4,676
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Recent advances in engineered biochar productions and applications

ORCID Icon, &
Pages 2158-2207 | Published online: 04 Jan 2018

References

  • Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., and Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202–203, 183–191.
  • Abioye, A. M., and Ani, F. N. (2015). Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renewable and Sustainable Energy Reviews, 52, 1282–1293.
  • Agrafioti, E., Kalderis, D., and Diamadopoulos, E. (2014). Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 146, 444–450.
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.
  • Ahmadpour, A., and Do, D. D. (1996). The preparation of active carbons from coal by chemical and physical activation. Carbon, 34, 471–479.
  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). London: Springer.
  • Angın, D., Altintig, E., and Köse, T. E. (2013). Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology, 148, 542–549.
  • Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., Van Impe, J., and Dewil, R. (2011). Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews, 15, 4295–4301.
  • Azargohar, R., and Dalai, A. K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous and Mesoporous Materials, 110, 413–421.
  • Bai, R. S., and Abraham, T. E. (2002). Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36, 1224–1236.
  • Baig, S. A., Zhu, J., Muhammad, N., Sheng, T., and Xu, X. (2014). Effect of synthesis methods on magnetic Kans grass biochar for enhanced As (III, V) adsorption from aqueous solutions. Biomass and Bioenergy, 71, 299–310.
  • Balathanigaimani, M. S., Shim, W.-G., Lee, M.-J., Kim, C., Lee, J.-W., and Moon, H. (2008). Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 10, 868–871.
  • Beck, D. A., Johnson, G. R., and Spolek, G. A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. Environmental Pollution, 159, 2111–2118.
  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., and Sizmur, T. (2011). A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.
  • Beidaghi, M., and Gogotsi, Y. (2014). Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy and Environmental Science, 7, 867–884.
  • Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H., Moeller, A., and Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use and Management, 28, 177–184.
  • Cai, H., Xu, L., Chen, G., Peng, C., Ke, F., Liu, Z., Li, D., Zhang, Z., and Wan, X. (2016). Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill. Applied Surface Science, 375, 74–84.
  • Cao, X., Ma, L., Gao, B., and Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology, 43, 3285–3291.
  • Carrier, M., Hardie, A. G., Uras, Ü., Görgens, J., and Knoetze, J. (2012). Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. Journal of Analytical and Applied Pyrolysis, 96, 24–32.
  • Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., and Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15.
  • Chang, C.-F., Chang, C.-Y., and Tsai, W.-T. (2000). Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. Journal of Colloid and Interface Science, 232, 45–49.
  • Chen, B., Chen, Z., and Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102, 716–723.
  • Chen, M., Kang, X., Wumaier, T., Dou, J., Gao, B., Han, Y., Xu, G., Liu, Z., and Zhang, L. (2013). Preparation of activated carbon from cotton stalk and its application in supercapacitor. Journal of Solid State Electrochemistry, 17, 1005–1012.
  • Chen, M., Wang, D., Yang, F., Xu, X., Xu, N., and Cao, X. (2017). Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environmental Pollution, 230, 540–549.
  • Cope, C. O., Webster, D. S., and Sabatini, D. A. (2014). Arsenate adsorption onto iron oxide amended rice husk char. Science of The Total Environment, 488, 554–561.
  • Creamer, A. E., Gao, B., and Wang, S. (2016). Carbon dioxide capture using various metal oxyhydroxide–biochar composites. Chemical Engineering Journal, 283, 826–832.
  • Crombie, K., and Mašek, O. (2015). Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. Gcb Bioenergy, 7, 349–361.
  • Cuña, A., Tancredi, N., Bussi, J., Barranco, V., Centeno, T. A., Quevedo, A., and Rojo, J. M. (2014). Biocarbon monoliths as supercapacitor electrodes: Influence of wood anisotropy on their electrical and electrochemical properties. Journal of The Electrochemical Society, 161, A1806–A1811.
  • De, M., Azargohar, R., Dalai, A. K., and Shewchuk, S. R. (2013). Mercury removal by bio-char based modified activated carbons. Fuel, 103, 570–578.
  • Dehkhoda, A. M., Ellis, N., and Gyenge, E. (2014). Electrosorption on activated biochar: Effect of thermo-chemical activation treatment on the electric double layer capacitance. Journal of Applied Electrochemistry, 44, 141–157.
  • Dehkhoda, A. M., Ellis, N., and Gyenge, E. (2016a). Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions. Microporous and Mesoporous Materials, 224, 217–228.
  • Dehkhoda, A. M., Gyenge, E., and Ellis, N. (2016b). A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage. Biomass and Bioenergy, 87, 107–121.
  • Devi, P., and Saroha, A. K. (2014). Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresource Technology, 169, 525–531.
  • Devi, P., and Saroha, A. K. (2015). Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chemical Engineering Journal, 271, 195–203.
  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., and Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 85, 833–846.
  • Ding, Z., Hu, X., Wan, Y., Wang, S., and Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239–245.
  • Downie, A., Munroe, P., Cowie, A., Van Zwieten, L., and Lau, D. M. (2012). Biochar as a geoengineering climate solution: Hazard identification and risk management. Critical Reviews in Environmental Science and Technology, 42, 225–250.
  • Du, Z., Zheng, T., Wang, P., Hao, L., and Wang, Y. (2016). Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water. Bioresource Technology, 201, 41–49.
  • Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M., and Lentz, R. D. (2013). Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 65, 65–72.
  • Elazari, R., Salitra, G., Garsuch, A., Panchenko, A., and Aurbach, D. (2011). Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Advanced Materials, 23, 5641–5644.
  • Elleuch, A., Boussetta, A., Yu, J., Halouani, K., and Li, Y. (2013). Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: Part I. Physico-chemical characterization of the biochar fuel and cell performance examination. International Journal of Hydrogen Energy, 38, 16590–16604.
  • Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., and Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111, 185–190.
  • Evangelou, M. W. H., Fellet, G., Ji, R., and Schulin, R. (2015). Phytoremediation and biochar application as an amendment In A. A. Ansari et al. (Eds.), Phytoremediation: Management of environmental contaminants (Volume 1, pp. 253–263). Cham: Springer International Publishing.
  • Fan, Y., Wang, B., Yuan, S., Wu, X., Chen, J., and Wang, L. (2010). Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology, 101, 7661–7664.
  • Fang, C., Zhang, T., Li, P., Jiang, R.-f., and Wang, Y.-c. (2014a). Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. International Journal of Environmental Research and Public Health, 11, 9217–9237.
  • Fang, C., Zhang, T., Li, P., Jiang, R., Wu, S., Nie, H., and Wang, Y. (2015). Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar. Journal of Environmental Sciences (China), 29, 106–114.
  • Fang, G., Gao, J., Liu, C., Dionysiou, D. D., Wang, Y., and Zhou, D. (2014b). Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation. Environmental Science and Technology, 48, 1902–1910.
  • Fang, J., Gao, B., Zimmerman, A. R., Ro, K. S., and Chen, J. J. (2016). Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium. RSC Advances, 6, 24906–24911.
  • Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., and Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254–261.
  • Fey, G. T.-K., Lee, D., Lin, Y., and Kumar, T. P. (2003). High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synthetic Metals, 139, 71–80.
  • Fey, G. T.-K., Cho, Y.-D., Chen, C.-L., Lin, Y.-Y., Kumar, T. P., and Chan, S.-H. (2010). Pyrolytic carbons from acid/base-treated rice husk as lithium-insertion anode materials. Pure and Applied Chemistry, 82, 2157–2165.
  • Foo, K. Y., and Hameed, B. H. (2011). Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation. Biomass and Bioenergy, 35, 3257–3261.
  • Fungo, B., Guerena, D., Thiongo, M., Lehmann, J., Neufeldt, H., and Kalbitz, K. (2014). N2O and CH4 emission from soil amended with steam-activated biochar. Journal of Plant Nutrition and Soil Science, 177, 34–38.
  • Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., Li, T., Jiang, Z., and Liu, W. (2015). Effect of porous zinc–biochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Advances, 5, 35107–35115.
  • Ganesh, K., and Jambeck, J. R. (2013). Treatment of landfill leachate using microbial fuel cells: Alternative anodes and semi-continuous operation. Bioresource Technology, 139, 383–387.
  • Goldfarb, J. L., Dou, G., Salari, M., and Grinstaff, M. W. (2017). Biomass-based fuels and activated carbon electrode materials: An integrated approach to green energy systems. ACS Sustainable Chemistry and Engineering, 5, 3046–3054.
  • Guo, Y., Qi, J., Jiang, Y., Yang, S., Wang, Z., and Xu, H. (2003). Performance of electrical double layer capacitors with porous carbons derived from rice husk. Materials Chemistry and Physics, 80, 704–709.
  • Gupta, R. K., Dubey, M., Kharel, P., Gu, Z., and Fan, Q. H. (2015). Biochar activated by oxygen plasma for supercapacitors. Journal of Power Sources, 274, 1300–1305.
  • Hadjittofi, L., Prodromou, M., and Pashalidis, I. (2014). Activated biochar derived from cactus fibres – Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresource Technology, 159, 460–464.
  • Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., and Chen, M. (2015a). Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PloS One, 10, e0132067.
  • Han, X., Chu, L., Liu, S., Chen, T., Ding, C., Yan, J., Cui, L., and Quan, G. (2015b). Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar. BioResources, 10, 2836–2849.
  • Han, Z., Sani, B., Mrozik, W., Obst, M., Beckingham, B., Karapanagioti, H. K., and Werner, D. (2015c). Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Research, 70, 394–403.
  • Heidari, A., Younesi, H., Rashidi, A., and Ghoreyshi, A. (2014). Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation. Journal of the Taiwan Institute of Chemical Engineers, 45, 579–588.
  • Holm-Nielsen, J. B., Al Seadi, T., and Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology, 100, 5478–5484.
  • Hong, J., Xiaomin, W., and Zhengrong, G. (2013). Hierarchical carbon materials from high ash bio-char of distiller's dried grain with solubles for supercapacitor. Materials Focus, 2, 105–112.
  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., and Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216.
  • Huff, M. D., and Lee, J. W. (2016). Biochar-surface oxygenation with hydrogen peroxide. Journal of Environmental Management, 165, 17–21.
  • Huggins, T., Wang, H., Kearns, J., Jenkins, P., and Ren, Z. J. (2014). Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresource Technology, 157, 114–119.
  • Huggins, T. M., Pietron, J. J., Wang, H., Ren, Z. J., and Biffinger, J. C. (2015). Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresource Technology, 195, 147–153.
  • Hwang, Y. J., Jeong, S., Shin, J., Nahm, K. S., and Stephan, A. M. (2008). High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries. Journal of Alloys and Compounds, 448, 141–147.
  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., and Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868–8872.
  • Inyang, M., Gao, B., Ding, W., Pullammanappallil, P., Zimmerman, A. R., and Cao, X. (2011). Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 46, 1950–1956.
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., and Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50–56.
  • Inyang, M., Gao, B., Zimmerman, A., Zhang, M., and Chen, H. (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal, 236, 39–46.
  • Inyang, M., Gao, B., Zimmerman, A., Zhou, Y., and Cao, X. (2015). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environmental Science and Pollution Research, 22, 1868–1876.
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., and Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46, 406–433.
  • Ippolito, J. A., Laird, D. A., and Busscher, W. J. (2012a). Environmental benefits of biochar. Journal of Environmental Quality, 41, 967–972.
  • Ippolito, J. A., Strawn, D. G., Scheckel, K. G., Novak, J. M., Ahmedna, M., and Niandou, M. A. S. (2012b). Macroscopic and molecular investigations of copper sorption by a steam-activated biochar. Journal of Environmental Quality, 41, 1150–1156.
  • Ismanto, A. E., Wang, S., Soetaredjo, F. E., and Ismadji, S. (2010). Preparation of capacitor's electrode from cassava peel waste. Bioresource Technology, 101, 3534–3540.
  • Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., and Ma, S. (2013). Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochimica Acta, 113, 481–489.
  • Jin, H., Wang, X., Gu, Z., and Polin, J. (2013). Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. Journal of Power Sources, 236, 285–292.
  • Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., and Zhang, J. (2014a). Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology, 169, 622–629.
  • Jin, H., Wang, X., Gu, Z., Anderson, G., and Muthukumarappan, K. (2014b). Distillers dried grains with soluble (DDGS) bio-char based activated carbon for supercapacitors with organic electrolyte tetraethylammonium tetrafluoroborate. Journal of Environmental Chemical Engineering, 2, 1404–1409.
  • Jin, H., Wang, X., Gu, Z., Hoefelmeyer, J. D., Muthukumarappan, K., and Julson, J. (2014c). Graphitized activated carbon based on big bluestem as an electrode for supercapacitors. RSC Advances, 4, 14136–14142.
  • Jin, H., Wang, X., Shen, Y., and Gu, Z. (2014d). A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors. Journal of Analytical and Applied Pyrolysis, 110, 18–23.
  • Jing, X.-R., Wang, Y.-Y., Liu, W.-J., Wang, Y.-K., and Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, 168–174.
  • Jung, C., Phal, N., Oh, J., Chu, K. H., Jang, M., and Yoon, Y. (2015). Removal of humic and tannic acids by adsorption–coagulation combined systems with activated biochar. Journal of Hazardous Materials, 300, 808–814.
  • Jurewicz, K., and Babeł, K. (2010). Efficient capacitor materials from active carbons based on coconut shell/melamine precursors. Energy and Fuels, 24, 3429–3435.
  • Kalyani, P., and Anitha, A. (2013a). Biomass carbon and its prospects in electrochemical energy systems. International Journal of Hydrogen Energy, 38, 4034–4045.
  • Kalyani, P., and Anitha, A. (2013b). Refuse derived energy-tea derived boric acid activated carbon as an electrode material for electrochemical capacitors. Portugaliae Electrochimica Acta, 31, 165–174.
  • Kim, Y.-J., Lee, B.-J., Suezaki, H., Chino, T., Abe, Y., Yanagiura, T., Park, K. C., and Endo, M. (2006). Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon, 44, 1592–1595.
  • Klasson, K. T., Ledbetter, C. A., Uchimiya, M., and Lima, I. M. (2013). Activated biochar removes 100 % dibromochloropropane from field well water. Environmental Chemistry Letters, 11, 271–275.
  • Kónya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, J., and Koós, A. (2002). Large scale production of short functionalized carbon nanotubes. Chemical Physics Letters, 360, 429–435.
  • Kookana, R. S. (2010). The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review. Soil Research, 48, 627–637.
  • Koutcheiko, S., and Vorontsov, V. (2013). Activated carbon derived from wood biochar and its application in supercapacitors. Journal of Biobased Materials and Bioenergy, 7, 733–740.
  • Laird, D. A. (2008). The charcoal vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100, 178–181.
  • Lehmann, J., Gaunt, J., and Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and Adaptation Strategies for Global Change, 11, 395–419.
  • Lehmann, J. (2007). A handful of carbon. Nature, 447, 143–144.
  • Lehmann, J., and Joseph, S. (2009). Biochar for environmental management: Science and technology. London: Earthscan/James and James.
  • Lehmann, J., Rillig, M., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D. (2011). Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 43, 1812–1836.
  • Li, B., Yang, L., Wang, C.-Q., Zhang, Q.-P., Liu, Q.-C., Li, Y.-D., and Xiao, R. (2017). Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175, 332–340.
  • Li, G., Shen, B., Li, F., Tian, L., Singh, S., and Wang, F. (2015a). Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Processing Technology, 133, 43–50.
  • Li, G., Shen, B., Wang, Y., Yue, S., Xi, Y., An, M., and Ren, K. (2015b). Comparative study of element mercury removal by three bio-chars from various solid wastes. Fuel, 145, 189–195.
  • Li, J.-H., Lv, G.-H., Bai, W.-B., Liu, Q., Zhang, Y.-C., and Song, J.-Q. (2016a). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalination and Water Treatment, 57, 4681–4693.
  • Li, J., Li, S., Dong, H., Yang, S., Li, Y., and Zhong, J. (2015c). Role of alumina and montmorillonite in changing the sorption of herbicides to biochars. Journal of Agricultural and Food Chemistry, 63, 5740–5746.
  • Li, R., Wang, J. J., Zhou, B., Awasthi, M. K., Ali, A., Zhang, Z., Lahori, A. H., and Mahar, A. (2016b). Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresource Technology, 215, 209–214.
  • Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.-Z., and Lu, G.-Q. (2011). Preparation of capacitor's electrode from sunflower seed shell. Bioresource Technology, 102, 1118–1123.
  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J., Thies, J., Luizao, F., and Petersen, J. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.
  • Lillo-Ródenas, M. A., Lozano-Castelló, D., Cazorla-Amorós, D., and Linares-Solano, A. (2001). Preparation of activated carbons from Spanish anthracite: II. Activation by NaOH. Carbon, 39, 751–759.
  • Lima, I. M., and Marshall, W. E. (2005). Adsorption of selected environmentally important metals by poultry manure-based granular activated carbons. Journal of Chemical Technology and Biotechnology, 80, 1054–1061.
  • Lima, I. M., Boateng, A. A., and Klasson, K. T. (2010). Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts. Journal of Chemical Technology and Biotechnology, 85, 1515–1521.
  • Liu, H., Liang, S., Gao, J., Ngo, H. H., Guo, W., Guo, Z., and Li, Y. (2014). Development of biochars from pyrolysis of lotus stalks for Ni (II) sorption: Using zinc borate as flame retardant. Journal of Analytical and Applied Pyrolysis, 107, 336–341.
  • Liu, P., Liu, W.-J., Jiang, H., Chen, J.-J., Li, W.-W., and Yu, H.-Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240.
  • Liu, S.-B., Tan, X.-F., Liu, Y.-G., Gu, Y.-L., Zeng, G.-M., Hu, X.-J., Wang, H., Zhou, L., Jiang, L.-H., and Zhao, B.-B. (2016a). Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Advances, 6, 5871–5880.
  • Liu, T., Gao, B., Fang, J., Wang, B., and Cao, X. (2016b). Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal. RSC Advances, 6, 24314–24319.
  • Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y., and Wu, W. (2011). Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 11, 930–939.
  • Loukidou, M. X., Matis, K. A., Zouboulis, A. I., and Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 37, 4544–4552.
  • Lozano-Castelló, D., Lillo-Ródenas, M. A., Cazorla-Amorós, D., and Linares-Solano, A. (2001). Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon, 39, 741–749.
  • Lyu, H., Gao, B., He, F., Ding, C., Tang, J., and Crittenden, J. C. (2017). Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry and Engineering, 5, 9568–9585.
  • Lyu, H., Gao, B., He, F., Zimmerman, A., Ding, C., Huang, H., and Tang, J. (2018a). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63.
  • Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., and Tang, J. (2018b). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63.
  • Ma, Y., Liu, W.-J., Zhang, N., Li, Y.-S., Jiang, H., and Sheng, G.-P. (2014). Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 169, 403–408.
  • Mangun, C. L., Benak, K. R., Economy, J., and Foster, K. L. (2001). Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon, 39, 1809–1820.
  • Marshall, W., Wartelle, L., Boler, D., and Toles, C. (2000). Metal ion adsorption by soybean hulls modified with citric acid: A comparative study. Environmental technology, 21, 601–607.
  • Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M., and Toles, C. A. (1999). Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69, 263–268.
  • Martin, S. M., Kookana, R. S., Van Zwieten, L., and Krull, E. (2012). Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 231, 70–78.
  • Mašek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E., and Hurst, P. (2013). Microwave and slow pyrolysis biochar—Comparison of physical and functional properties. Journal of Analytical and Applied Pyrolysis, 100, 41–48.
  • Mayer, Z. A., Eltom, Y., Stennett, D., Schröder, E., Apfelbacher, A., and Hornung, A. (2014). Characterization of engineered biochar for soil management. Environmental Progress and Sustainable Energy, 33, 490–496.
  • Menéndez, J. A., Inguanzo, M., and Pis, J. J. (2002). Microwave-induced pyrolysis of sewage sludge. Water Research, 36, 3261–3264.
  • Menéndez, J. A., Domıénguez, A., Inguanzo, M., and Pis, J. J. (2004). Microwave pyrolysis of sewage sludge: Analysis of the gas fraction. Journal of Analytical and Applied Pyrolysis, 71, 657–667.
  • Mohamed, B. A., Ellis, N., Kim, C. S., Bi, X., and Emam, A. E.-R. (2016). Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Science of The Total Environment, 566-567, 387–397.
  • Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M., and Pittman, C. U. (2014a). Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 236, 513–528.
  • Mohan, D., Kumar, S., and Srivastava, A. (2014b). Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecological Engineering, 73, 798–808.
  • Mohan, D., Sarswat, A., Ok, Y. S., and Pittman Jr, C. U. (2014c). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology, 160, 191–202.
  • Mondal, S., Aikat, K., and Halder, G. (2016). Ranitidine hydrochloride sorption onto superheated steam activated biochar derived from mung bean husk in fixed bed column. Journal of Environmental Chemical Engineering, 4, 488–497.
  • Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., and Zabaniotou, A. (2015). A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Applied Energy, 148, 32–38.
  • Morgan, H. M., Bu, Q., Liang, J., Liu, Y., Mao, H., Shi, A., Lei, H., and Ruan, R. (2017). A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresource Technology, 230, 112–121.
  • Mubarak, N., Kundu, A., Sahu, J., Abdullah, E., and Jayakumar, N. (2014). Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass and Bioenergy, 61, 265–275.
  • Ok, Y. S., Chang, S. X., Gao, B., and Chung, H.-J. (2015). SMART biochar technology — A shifting paradigm towards advanced materials and healthcare research. Environmental Technology and Innovation, 4, 206–209.
  • Olivares-Marín, M., Fernández, J. A., Lázaro, M. J., Fernández-González, C., Macías-García, A., Gómez-Serrano, V., Stoeckli, F., and Centeno, T. A. (2009). Cherry stones as precursor of activated carbons for supercapacitors. Materials Chemistry and Physics, 114, 323–327.
  • Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H., and Park, S. (2013). Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149, 383–389.
  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., and Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 1–13.
  • Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., and Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth, 5, 65.
  • Peterson, S. C., Jackson, M. A., Kim, S., and Palmquist, D. E. (2012). Increasing biochar surface area: Optimization of ball milling parameters. Powder Technology, 228, 115–120.
  • Peterson, S. C., Appell, M., Jackson, M. A., and Boateng, A. A. (2013). Comparing corn stover and switchgrass biochar: Characterization and sorption properties. Journal of Agricultural Science, 5, 1.
  • Plaza, M. G., González, A. S., Pis, J. J., Rubiera, F., and Pevida, C. (2014). Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Applied Energy, 114, 551–562.
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., and Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064.
  • Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., and Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308.
  • Rajapaksha, A. U., Vithanage, M., Ahmad, M., Seo, D.-C., Cho, J.-S., Lee, S.-E., Lee, S. S., and Ok, Y. S. (2015). Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 290, 43–50.
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N. S., and Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 6e291.
  • Raymundo-Piñero, E., Leroux, F., and Béguin, F. (2006). A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Advanced Materials, 18, 1877–1882.
  • Reddy, D. H. K., and Lee, S.-M. (2014). Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96–103.
  • Rees, F., Simonnot, M., and Morel, J. (2014). Short‐term effects of biochar on soil heavy metal mobility are controlled by intra‐particle diffusion and soil pH increase. European Journal of Soil Science, 65, 149–161.
  • Regmi, P., Garcia Moscoso, J. L., Kumar, S., Cao, X., Mao, J., and Schafran, G. (2012). Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109, 61–69.
  • Robertson, G. P., Paul, E. A., and Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science, 289, 1922–1925.
  • Ruan, Z.-H., Wu, J.-H., Huang, J.-F., Lin, Z.-T., Li, Y.-F., Liu, Y.-L., Cao, P.-Y., Fang, Y.-P., Xie, J., and Jiang, G.-B. (2015). Facile preparation of rosin-based biochar coated bentonite for supporting α-Fe2O3 nanoparticles and its application for Cr(VI) adsorption. Journal of Materials Chemistry A, 3, 4595–4603.
  • Rufford, T. E., Hulicova-Jurcakova, D., Zhu, Z., and Lu, G. Q. (2008). Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochemistry Communications, 10, 1594–1597.
  • Rufford, T. E., Hulicova-Jurcakova, D., Khosla, K., Zhu, Z., and Lu, G. Q. (2010). Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. Journal of Power Sources, 195, 912–918.
  • Safaei Khorram, M., Zhang, Q., Lin, D., Zheng, Y., Fang, H., and Yu, Y. (2016). Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences (China), 44, 269–279.
  • Samsuri, A. W., Sadegh-Zadeh, F., and Seh-Bardan, B. J. (2013). Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1, 981–988.
  • Shan, D., Deng, S., Zhao, T., Wang, B., Wang, Y., Huang, J., Yu, G., Winglee, J., and Wiesner, M. R. (2016). Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 305, 156–163.
  • Shang, G., Shen, G., Liu, L., Chen, Q., and Xu, Z. (2013). Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresource Technology, 133, 495–499.
  • Shen, B., Li, G., Wang, F., Wang, Y., He, C., Zhang, M., and Singh, S. (2015). Elemental mercury removal by the modified bio-char from medicinal residues. Chemical Engineering Journal, 272, 28–37.
  • Shim, T., Yoo, J., Ryu, C., Park, Y.-K., and Jung, J. (2015). Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresource Technology, 197, 85–90.
  • Singh, B., Singh, B. P., and Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48, 516–525.
  • Song, Q., Yang, B., Wang, H., Xu, S., and Cao, Y. (2016). Effective removal of copper (II) and cadmium (II) by adsorbent prepared from chitosan-modified magnetic biochar. Journal of Residuals Science and Technology, 13, 197–205.
  • Song, Z., Lian, F., Yu, Z., Zhu, L., Xing, B., and Qiu, W. (2014). Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal, 242, 36–42.
  • Stephan, A. M., Kumar, T. P., Ramesh, R., Thomas, S., Jeong, S. K., and Nahm, K. S. (2006). Pyrolitic carbon from biomass precursors as anode materials for lithium batteries. Materials Science and Engineering: A, 430, 132–137.
  • Streubel, J. D., Collins, H. P., Tarara, J. M., and Cochran, R. L. (2012). Biochar produced from anaerobically digested fiber reduces phosphorus in dairy lagoons. Journal of Environmental Quality, 41, 1166–1174.
  • Subramanian, V., Luo, C., Stephan, A., Nahm, K., Thomas, S., and Wei, B. (2007). Supercapacitors from activated carbon derived from banana fibers. The Journal of Physical Chemistry C, 111, 7527–7531.
  • Sun, K., Keiluweit, M., Kleber, M., Pan, Z., and Xing, B. (2011). Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology, 102, 9897–9903.
  • Sun, K., Kang, M., Zhang, Z., Jin, J., Wang, Z., Pan, Z., Xu, D., Wu, F., and Xing, B. (2013a). Impact of Deashing Treatment on Biochar Structural Properties and Potential Sorption Mechanisms of Phenanthrene. Environmental Science and Technology, 47, 11473–11481.
  • Sun, K., Tang, J., Gong, Y., and Zhang, H. (2015a). Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environmental Science and Pollution Research, 22, 16640–16651.
  • Sun, L., Wan, S., and Luo, W. (2013b). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresource Technology, 140, 406–413.
  • Sun, L., Chen, D., Wan, S., and Yu, Z. (2015b). Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresource Technology, 198, 300–308.
  • Sun, P., Hui, C., Khan, R. A., Du, J., Zhang, Q., and Zhao, Y.-H. (2015c). Efficient removal of crystal violet using Fe3O4-coated biochar: The role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5, 12638.
  • Sun, W., Lipka, S. M., Swartz, C., Williams, D., and Yang, F. (2016). Hemp-derived activated carbons for supercapacitors. Carbon, 103, 181–192.
  • Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., and Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578.
  • Taer, E., Deraman, M., Talib, I. A., Umar, A. A., Oyama, M., and Yunus, R. M. (2010). Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation. Current Applied Physics, 10, 1071–1075.
  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., and Condron, L. M. (2012). Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350, 1–13.
  • Taha, S. M., Amer, M. E., Elmarsafy, A. E., and Elkady, M. Y. (2014). Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. Journal of Environmental Chemical Engineering, 2, 2013–2025.
  • Tan, I. A. W., Ahmad, A. L., and Hameed, B. H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 154, 337–346.
  • Tan, X.-F., Liu, Y.-G., Gu, Y.-L., Xu, Y., Zeng, G.-M., Hu, X.-J., Liu, S.-B., Wang, X., Liu, S.-M., and Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333.
  • Tan, X.-F., Liu, S.-B., Liu, Y.-G., Gu, Y.-L., Zeng, G.-M., Hu, X.-J., Wang, X., Liu, S.-H., and Jiang, L.-H. (2017). Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology, 227, 359–372.
  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., and Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85.
  • Tan, Z., Qiu, J., Zeng, H., Liu, H., and Xiang, J. (2011). Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel, 90, 1471–1475.
  • Tang, J., Zhu, W., Kookana, R., and Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116, 653–659.
  • Tang, J., Lv, H., Gong, Y., and Huang, Y. (2015). Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 196, 355–363.
  • Teo, E. Y. L., Muniandy, L., Ng, E.-P., Adam, F., Mohamed, A. R., Jose, R., and Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110–119.
  • Trakal, L., Veselská, V., Šafařík, I., Vítková, M., Číhalová, S., and Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology, 203, 318–324.
  • Trigo, C., Spokas, K. A., Cox, L., and Koskinen, W. C. (2014). Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine. Journal of Agricultural and Food Chemistry, 62, 10855–10860.
  • Tripathi, M., Sahu, J. N., and Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481.
  • Uchimiya, M., Klasson, K. T., Wartelle, L. H., and Lima, I. M. (2010a). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere.
  • Uchimiya, M., Lima, I. M., Thomas Klasson, K., Chang, S. C., Wartelle, L. H., and Rodgers, J. E. (2010b). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58, 5538–5544.
  • Uchimiya, M., Chang, S., and Klasson, K. T. (2011a). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials.
  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., and Lima, I. M. (2011b). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59, 2501–2510.
  • Uchimiya, M., Bannon, D. I., and Wartelle, L. H. (2012). Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. Journal of Agricultural and Food Chemistry, 60, 1798–1809.
  • Usman, A. R. A., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y. S., Sallam, A. S., El-Naggar, A. H., and Al-Wabel, M. I. (2016). Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health, 38, 511–521.
  • Van Vinh, N., Zafar, M., Behera, S., and Park, H.-S. (2015). Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: Equilibrium, kinetics, and thermodynamics studies. International Journal of Environmental Science and Technology, 12, 1283–1294.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., and Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235–246.
  • Vithanage, M., Rajapaksha, A. U., Zhang, M., Thiele-Bruhn, S., Lee, S. S., and Ok, Y. S. (2015). Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research, 22, 2175–2186.
  • Wahid, M., Puthusseri, D., Phase, D., and Ogale, S. (2014). Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment. Energy and Fuels, 28, 4233–4240.
  • Wan, S., Wang, S. S., Li, Y. C., and Gao, B. (2017). Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 47, 246–253.
  • Wan, Y., Chen, P., Zhang, B., Yang, C., Liu, Y., Lin, X., and Ruan, R. (2009). Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis, 86, 161–167.
  • Wang, B., Lehmann, J., Hanley, K., Hestrin, R., and Enders, A. (2015a). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126.
  • Wang, B., Lehmann, J., Hanley, K., Hestrin, R., and Enders, A. (2016). Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 6, 41907–41913.
  • Wang, D., Zhang, W., Hao, X., and Zhou, D. (2013a). Transport of biochar particles in saturated granular media: Effects of pyrolysis temperature and particle size. Environmental Science and Technology, 47, 821–828.
  • Wang, H., Gao, B., Wang, S., Fang, J., Xue, Y., and Yang, K. (2015b). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197, 356–362.
  • Wang, M., Sheng, G., and Qiu, Y. (2015c). A novel manganese-oxide/biochar composite for efficient removal of lead (II) from aqueous solutions. International Journal of Environmental Science and Technology, 12, 1719–1726.
  • Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A. R., Ma, L. Q., Harris, W. G., and Migliaccio, K. W. (2015d). Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 181, 13–17.
  • Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., and Migliaccio, K. W. (2015e). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395.
  • Wang, S., Gao, B., Li, Y., Creamer, A. E., and He, F. (2017a). Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent Iron nanocomposite: Batch and continuous flow tests. Journal of Hazardous Materials, 322, 172–181.
  • Wang, S. S., Gao, B., Zimmerman, A. R., Li, Y. C., Ma, L. N., Harris, W. G., and Migliaccio, K. W. (2015f). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 134, 257–262.
  • Wang, W., Wang, X., Wang, X., Yang, L., Wu, Z., Xia, S., and Zhao, J. (2013b). Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. Journal of Environmental Sciences (China), 25, 1726–1735.
  • Wang, Y., and Cao, S. (2011). Carbon sequestration may have negative impacts on ecosystem health. Environmental Science and Technology, 45, 1759–1760.
  • Wang, Y., Zhang, Y., Pei, L., Ying, D., Xu, X., Zhao, L., Jia, J., and Cao, X. (2017b). Converting Ni-loaded biochars into supercapacitors: Implication on the reuse of exhausted carbonaceous sorbents. Scientific Reports, 7, 41523.
  • Warnock, D. D., Lehmann, J., Kuyper, T. W., and Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and Soil, 300, 9–20.
  • Wu, F.-C., Tseng, R.-L., Hu, C.-C., and Wang, C.-C. (2004). Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. Journal of Power Sources, 138, 351–359.
  • Wu, F.-C., Tseng, R.-L., Hu, C.-C., and Wang, C.-C. (2005). Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources, 144, 302–309.
  • Xiao, F., and Pignatello, J. J. (2015). Interactions of triazine herbicides with biochar: Steric and electronic effects. Water Research, 80, 179–188.
  • Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E., and Spokas, K. (2015). Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology, 45, 939–969.
  • Xiong, Z., Shihong, Z., Haiping, Y., Tao, S., Yingquan, C., and Hanping, C. (2013). Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture. BioEnergy Research, 6, 1147–1153.
  • Xu, X., Cao, X., Zhao, L., and Sun, T. (2014). Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere, 111, 296–303.
  • Xue, L. H., Gao, B., Wan, Y. S., Fang, J. N., Wang, S. S., Li, Y. C., Munoz-Carpena, R., and Yang, L. Z. (2016). High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 63, 312–317.
  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., and Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 200-202, 673–680.
  • Yan, L., Kong, L., Qu, Z., Li, L., and Shen, G. (2014). Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal. ACS Sustainable Chemistry and Engineering, 3, 125–132.
  • Yang, G.-X., and Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48, 396–405.
  • Yang, X., Jin, D. F., Zhang, M., Wu, P. P., Jin, H. X., Li, J., Wang, X. Q., Ge, H. L., Wang, Z. B., and Lou, H. (2016). Fabrication and application of magnetic starch-based activated hierarchical porous carbon spheres for the efficient removal of dyes from water. Materials Chemistry and Physics, 174, 179–186.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., and Yang, L. (2011a). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102, 6273–6278.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X. D., Pullammanappallil, P., and Yang, L. Y. (2011b). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190, 501–507.
  • Yao, Y., Gao, B., Zhang, M., Inyang, M., and Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, 1467–1471.
  • Yao, Y., Gao, B., Chen, J., and Yang, L. (2013a). Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environmental Science and Technology, 47, 8700–8708.
  • Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., and Yang, L. (2013b). Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresource Technology, 138, 8–13.
  • Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A. E., Sun, Y., and Yang, L. (2014). Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal, 242, 136–143.
  • Yao, Y., Gao, B., Wu, F., Zhang, C. Z., and Yang, L. Y. (2015). Engineered biochar from biofuel residue: Characterization and its silver removal potential. ACS Applied Materials and Interfaces, 7, 10634–10640.
  • Yao, Y., Zhang, Y., Gao, B., Chen, R., and Wu, F. (2017). Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environmental Science and Pollution Research. doi:10.1007/s11356-017-8849-0.
  • Yu, J., Zhao, Y., and Li, Y. (2014). Utilization of corn cob biochar in a direct carbon fuel cell. Journal of Power Sources, 270, 312–317.
  • Yuan, G.-h., Jiang, Z.-h., Aramata, A., and Gao, Y.-z. (2005). Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide. Carbon, 43, 2913–2917.
  • Yuan, H., Deng, L., Qi, Y., Kobayashi, N., and Tang, J. (2014). Nonactivated and activated biochar derived from bananas as alternative cathode catalyst in microbial fuel cells. The Scientific World Journal, 2014, 8. doi:10.1155/2014/832850.
  • Yuan, Y., Yuan, T., Wang, D., Tang, J., and Zhou, S. (2013). Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Bioresource Technology, 144, 115–120.
  • Zhang, H., Voroney, R., and Price, G. (2017a). Effects of temperature and activation on biochar chemical properties and their impact on ammonium, nitrate, and phosphate sorption. Journal of Environmental Quality, 46, 889–896.
  • Zhang, L., Jiang, J., Holm, N., and Chen, F. (2014a). Mini-chunk biochar supercapacitors. Journal of Applied Electrochemistry, 44, 1145–1151.
  • Zhang, M.-M., Liu, Y.-G., Li, T.-T., Xu, W.-H., Zheng, B.-H., Tan, X.-F., Wang, H., Guo, Y.-M., Guo, F.-Y., and Wang, S.-F. (2015). Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr (vi) from aqueous solution. RSC Advances, 5, 46955–46964.
  • Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M. (2012a). Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of The Total Environment, 435, 567–572.
  • Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M. (2012b). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32.
  • Zhang, M., Gao, B., Yao, Y., Xue, Y. W., and Inyang, M. (2012c). Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment, 435, 567–572.
  • Zhang, M., and Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, 286–292.
  • Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., and Inyang, M. (2013a). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, 457–462.
  • Zhang, M., Gao, B., Yao, Y., and Inyang, M. (2013b). Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere, 92, 1042–1047.
  • Zhang, W., Niu, J., Morales, V. L., Chen, X., Hay, A. G., Lehmann, J., and Steenhuis, T. S. (2010). Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size. Ecohydrology, 3, 497–508.
  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., and Huang, H. (2013c). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483.
  • Zhang, X., Pant, D., Zhang, F., Liu, J., He, W., and Logan, B. E. (2014b). Long-term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells. ChemElectroChem, 1, 1859–1866.
  • Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., and Chen, H. (2014c). Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chemical Engineering Journal, 257, 20–27.
  • Zhang, X., Gao, B., Creamer, A. E., Cao, C., and Li, Y. (2017b). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, 102–123.
  • Zhang, X. N., Mao, G. Y., Jiao, Y. B., Shang, Y., and Han, R. P. (2014d). Adsorption of anionic dye on magnesium hydroxide-coated pyrolytic bio-char and reuse by microwave irradiation. International Journal of Environmental Science and Technology, 11, 1439–1448.
  • Zhang, X. Y., Gao, B., Zheng, Y. L., Hu, X., Creamer, A. E., Annable, M. D., and Li, Y. C. (2017c). Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresource Technology, 245, 606–614.
  • Zhang, Y., Zhang, F., Li, G.-D., and Chen, J.-S. (2007). Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries. Materials Letters, 61, 5209–5212.
  • Zhao, X., Song, Z., Liu, H., Li, Z., Li, L., and Ma, C. (2010). Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production. Journal of Analytical and Applied Pyrolysis, 89, 87–94.
  • Zhao, Y.-Q., Lu, M., Tao, P.-Y., Zhang, Y.-J., Gong, X.-T., Yang, Z., Zhang, G.-Q., and Li, H.-L. (2016). Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 307, 391–400.
  • Zheng, W., Guo, M., Chow, T., Bennett, D. N., and Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 181, 121–126.
  • Zhou, Y., Gao, B., Zimmerman, A. R., Fang, J., Sun, Y., and Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231, 512–518.
  • Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., and Cao, X. (2014a). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology, 152, 538–542.
  • Zhou, Y. M., Gao, B., Zimmerman, A. R., and Cao, X. D. (2014b). Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite. Chemosphere, 117, 801–805.
  • Zhu, B., Fan, T., and Zhang, D. (2008). Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. Journal of Hazardous Materials, 153, 300–308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.