329
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Biological conversion and revalorization of waste methane streams

ORCID Icon &
Pages 2133-2157 | Published online: 08 Jan 2018

References

  • IPCC, Climate Change (2013). The physical science basis, summary for policymakers, in, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013
  • López, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R., and Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Appl. Microbiol. Biotechnol. 97:2277–2303. doi:10.1007/s00253-013-4734-z.
  • International Energy Outlook (2014). Report DOE/EIA-0484, September 2014. US Energy Information Administration.
  • Muñoz, R., Meier, L., Diaz, I., and Jeison, D. (2015). A critical review on the state-of-the-art of physical/chemical and biological technologies for an integral biogas upgrading. Rev. Environ. Sci. Biotechnol. 14:727–759. doi:10.1007/s11157-015-9379-1.
  • Ge, X., Yang, L., Sheets, J. P., Yu, Z., and Li, Y. (2014). Biological conversion of methane to liquid fuels: Status and opportunities. Biotechnol. Adv. 32:1460–1475 doi:10.1016/j.biotechadv.2014.09.004.
  • EurObserv'ER Website. Biogas Barometer Nº 224 November 2014 http://www.eurobserv-er.org/
  • Ryckebosch, E., Drouillon, M., and Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35:1633–1645. doi:10.1016/j.biombioe.2011.02.033.
  • Bauer, F., Hulteberg, C., Persson, T., and Tamm, D. (2013). SGC Rapport 2013:270. http://vav.griffel.net/filer/C_SGC2013-270.pdf
  • Han, B., Su, T., Wu, H., Gou, Z., Xing, X., Jiang, H., Chen, Y., Li, X., and Murrell, J. C. (2009). Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83:669–677. doi:10.1007/s00253-009-1866-2.
  • Semrau, J. D., DiSpirito, A. A., and Yoon, S. (2010). Methanotrophs and cooper. FEMS Microbiol. Rev. 34:496–531. doi:10.1111/j.1574-6976.2010.00212.x.
  • Semrau, J. D. (2011). Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front. Microbiol. 2:209. doi:10.3389/fmicb.2011.00209.
  • Knief, C. (2015). Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6:1346. doi:10.3389/fmicb.2015.01346.
  • Smith, T. J., and Dalton, H. (2004). Biocatalysis by methane monooxygenase and its implications for the petroleum industry. In R. Vazquez-Duhalt, and R. Quintero-Ramirez ( Eds.), Studies in Surface Science and Catalysis ( Chapter 6, pp. 177–192). The Netherlands: Elsevier B.V.
  • Fei, Q., Guarnieri, M. T., Tao, L., Laurens, L. M. L., Dowe, N., and Pienkos, P. T. (2014). Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnol. Adv. 32:596–614. doi:10.1016/j.biotechadv.2014.03.011.
  • Park, S., Hanna, M. L., Taylor, R. T., and Droege, M. W. (1991). Batch cultivation of Methylosinus trichosporium OB3b. I: Production of soluble methane monooxygenase. Biotechnol. Bioeng. 38:423–433. doi:10.1002/bit.260380412.
  • Duan, C., Luo, M., and Xing, X. (2011). High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresource. Technol. 102:7349–7353. doi:10.1016/j.biortech.2011.04.096.
  • Han, J., Ahn, C., Mahanty, B., and Kim, C. (2013). Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl. Microbiol. Biotechnol. 171:1487–1499.
  • Kim, H. G., Han, G. H., and Kim, S. W. (2010). Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess. Eng. 15:476–480. doi:10.1007/s12257-010-0039-6.
  • Xin, J., Cui, J., Niu, J., Hua, S., Xia, C., Li, S., and Zhu, L. (2004). Production of methanol from methane by methanotrophic bacteria. Biocatal. Biotransfor. 22:225–229. doi:10.1080/10242420412331283305.
  • Mehta, P. K., Mishra, S., and Ghose, T. K. (1991). Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium: Batch and continuous studies. Biotechnol. Bioeng. 37:551–556. doi:10.1002/bit.260370609.
  • Corder, R. E., Johnson, E. R., Vega, J. L., Clausen, E. C., and Gaddy, J. L. (1986). Biological production of methanol from methane. Argonne Natl Lab. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/33_3_LOS%20ANGELES_09-88_0469.pdf [Accessed 19 July 2017].
  • Takeguchi, M., Furuto, T., Sugimori, D., and Okura, I. (1997). Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: An approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68:143–152. doi:10.1007/BF02785987.
  • Arp, D. J., and Stein, L. Y. (2003). Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit. Rev. Biochem. Mol. Biol. 38:471–495. doi:10.1080/10409230390267446.
  • Taher, E., and Chandran, K. (2013). High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ. Sci. Technol. 47:3167–3173. doi:10.1021/es3042912.
  • Bedard, C., and Knowles, R. (1989). Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53:68–84.
  • Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C. (1995). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132:203–208. doi:10.1111/j.1574-6968.1995.tb07834.x.
  • Hyman, M. R., and Wood, P. M. (1983). Methane oxidation by Nitrosomonas europaea. Biochem. J. 212:31–37. doi:10.1042/bj2120031.
  • Ward, B. B. (1987). Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch. Microbiol. 147:126–133. doi:10.1007/BF00415273.
  • Jones, R. D., and Morita, R. Y. (1983). Methane oxidation by Nitrosomonas oceanus and Nitrosomonas europaea. Appl. Environ. Microbiol. 45:401–410.
  • Hyman, M. R., Murton, I. B., and Arp, D. J. (1988). Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl. Environ. Microbiol. 54:3187–3190.
  • Voysey, P. A., and Wood, P. M. (1987). Methanol and formaldehyde oxidation by an autotrophic nitrifying bacterium. J. Gen. Microbiol. 33:283–290.
  • Stein L. Y., Arp D. J., Berube P. M., Chain P. S., Hauser L., Jetten M. S., Klotz M. G., Larimer F. W, Norton J. M., Op den Camp H. J., Shin M., Wei X. (2007). Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: Implications for niche adaptation. Environ. Microbiol. 9:2993–3007. doi:10.1111/j.1462-2920.2007.01409.x.
  • Chain P., Lamerdin J., Larimer F., Regala W., Lao V., Land M., Hauser L., Hooper A., Klotz M., Norton J., Sayavedra-Soto L., Arciero D., Hommes N., Whittaker M., Arp D. (2003). Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J. Bacteriol. 185:2759–2773. doi:10.1128/JB.185.9.2759-2773.2003.
  • Lu, H., Chandran, K., and Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Res. 64:237–254. doi:10.1016/j.watres.2014.06.042.
  • Baytshtok, V., Kim, S., Yu, R., Park, H., and Chandran, K. (2008). Molecular and biokinetic characterization of methylotrophic denitrification using nitrate and nitrite as terminal electron acceptors. Water Sci. Technol. 58:359–365. doi:10.2166/wst.2008.391.
  • Baytshtok, V., Lu, H., Park, H., Kim, S., Yu, R., and Chandran, K. (2009). Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnol. Bioeng. 102:1527–1536. doi:10.1002/bit.22213.
  • Lu, H., and Chandran, K. (2010). Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnol. Bioeng. 106:390–398.
  • Lu, H., Nuruzzaman, F., Ravindhar, J., and Chandran, K. (2011). Alcohol dehydrogenase expression as a biomarker of denitrification activity in activated sludge using methanol and glycerol as electron donors. Environ. Microbiol. 13:2930–2938. doi:10.1111/j.1462-2920.2011.02568.x.
  • Lu, H., Kalyuzhnaya, M., and Chandran, K. (2012). Comparative proteomic analysis reveals insights into anoxic growth of Methyloversatilis universalis FAM5 on methanol and ethanol. Environ. Microbiol. 14:2935–2945. doi:10.1111/j.1462-2920.2012.02857.x.
  • Chandran, K., and Smets, B. F. (2008). Biokinetic characterization of the acceleration phase in autotrophic ammonia oxidation. Wat. Environ. Res. 80:732–739. doi:10.2175/106143008X296442.
  • Ryckebosch, E., Drouillon, M. H., and Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass Bioenerg. 35:1633–1645. doi:10.1016/j.biombioe.2011.02.033.
  • Bahr, M., Diaz, I., Dominguez, A., Gonzalez Sanchez, A., and Muñoz, R. (2014). Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ. Sci. Technol. 48:573–581. doi:10.1021/es403596m.
  • Starr, K., Gabarrell, X., Villalba, G., Talens, L., and Lombardi, L. (2012). Life cycle assessment of biogas upgrading technologies. Waste Manage. 32:991–999. doi:10.1016/j.wasman.2011.12.016.
  • Bauer, F., Persson, T., Hulteberg, C., and Tamm, D. (2013). Biogas upgrading–technology overview, comparison and perspectives for the future. Biofuel Bioprod. Bior. 7:499–511. doi:10.1002/bbb.1423.
  • Bauer, F., Hulteberg, C., Persson, T., and Tamm, D. (2013). Biogas upgrading – Review of commercial technologies. SGC Report, 270.
  • Niesner, J., Jecha, D., and Stehlik, P. (2013). Biogas upgrading technologies: State of art review in European region. Chem. Engineer. Trans. 35:517–522.
  • Díaz, I., Ramos, I., and Fdez-Polanco, M. (2015). Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters. Bioresour. Technol. 192:280–286. doi:10.1016/j.biortech.2015.05.048.
  • Díaz, I., Lopez, A. C., Pérez, S. I., and Fdez-Polanco, M. (2010). Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour. Technol. 101:7724–7730. doi:10.1016/j.biortech.2010.04.062.
  • Díaz, I., Pérez, S. I., Ferrero, E. M., and Fdz-Polanco, M. (2011). Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresour. Technol. 102:3768–3775. doi:10.1016/j.biortech.2010.12.016.
  • Fdz-Polanco, M., Díaz, I., Pérez, S. I., Lopes, A. C., and Fdz-Polanco, F. (2009). Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: Pilot plant experience. Water Sci. Technol. 60:3045–3050. doi:10.2166/wst.2009.738.
  • Ramos, I., Pérez, R., Reinoso, M., Torio, R., and Fdz-Polanco, M. (2014). Microaerobic digestion of sewage sludge on an industrial-pilot scale: The efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresour Technol. 164:338–346. doi:10.1016/j.biortech.2014.04.109.
  • Delhoménie, M. C., and Heitz, M. (2005). Biofiltration of air: A review. Crit. Rev. Biotechnol. 25:53–72. doi:10.1080/07388550590935814.
  • Lebrero, R., Rodríguez, E., García-Encina, P. A., and Muñoz, R. (2011). A comparative assessment of biofiltration and activated sludge diffusion for odour abatement. J. Hazard. Mater. 190:622–630. doi:10.1016/j.jhazmat.2011.03.090.
  • Sercu, B., Nuñez, D., Van Langenhove, H., Aroca, G., and Verstraete, W. (2005). Operational and microbiological aspects of a bioaugmented two‐stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnol. Bioeng. 90:259–269. doi:10.1002/bit.20443.
  • Tomàs, M., Fortuny, M., Lao, C., Gabriel, D., Lafuente, J., and Gamisans, X. (2009). Technical and economical study of a full-scale biotrickling filter for H2S removal from biogas. Water Pract. Technol. 4(2). doi:10.2166/wpt.2009.026.
  • Fernández, M., Ramírez, M., Gómez, J. M., and Cantero, D. (2014). Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam. J. Hazard. Mater. 264:529–535. doi:10.1016/j.jhazmat.2013.10.046.
  • Fortuny, M., Gamisans, X., Deshusses, M. A., Lafuente, J., Casas, C., and Gabriel, D. (2011). Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters. Water Res. 45:5665–5674. doi:10.1016/j.watres.2011.08.029.
  • Montebello, A. M., Mora, M., López, L. R., Bezerra, T., Gamisans, X., Lafuente, J., Baeza, M., and Gabriel, D. (2014). Aerobic desulfurization of biogas by acidic biotrickling filtration in a randomly packed reactor. J. Hazard. Mater. 280:200–208. doi:10.1016/j.jhazmat.2014.07.075.
  • Ramírez, M., Gómez, J. M., Aroca, G., and Cantero, D. (2009). Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresour. Technol. 100:4989–4995. doi:10.1016/j.biortech.2009.05.022.
  • Cai, J., Zheng, P., and Mahmood, Q. (2008). Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresour. Technol. 99:5520–5527. doi:10.1016/j.biortech.2007.10.053.
  • Soreanu, G., Béland, M., Falletta, P., Edmonson, K., and Seto, P. (2008). Investigation on the use of nitrified wastewater for the steady-state operation of a biotrickling filter for the removal of hydrogen sulphide in biogas. J. Environ. Eng. Sci. 7:543–552. doi:10.1139/S08-023.
  • Fernández, M., Ramírez, M., Pérez, R. M., Gómez, J. M., and Cantero, D. (2013). Hydrogen sulphide removal from biogas by an anoxic biotrickling filter packed with Pall rings. Chem. Eng. J. 225:456–463. doi:10.1016/j.cej.2013.04.020.
  • Tchobanoglous, G., Burton, F. L., and Stensel, H. D. (2003). Wastewater engineering, treatment and reuse, 4th Edition, New York, NY: McGraw Hill.
  • Mora, M., Fernández, M., Gómez, J. M., Cantero, D., Lafuente, J., Gamisans, X., and Gabriel, D. (2015). Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Appl. Microbiol. Biotechnol. 99:77–87. doi:10.1007/s00253-014-5688-5.
  • Posadas, E., Morales, M. M., Gomez, C., Acién, F. G., and Muñoz, R. (2015). Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem. Eng. J. 265:239–248. doi:10.1016/j.cej.2014.12.059.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv. 25:294–306. doi:10.1016/j.biotechadv.2007.02.001.
  • Chisti, Y. (2013). Constraints to commercialization of algal fuels. J. Biotechnol. 167:201–214. doi:10.1016/j.jbiotec.2013.07.020.
  • Converti, A., Oliveira, R. P. S., Torres, B. R., Lodi, A., and Zilli, M. (2009). Biogas production and valorization by means of a two-step biological process. Bioresour. Technol. 100:5771–5776. doi:10.1016/j.biortech.2009.05.072.
  • Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., and Perales, J. A. (2013). Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecol. Eng. 57:226–235. doi:10.1016/j.ecoleng.2013.04.040.
  • De Godos, I., Blanco, S., García-Encina, P. A., Becares, E., and Muñoz, R. (2010). Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters. J. Hazard. Mater. 179:1049–1054. doi:10.1016/j.jhazmat.2010.03.112.
  • Serejo, M. L., Posadas, E., Boncz, M. A., Blanco, S., García-Encina, P. A., and Muñoz, R. (2015). Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ. Sci. Technol. 49:3228–3236. doi:10.1021/es5056116.
  • Ho, S., Chen, C., Lee, D., and Chang, J. (2011). Perspectives on microalgal CO2-emission mitigation systems — A review. Biotechnol. Adv. 29:189–198. doi:10.1016/j.biotechadv.2010.11.001.
  • González-López, C. V., Acién, F. G., Fernández-Sevilla, J. M., Sánchez, J. F., and Molina, E. (2012). Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol. Bioeng. 109:1637–1650. doi:10.1002/bit.24446.
  • Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57:287–293. doi:10.1007/s002530100702.
  • López, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R., and Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Appl. Microbiol. Biotechnol. 97:2277–2303. doi:10.1007/s00253-013-4734-z.
  • Accettola, F., Guebitz, G. M., and Schoeftner, R. (2008). Siloxane removal from biogas by biofiltration: Biodegradation studies. Clean. Technol. Environ. Policy 10:211–218. doi:10.1007/s10098-007-0141-4.
  • Ajhar, M., Travesset, M., Yüce, S., and Melin, T. (2010). Siloxane removal from landfill and digester gas – A technology overview. Bioresour. Technol. 101:2913–2923. doi:10.1016/j.biortech.2009.12.018.
  • Popat, S. C., and Deshusses, M. A. (2008). Biological removal of siloxanes from landfill and digester gases: Opportunities and challenges. Environ. Sci. Technol. 42:8510–8515. doi:10.1021/es801320w.
  • Li, Y., Zhang, W., and Xu, J. (2014). Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240. J. Hazard. Mater. 275:175–184. doi:10.1016/j.jhazmat.2014.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.