1,029
Views
0
CrossRef citations to date
0
Altmetric
Articles

Recent advances in decomposition of the most potent greenhouse gas SF6

, , , &
Pages 1763-1782 | Published online: 18 Dec 2017

References

  • Breidenich, C., Magraw, D., Rowley, A., et al. (1998). The Kyoto protocol to the United Nations framework convention on climate change. American Journal of International Law, 92(2), 315–331.
  • Cha, I., Lee, S., Lee J, D., et al. (2010). Separation of SF6 from gas mixtures using gas hydrate formation. Environmental Science & Technology, 44(16), 6117.
  • Dervos, C.T., and Vassiliou, P. (2000). Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation. Journal of the Air & Waste Management Association, 50(1), 137–141.
  • Christophorou, L.G., Olthoff, J.K., and Brunt, R.J.V. (1997). Sulfur hexafluoride and the electric power industry. IEEE Electrical Insulation Magazine, 13(5), 20–24.
  • U.S. Environmental Protection Agency (USEPA). (2013). Global mitigation of Non-CO2 greenhouse gases: 2010–2030. Washington DC: USEPA.
  • Fang, X., Hu, X., Janssensmaenhout, G., et al. (2013). Sulfur hexafluoride (SF6) emission estimates for China: an inventory for 1990–2010 and a projection to 2020. Environmental Science & Technology, 47(8), 3848–3855.
  • Bielewski, J., Śliwka, I. (2014). Variation of CFCs and SF6 concentration in air of Urban Area, Kraków (Poland). Acta Physica Polonica, 125(4), 895–897.
  • Levin, I., Naegler, T., Heinz, R., et al. (2010). The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories. Atmospheric Chemistry & Physics, 10(6), 2655–2662.
  • Matsui, R., and Cvitkovitch, D. (2010). History of atmospheric SF6 from 1973 to 2008. Atmospheric Chemistry & Physics, 10(21), 10305–10320.
  • Zhang, X., Xiao, S., Han, Y., et al. (2016). Experimental studies on power frequency breakdown voltage of CF3I/N2 mixed gas under different electric fields. Applied Physics Letters, 108(9), 495202–3855.
  • Zhang, X., Xiao, S., Han, Y., et al. (2016). Analysis of the feasibility of CF3I/CO2 used in C-GIS by partial discharge inception voltages in positive half cycle and breakdown voltages. IEEE Transactions on Dielectrics & Electrical Insulation, 22(6), 3234–3243.
  • Wu, B.T., Xiao, D.M., Liu, Z.S., et al. (2006). Insulation characteristics of c-C4F8and N2 gas mixtures. Journal of Physics D Applied Physics, 2006, 4204–4207.
  • Zhao, X., Jiao, J., Li, B., et al. (2016). The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6. Plasma Science and Technology, 18(3), 292–298.
  • Mauthe, G., Niemeyer, L., Pryor, B.M., et al. (1996). SF6 and the global atmosphere. Electra, 164, 121–131.
  • Shih, M., Wenjhy Lee, A., and Chen, C.Y. (2003). Decomposition of SF6 and H2S mixture in radio frequency plasma environment. Industrial & Engineering Chemistry Research, 42(13), 2906–2912.
  • Park, N.K., Park, H.G., Lee, T.J., et al. (2012). Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF6. Catalysis Today, 185(1), 247–252.
  • Kashiwagi, D., Takai, A., Takubo, T., et al. (2009). Metal phosphate catalysts effective for degradation of sulfur hexafluoride. Industrial & Engineering Chemistry Research, 48(2), 632–640.
  • Kashiwagi, D., Takai, A., Takubo, T., et al. (2009). Catalytic activity of rare earth phosphates for SF6 decomposition and promotion effects of rare earths added into AlPO4. Journal of Colloid & Interface Science, 332(1), 136–144.
  • Zhang, J., Zhou, J.Z., Liu, Q., et al. (2013). Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge. Environmental Science & Technology, 47(12), 6493–6499.
  • Zhang, J., Zhou, J.Z., Xu, Z.P., et al. (2014). Decomposition of potent greenhouse gas sulfur hexafluoride (SF6) by Kirschsteinite-dominant stainless steel slag. Environmental Science & Technology, 48(1), 599–606.
  • Zámostná, L., Braun, T., and Braun, B. (2014). S-F and S-C activation of SF6and SF5derivatives at rhodium: conversion of SF6into H2S. Angewandte Chemie, 53(10), 2745–2749.
  • Zámostná, L., and Braun, T. (2015). Catalytic degradation of sulfur hexafluoride by rhodium complexes. Angewandte Chemie, 54(36), 10652–10656.
  • El-Bahy, Z.M., Ohnishi, R., and Ichikawa, M. (2004). Hydrolytic decomposition of CF 4, over alumina-based binary metal oxide catalysts: high catalytic activity of gallia-alumina catalyst. Catalysis Today, 90(3–4), 283–290.
  • Nagata, H., Takakura, T., Tashiro, S., et al. (1994). Catalytic oxidative decomposition of chlorofluorocarbons (CFCs) in the presence of hydrocarbons. Applied Catalysis B Environmental, 5(1–2), 23–31.
  • Huang, L., Dong, W., Zhang, R., et al. (2007). Investigation of a new approach to decompose two potent greenhouse gases: photoreduction of SF6 and SF5CF3 in the presence of acetone. Chemosphere, 66(5), 833–840.
  • Huang, L., Dinghong, G.U., Yang, L., et al. (2008). Photoreductive degradation of sulfur hexafluoride in the presence of styrene. Journal of Environmental Sciences, 20(2), 183.
  • Huang, L., Shen, Y., Dong, W., et al. (2008). A novel method to decompose two potent greenhouse gases: photoreduction of SF6 and SF5CF3 in the presence of propene. Journal of Hazardous Materials, 151(2–3), 323–330.
  • Kendall, P.A., and Mason, N.J. (2001). Excitation and relative differential oscillator strengths for trifluoromethyl sulphur pentafluoride, SF5CF3, in the UV–VUV region by electron energy loss spectroscopy. Journal of Electron Spectroscopy & Related Phenomena, 120(1–3), 27–31.
  • Chen, W.K., Jrwei Ho, A., and Cheng, P.Y. (2005). Ultrafast photodissociation dynamics of acetone at 195 nm:  I. Initial-state, intermediate, and product temporal evolutions by femtosecond mass-selected multiphoton ionization spectroscopy. Journal of Physical Chemistry A, 109(31), 6805–6817.
  • Kim, H.H. (2004). Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Processes & Polymers, 1(2), 91–110.
  • Rosocha, L.A. (2005). Nonthermal plasma applications to the environment: gaseous electronics and power conditioning. IEEE Transactions on Plasma Science, 33(1), 129–137.
  • Oda, T. (2003). Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. Journal of Electrostatics, 57(3–4), 293–311.
  • Mizuno, A., Clements, J.S., and Davis, R.H. (1984). Combined treatment of SO2 and high resistivity fly ash using a pulse energized electron reactor. Proceedings of the Second International Conference on Electrostatic Precipitation, Kyoto, pp 11–17.
  • Khacef, A., Cormier, J.M., and Pouvesle, J.M. (2007). NOx remediation in oxygen-rich exhaust gas using atmospheric pressure non-thermal plasma generated by a pulsed nanosecond dielectric barrier discharge. Journal of Physics D Applied Physics, 35(13), 1491.
  • Futamura, S., and Gurusamy, A. (2005). Synergy of nonthermal plasma and catalysts in the decomposition of fluorinated hydrocarbons. Journal of Electrostatics, 63(6–10), 949–954.
  • Gandhi, M.S., and Mok, Y.S. (2015). Effect of packing materials on the decomposition of tetrafluoroethane in a packed-bed dielectric barrier discharge plasma reactor. International Journal of Environmental Science and Technology, 12(2), 499–506.
  • Zhang, H., Li, K., Shu, C., et al. (2014). Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor. Chemical Engineering Journal, 256(8), 107–118.
  • Jiang, N., Hui, C.X., Li, J., et al. (2015). Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure. Journal of Physics D Applied Physics, 48(40).
  • Lee, H.M., Chang, M.B., and Wu, K.Y. (2004). Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas. Journal of the Air & Waste Management Association, 54(8), 960–970.
  • Van Brunt, R.J., Herron, J.T. (1994). Plasma chemical model for decomposition of SF6in a negative glow corona discharge. Physica Scripta, 1994(T53), 9.
  • Wen-Tien, T. (2007). The decomposition products of sulfur hexafluoride (SF6): Reviews of environmental and health risk analysis. Journal of Fluorine Chemistry, 128(11), 1345–1352.
  • Ryan, K.R., and Plumb, I.C. (1988). Gas-phase reactions in plasmas of SF6with O2in He. Plasma Chemistry & Plasma Processing, 8(3), 263–280.
  • Shih, M., Lee, W.-J., and Tsai, C.-H. (2002). Decomposition of SF6 in an RF plasma environment. Journal of the Air & Waste Management Association, 52(11), 1274–1280.
  • Joshi, A.V. (2010). Decomposition of SF6-R134a effluents by RF plasma. Nuclear Instruments & Methods in Physics Research, 661(4), S245–S248.
  • Hong, Y.C., Han, S.U., Chun, B.J., et al. (2006). Microwave plasma torch abatement of NF3 and SF6. Physics of Plasmas, 13, 121.
  • Kabouzi, Y., Moisan, M., Rostaing, J.C., et al. (2003). Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure. Journal of Applied Physics, 93(12), 9483–9496.
  • Ahmadi, Z., Khani, M.R., Kooshki, S., et al. (2011). Investigation of variation power and additive gas effect on the SF6 destruction using atmospheric microwave plasma torch[J]. IEEE Transactions on Plasma Science, 39, 1834–1841.
  • Radoiu, M., and Hussain, S. (2009). Microwave plasma removal of sulphur hexafluoride. Journal of Hazardous Materials, 164(1), 39–45.
  • Kim, J.H., Cho, C.H., Shin, D.H., et al. (2015). Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor. Journal of Hazardous Materials, 294(14), 41–46.
  • Tsai, C.H., and Shao, J.M. (2008). Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment. Journal of Hazardous Materials, 157(1), 201–206.
  • Gandhi, M.S., Mok, Y.S., Lee, S.B., et al. (2013). Effect of various parameters for butane decomposition under ambient temperature in a dielectric barrier discharge non-thermal plasma reactor. Journal of the Taiwan Institute of Chemical Engineers, 44(5), 786–794.
  • Zhang, X., Hu, X., and Xiao, H. (2017). Experimental and simulation study on degradation of SF6 by dielectric barrier discharge plasma. Proceedings of the CSEE, 37(8), 2455–2464.
  • Shen, Y., Huang, L., Zhang, R., et al. (2006). Decomposition Factors of SF6in Dielectric Barrier Discharge [C]. Proceedings of Chinese National Conference on Atmospheric Environment, 2006, 487–491.
  • Nagai, A., and Ohyama, R. (2005). An experimental study on SF6 gas decomposition by high-voltage pulsed discharge. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2005, 681–684.
  • Zhuang, Q., Clements, B., Mcfarlan, A., et al. (2014). Decomposition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF6) using a dielectric barrier discharge (DBD) plasma. Canadian Journal of Chemical Engineering, 92(1), 32–35.
  • Zhang, X., Xiao, H., Hu, X., et al. (2016). Effects of background gas on sulfur hexafluoride removal by atmospheric dielectric barrier discharge plasma. AIP Advances, 6(11), 495202–3855.
  • Chen, H.L., Lee, H.M., Cheng, L.C., et al. (2008). Influence of nonthermal plasma reactor type on, and, abatements. IEEE Transactions on Plasma Science, 36(2), 509–515.
  • Young Sun, M., and Donghong, K. (2011). Decomposition of sulfur hexafluoride by using a nonthermal plasma-assisted catalytic process. Journal-Korean Physical Society, 59(61), 3437.
  • Zhang, R., Wang, J., Cao, X., et al. (2016). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge. Plasma Science & Technology, 18(4), 388–393.
  • Shen, Y., Huang, L., Zhang, R., et al. (2007). Decomposition of SF6 by dielectric barrier discharge. Environmental Chemistry, 26(3), 275–279.
  • Nanjo, Y., and Ohyama, R. (2005). An experimental study on vacuum-ultraviolet photochemical reaction to non-thermal plasma oxidized SF6 gases. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2005, 689–692.
  • Koch, M., Cohn, D.R., Patrick, R.M., et al. (1995). Electron beam atmospheric pressure cold plasma decomposition of carbon tetrachloride and trichloroethylene. Environmental Science & Technology, 29(12), 2946.
  • Chmielewski, A.G. (2007). Industrial applications of electron beam flue gas treatment—From laboratory to the practice. Radiation Physics & Chemistry, 76(8–9), 1480–1484.
  • Son, Y.S., Lee, S.J., Chang, Y.C., et al. (2016). Decomposition of high concentration SF6 using an electron beam. Radiation Physics & Chemistry, 124, 220–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.