10.1080/09593330.2012.692715
  • Zhang, B., Zhang, J., Liu, Y., Hao, C., Tian, C., Feng, C., Lei, Z., Huang, W., and Zhang, Z. (2013). Identification of removal principles and involved bacteria in microbial fuel cells for sulfide removal and electricity generation. International Journal of Hydrogen Energy 38, 14348–14355. https://doi.org/10.1016/j.ijhydene.2013.08.131
  • Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., and Slade, R. C. T. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science & Technology 42, 4971–4976. https://doi.org/10.1021/es8003766
  • Zhong, L., Zhang, S., Wei, Y., and Bao, R. (2017). Power recovery coupled with sulfide and nitrate removal in separate chambers using a microbial fuel cell. Biochemical Engineering Journal 124, 6–12. https://doi.org/10.1016/j.bej.2017.04.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.