813
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Bioaccumulation, trophodynamics and ecotoxicity of antimony in environmental freshwater food webs

, , &
Pages 2208-2258 | Published online: 09 Jan 2018

References

  • Adams, W.J., Blust, R., Borgmann, U., Brix, K. V., DeForest, D.K., Green, A.S., Meyer, J.S., McGeer, J.C., Paquin, P.R., Rainbow, P.S., and Wood, C.M. (2011). Utility of tissue residues for predicting effects of metals on aquatic organisms. Integrated Environmental Assessment and Management 7, 75–98. doi:10.1002/ieam.108.
  • Ahmad, M., Lee, S.S., Lim, J.E., Lee, S.-E., Cho, J.S., Moon, D.H., Hashimoto, Y., and Ok, Y.S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95, 433–441. doi:10.1016/j.chemosphere.2013.09.077.
  • Ahmed, M.K., Habibullah-Al-Mamun, M., Hossain, M.A., Arif, M., Parvin, E., Akter, M.S., Khan, M.S., and Islam, M.M. (2011). Assessing the genotoxic potentials of arsenic in tilapia (Oreochromis mossambicus) using alkaline comet assay and micronucleus test. Chemosphere 84, 143–149. doi:10.1016/j.chemosphere.2011.02.025.
  • Alexander, D.E. (1999). Bioaccumulation, bioconcentration, biomagnification. In Environmental Geology (pp. 43–44). Dordrecht, Netherlands: Springer.
  • Alford, R. (1999). Chapter 10 Ecology: Resource use, competition, and predation. In McDiarmid, R.W., Altig, R (Eds.), Tadpoles: The biology of anuran larvae (pp. 240–278). Chicago, IL: University of Chicago Press.
  • Altig, R., Whiles, M.R., and Taylor, C.L. (2007). What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology 52, 386–395. doi:10.1111/j.1365-2427.2006.01694.x.
  • Ames, B.N., McCann, J., and Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects 31, 347–363. doi:10.1016/0165-1161(75)90046-1.
  • An, Y.-J., and Kim, M. (2009). Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere 74, 654–659. doi:10.1016/j.chemosphere.2008.10.023.
  • Ancion, P.-Y., Lear, G., Dopheide, A., and Lewis, G.D. (2013). Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environmental Pollution 173, 117–124. doi:10.1016/j.envpol.2012.10.012.
  • Andreae, M.O., and Froelich, P.N. (1984). Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea. Tellus 36B, 101–117. doi:10.1111/j.1600-0889.1984.tb00232.x.
  • Andrewes, P., Cullen, W.R., Polishchuk, E., and Reimer, K.J. (2001). Antimony biomethylation by the wood rotting fungus Phaeolus schweinitzii. Applied Organometallic Chemistry 15, 473–480. doi:10.1002/aoc.131.
  • ANZECC/ARMCANZ. (2000). Australian and New Zealand environment and conservation council and agriculture and resource management council of Australia and New Zealand. National water quality management strategy, paper 4—Australian and New Zealand guidelines for fresh and marine water quality. ANZECC/ARMCANZ, Canberra, Australia. http://www.environment.gov.au/water/publications/quality/nwqmsguidelines-4-vol1.html, http://www.environment.gov.au/water/publications/quality/nwqms-guidelines-4-vol2.html, and http://www.environment.gov.au/water/publications/quality/nwqmsguidelines-4-vol3.html (accessed 20.05.15).
  • Appelgate, V.C., Howell, J.H., Hall, A.E., and Smith, M.A., 1957. Toxicity of 4,346 chemicals to larval lampreys and fishes. Special Scientific Report- Fisheries, U.S. Fish and Wildlife Service. 157. http://spo.nmfs.noaa.gov/SSRF/SSRF207.pdf (assessed 12.03.14).
  • Arini, A., Baudrimont, M., Feurtet-Mazel, A., Coynel, A., Blanc, G., Coste, M., and Delmas, F. (2011). Comparison of periphytic biofilm and filter-feeding bivalve metal bioaccumulation (Cd and Zn) to monitor hydrosystem restoration after industrial remediation: a year of biomonitoring. Journal of Environmental Monitoring 13, 3386–3398. doi:10.1039/c1em10581g.
  • Arzamastsev, E.V. (1964). Experimental substantiation of the permissible concentrations of tri- and pentavalent antimony in water bodies. Gigiena I Sanitariia 29, 16–21 (translated).
  • Asakura, K., Satoh, H., Chiba, M., Okamoto, M., Serizawa, K., Nakano, M., and Omae, K. (2009). Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. Journal of Occupational Health 51, 498–512. doi:10.1539/joh.L9080.
  • Ashley, P.M., Graham, B.P., Tighe, M.K., and Wolfenden, B.J. (2007). Antimony and arsenic dispersion in the Macleay River catchment, New South Wales: a study of the environmental geochemical consequences. Australian Journal of Earth Sciences 54, 83–103. doi:10.1080/08120090600981467.
  • Azizur Rahman, M., Hasegawa, H., and Peter Lim, R. (2012). Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environmental Research 116, 118–135. doi:10.1016/j.envres.2012.03.014.
  • Barbante, C., Schwikowski, M., Döring, T., Gäggeler, H.W., Schotterer, U., van de Velde, K., Ferrari, C., Cozzi, G., Turetta, A., Rosman, K., Bolshov, M., Capodaglio, G., Cescon, P., and Boutron, C. (2004). Historical record of European emissions of heavy metals to the atmosphere since the 1650s from alpine snow/ice cores drilled near Monte Rosa. Environmental Science & Technology 38, 4085–4090. doi:10.1021/es049759r.
  • Barnes, M.A., and Turner, C.R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17, 1–17. doi:10.1007/s10592-015-0775-4.
  • Bayley, M. (2002). Basic behaviour: The use of animal locomotion in behavioural ecotoxicology. In Dell'Omo, G. (Ed.). Behavioural Ecotoxicology (pp. 211–230): Wiley.
  • Belzile, N., Chen, Y.-W., and Filella, M. (2011). Human exposure to antimony: I. Sources and intake. Critical Reviews in Environmental Science and Technology 41, 1309–1373. doi:10.1080/10643381003608227.
  • Belzile, N., Chen, Y.-W., and Wang, Z. (2001). Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chemical Geology 174, 379–387. doi:10.1016/S0009-2541(00)00287-4.
  • Bervoets, L., Knapen, D., De Jonge, M., Van Campenhout, K., and Blust, R. (2013). Differential hepatic metal and metallothionein levels in three feral fish species along a metal pollution gradient. PLoS ONE 8, e60805. doi:10.1371/journal.pone.0060805.
  • Besser, J.M., Brumbaugh, W.G., May, T.W., Church, S.E., and Kimball, B.A. (2001). Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the Upper Animas River Watershed, Colorado. Archives Environmental Contamination and Toxicology 40, 48–59. doi:10.1007/s002440010147.
  • Beyersmann, D., and Hartwig, A. (2008). Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology 82, 493–512. doi:10.1007/s00204-008-0313-y.
  • Bitton, G., and Koopman, B. (1992). Bacterial and enzymatic bioassays for toxicity testing in the environment. In: Ware, G.W. (Ed.), Reviews of environmental contamination and toxicology: Continuation of residue reviews (pp. 1–22). New York, NY: Springer.
  • Bolognesi, C. (2003). Genotoxicity of pesticides: a review of human biomonitoring studies. Mutation Research/Reviews in Mutation Research 543, 251–272. doi:10.1016/S1383-5742(03)00015-2.
  • Bowen, H.J.M. (1979). Environmental chemistry of the elements. Academic Press: London.
  • Buschmann, J., and Sigg, L. (2004). Antimony(III) binding to humic substances: influence of pH and type of humic acid. Environmental Science & Technology 38, 4535–4541. doi:10.1021/es049901o.
  • Campbell, L.M., Norstrom, R.J., Hobson, K.A., Muir, D.C.G., Backus, S., and Fisk, A.T. (2005). Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Science of The Total Environment 351–352, 247–263. doi:10.1016/j.scitotenv.2005.02.043.
  • Cardwell, R.D., DeForest, D.K., Brix, K.V., and Adams, W.J. (2013). Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems? In Whitacre, D.M. (Ed.). Reviews of environmental contamination and toxicology (vol. 226, pp. 101–122). New York, NY: Springer.
  • Casas, J.M., Crisóstomo, G., and Cifuentes, L. (2004). Antimony solubility and speciation in aqueous sulphuric acid solutions at 298 K. The Canadian Journal of Chemical Engineering 82, 175–183. doi:10.1002/cjce.5450820122.
  • Cavallo, D., Iavicoli, I., Setini, A., Marinaccio, A., Perniconi, B., Carelli, G., and Iavicoli, S. (2002). Genotoxic risk and oxidative DNA damage in workers exposed to antimony trioxide. Environmental Molecular and Mutagenesis 40, 184–189. doi:10.1002/em.10102.
  • CEC. (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Council of the European Communities (CEC). Available at http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri = CELEX:31998L0083&from = EN. Updated 5 December 1998 (accessed 22.11.2017).
  • Ceriotti, G., and Amarasiriwardena, D. (2009). A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway. Microchemical Journal 91, 85–93. doi:10.1016/j.microc.2008.08.010.
  • Chará-Serna, A.M., Chará, J.D., Zúñiga, M.d.C., Pearson, R.G., and Boyero, L. (2012). Diets of leaf litter-associated invertebrates in three tropical streams. Annales de Limnologie – International Journal of Limnology 48, 139–144. doi:10.1051/limn/2012013.
  • Chen, C.Y., Stemberger, R.S., Klaue, B., Blum, J.D., Pickhardt, P.C., and Folt, C.L. (2000). Accumulation of heavy metals in food web components across a gradient of lakes. Limnology and Oceanography 45, 1525–1536. doi:10.4319/lo.2000.45.7.1525.
  • Chen, L.H., and Yang, J.L. (2007). Acute toxicity of antimony chloride and its effects on oxygen consumption of common carp (Cyprinus carpio). Bulletin of Environmental Contamination and Toxicology 78, 459–462. doi:10.1007/s00128-007-9205-8.
  • Cheshire, K., Boyero, L., and Pearson, R. (2005). Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50, 748–769. doi:10.1111/j.1365-2427.2005.01355.x.
  • Choe, S.-Y., Kim, S.-J., Kim, H.-G., Lee, J.H., Choi, Y., Lee, H., and Kim, Y. (2003). Evaluation of estrogenicity of major heavy metals. Science of The Total Environment 312, 15–21. doi:10.1016/S0048-9697(03)00190-6.
  • Clayden, M.G., Kidd, K.A., Wyn, B., Kirk, J.L., Muir, D.C.G., and O'Driscoll, N.J. (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science & Technology 47, 12047–12053. doi:10.1021/es4022975.
  • Connon, R.E., Geist, J., Pfeiff, J., Loguinov, A.V., D'Abronzo, L.S., Wintz, H., Vulpe, C.D., and Werner, I. (2009). Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae). BMC Genomics 10, 608. doi:10.1186/1471-2164-10-608.
  • Cornelis, G., Gerven, T.V., and Vandecasteele, C. (2012). Antimony leaching from MSWI bottom ash: Modelling of the effect of pH and carbonation. Waste Management (Oxford) 32, 278–286. doi:10.1016/j.wasman.2011.09.018.
  • Cooper, R.G., and Harrison, A.P. (2009). The exposure to and health effects of antimony. Indian Journal of Occupational and Environmental Medicine 13, 3–10. doi:10.4103/0019-5278.50716.
  • Cota, G.F., de Sousa, M.R., Fereguetti, T.O., and Rabello, A. (2013). Efficacy of anti-leishmania therapy in visceral leishmaniasis among HIV infected patients: a systematic review with indirect comparison. PLOS Neglected Tropical Diseases 7, e2195. doi:10.1371/journal.pntd.0002195.
  • Couillard, Y., Grapentine, L.C., Borgmann, U., Doyle, P., and Masson, S. (2008). The amphipod Hyalella azteca as a biomonitor in field deployment studies for metal mining. Environmental Pollution 156, 1314–1324. doi:10.1016/j.envpol.2008.03.001.
  • Craig, P.J., Jenkins, R.O., Dewick, R., and Miller, D.P. (1999). Trimethylantimony generation by Scopulariopsis brevicaulis during aerobic growth. Science of The Total Environment 229, 83–88. doi:10.1016/S0048-9697(99)00063-7.
  • Craw, D., Wilson, N., and Ashley, P.M. (2004). Geochemical controls on the environmental mobility of Sb and As at mesothermal antimony and gold deposits. Applied Earth Science 113, 3–10. doi:10.1179/037174504225004538.
  • CRMEUR. (2010). Annex V to Report of the Ad-hoc Working Group on defining critical raw materials. Critical Raw Materials for the European Union Report (CRMEUR). http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/annex-v_en.pdf (accessed 12.09.14).
  • Culioli, J.L., Fouquoire, A., Calendini, S., Mori, C., and Orsini, A. (2009). Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study. Aquatic Toxicology 94, 286–293. doi:10.1016/j.aquatox.2009.07.016.
  • Cutter, G.A. (1991). Dissolved arsenic and antimony in the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers 38, S825–S843. doi:10.1016/S0198-0149(10)80011-1.
  • Cutter, G.A., Cutter, L.S., Featherstone, A.M., and Lohrenz, S.E. (2001). Antimony and arsenic biogeochemistry in the western Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 48, 2895–2915. doi:10.1016/S0967-0645(01)00023-6.
  • David, M., and Kartheek, R.M. (2015). Malathion acute toxicity in tadpoles of Duttaphrynus melanostictus, morphological and behavioural study. The Journal of Basic & Applied Zoology 72, 1–7. doi:10.1016/j.jobaz.2015.01.004.
  • De Boeck, M., Kirsch-Volders, M., and Lison, D. (2003). Cobalt and antimony: genotoxicity and carcinogenicity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 533, 135–152. doi:10.1016/j.mrfmmm.2003.07.012.
  • de Miguel, E., Llamas, J.F., Chacón, E., Berg, T., Larssen, S., Röyset, O., and Vadset, M. (1997). Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmospheric Environment 31, 2733–2740. doi:10.1016/S1352-2310(97)00101-5.
  • De Wolff, F.A. (1995). Antimony and health. BMJ 310, 1216–1217. doi:10.1136/bmj.310.6989.1216.
  • DeForest, D.K., Brix, K.V., and Adams, W.J. (2007). Assessing metal accumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquatic Toxicology 84, 236–246. doi:10.1016/j.aquatox.2007.02.022.
  • Demichelis, S.O., de la Torre, F.R., Ferrari, L., García, M.E., and Salibián, A. (2001). Tadpoles assay: Its application to a water toxicity assessment of a polluted urban river. Environmental Monitoring and Assessment 68, 63–73. doi:10.1023/A:1010786906823.
  • Dietl, C., Reifenhäuser, W., and Peichl, L. (1997). Association of antimony with traffic — occurrence in airborne dust, deposition and accumulation in standardized grass cultures. Science of The Total Environment 205, 235–244. doi:10.1016/S0048-9697(97)00204-0.
  • Dodd, C.K. (2010). Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, UK.
  • Donlan, R.M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases 8, 881–890. doi:10.3201/eid0809.020063.
  • Dousova, B., Buzek, F., Herzogova, L., Machovic, V., and Lhotka, M. (2015). Effect of organic matter on arsenic(V) and antimony(V) adsorption in soils. European Journal of Soil Science 66, 74–82. doi:10.1111/ejss.12206.
  • Dovick, M.A., Kulp, T.R., Arkle, R.S., and Pilliod, D.S. (2016). Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage. Environmental Chemistry 13, 149–159. doi:10.1071/EN15046.
  • DTU. (2001). Waste related emission scenario_s for risk assessment of chemicals. A background document for the revision of the EU Technical Guidance Document on risk assessment of new and existing substances. In EURAR. (2008). Diantimony trioxide. European risk assessment report. Swedish Chemicals Agency, Sweden, CAS No: 1309-64-4, EINECS No: 215-175-0. Luxembourg: Office for Official Publications of the European Communities. Sweden. http://esis.jrc.ec.europa.eu/doc/risk_assessment/REPORT/datreport415.pdf
  • Dupont, D., Arnout, S., Jones, P.T., and Binnemans, K. (2016). Antimony recovery from end-of-life products and industrial process residues: a critical review. Journal of Sustainable Metallurgy 2, 79–103. doi:10.1007/s40831-016-0043-y.
  • Duran, M., Kara, Y., Akyildiz, G.K., and Ozdemir, A. (2007). Antimony and heavy metals accumulation in some macroinvertebrates in the Yesilirmak River (N Turkey) near the Sb-mining area. Bulletin of Environmental Contamination and Toxicology 78, 395–399. doi:10.1007/s00128-007-9183-x.
  • Eisler, R. (1988). Arsenic hazards to fish, wildlife and invertebrates: a synoptic review. In Eisler, R. (Ed.), Biological reports: contaminant hazard reviews (p. 92). Laurel, MD: U.S. Fish and Wildlife Service.
  • El Shanawany, S., Foda, N., Hashad, D.I., Salama, N., and Sobh, Z. (2017). The potential DNA toxic changes among workers exposed to antimony trioxide. Environmental Science and Pollution Research 24, 12455–12461. doi:10.1007/s11356-017-8805-z.
  • Elleouet, C., Quentel, F., Madec, C.-L., and Filella, M. (2005). The effect of the presence of trace metals on the oxidation of Sb(III) by hydrogen peroxide in aqueous solution. Journal of Environmental Monitoring 7, 1220–1225. doi:10.1039/b509802e.
  • Elliott, B.M., Mackay, J.M., Clay, P., and Ashby, J. (1998). An assessment of the genetic toxicology of antimony trioxide. Mutation Research 415, 109–117. doi:10.1016/S1383-5718(98)00065-5.
  • Environment Canada. (2009). Chemical substances in Batch 9 of the Challenge under the Canadian Environmental Protection Act, 1999. Available at https://www.canada.ca/en/health-canada/services/chemical-substances/challenge/batch-9.html (accessed 20.11.2014).
  • EURAR. (2008). Diantimony trioxide. european risk assessment report. swedish chemicals agency, Sweden, CAS No: 1309-64-4, EINECS No: 215-175-0. Luxembourg: Office for Official Publications of the European Communities.Sweden. http://esis.jrc.ec.europa.eu/doc/risk_assessment/REPORT/datreport415.pdf (accessed 10.04.14).
  • Faburé, J., Dufour, M., Autret, A., Uher, E., and Fechner, L.C. (2015). Impact of an urban multi-metal contamination gradient: metal bioaccumulation and tolerance of river biofilms collected in different seasons. Aquatic Toxicology 159, 276–289. doi:10.1016/j.aquatox.2014.12.014.
  • Fang, Z.Q., Cheung, Y.H., and Wong, M.H. (2003). Heavy metals in oysters, mussels, and clams collected from coastal sites along the Pearl River Delta, South China. Journal of Environmental Sciences 15, 9–24.
  • Farag, A.M., Nimick, D.A., Kimball, B.A., Church, S.E., Harper, D.D., and Brumbaugh, W.G. (2007). Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River Watershed, Montana, and the role of colloids in metal uptake. Archives of Environmental Contamination and Toxicology 52, 397–409. doi:10.1007/s00244-005-0021-z.
  • Farag, A.M., Woodward, D.F., Goldstein, J.N., Brumbaugh, W., and Meyer, J.S. (1998). Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene River Basin, Idaho. Archives of Environmental Contamination and Toxicology 34, 119–127. doi:10.1007/s002449900295.
  • Fawcett, S.E., Jamieson, H.E., Nordstrom, D.K., and McCleskey, R.B. (2015). Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada. Applied Geochemistry 62, 3–17. doi:10.1016/j.apgeochem.2014.12.012.
  • Filella, M. (2010). Alkyl derivatives of antimony in the environment. In Sigel, A., Sigel, H., Sigel, R. (Eds.), Organometallics in environment and toxicology (pp. 267–301). Royal Society of Chemistry.
  • Filella, M., Belzile, N., and Chen, Y.-W. (2002a). Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews 57, 125–176. doi:10.1016/S0012-8252(01)00070-8.
  • Filella, M., Belzile, N., and Chen, Y.-W. (2002b). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth-Science Reviews 59, 265–285. doi:10.1016/S0012-8252(02)00089-2.
  • Filella, M., Belzile, N., and Chen, Y.-W. (2011). Human exposure to antimony. II. Contents in some human tissues often used in biomonitoring (hair, nails, teeth). Critical Reviews in Environmental Science and Technology 42, 1058–1115. doi:10.1080/10643389.2011.556540.
  • Filella, M., Belzile, N., and Lett, M.-C. (2007). Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth-Science Reviews 80, 195–217. doi:10.1016/j.earscirev.2006.09.003.
  • Filella, M., and May, P.M. (2003). Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochimica et Cosmochimica Acta 67, 4013–4031. doi:10.1016/S0016-7037(03)00095-4.
  • Filella, M., and May, P.M. (2005). Critical appraisal of available thermodynamic data for the complexation of antimony (III) and antimony (V) by low molecular mass organic ligands. Journal of Environmental Monitoring 7, 1226–1237. doi:10.1039/b511453e.
  • Filella, M., and Williams, P.A. (2012). Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds. Chemie der Erde – Geochemistry 72(Supplement 4), 49–65. doi:10.1016/j.chemer.2012.01.006.
  • Filella, M., Williams, P.A., and Belzile, N. (2009). Antimony in the environment: knowns and unknowns. Environmental Chemistry 6, 95. doi:10.1071/EN09007.
  • Fisher, N.S., Teyssié, J.-L., Fowler, S.W., and Wang, W.-X. (1996). Accumulation and retention of metals in mussels from food and water:  a comparison under field and laboratory conditions. Environmental Science & Technology 30, 3232–3242. doi:10.1021/es960009u.
  • Foata, J., Quilichini, Y., Torres, J., Pereira, E., Spella, M.M., Mattei, J., and Marchand, B. (2009). Comparison of arsenic and antimony contents in tissues and organs of brown trout caught from the river presa polluted by ancient mining practices and from the River Bravona in Corsica (France): a survey study. Archives of Environmental Contamination and Toxicology 57, 581–589. doi:10.1007/s00244-009-9300-4.
  • Fowler, B.A., and Goering, P.L. (1991). Antimony. In Merian, E. (Ed.), Metals and their compounds in the environment: occurrence, analysis, and biological relevance (pp. 743–750). Weinheim, VCH.
  • Frézard, F., Demicheli, C., Kato Kelly, C., Reis Priscila, G., and Lizarazo-Jaimes Edgar, H. (2013). Chemistry of antimony-based drugs in biological systems and studies of their mechanism of action. Reviews in Inorganic Chemistry, 33, 1–12. doi:10.1515/revic-2012-0006.
  • Fu, Z., Wu, F., Amarasiriwardena, D., Mo, C., Liu, B., Zhu, J., Deng, Q., and Liao, H. (2010). Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Science of The Total Environment 408, 3403–3410. doi:10.1016/j.scitotenv.2010.04.031.
  • Fu, Z., Wu, F., Mo, C., Deng, Q., Meng, W., and Giesy, J.P. (2016). Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Science of The Total Environment 539, 97–104. doi:10.1016/j.scitotenv.2015.08.146.
  • Fu, Z., Wu, F., Mo, C., Liu, B., Zhu, J., Deng, Q., Liao, H., and Zhang, Y. (2011). Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China. Microchemical Journal 97, 12–19. doi:10.1016/j.microc.2010.06.004.
  • Gallignani, M., Ayala, C., Brunetto, M.R., Burguera, M., and Burguera, J.L. (2003). Flow analysis–hydride generation–Fourier transform infrared spectrometric determination of antimony in pharmaceuticals. Talanta 59, 923–934. doi:10.1016/S0039-9140(02)00648-3.
  • Galloway, T.S. (2006). Biomarkers in environmental and human health risk assessment. Marine Pollution Bulletin 53, 606–613. doi:10.1016/j.marpolbul.2006.08.013.
  • Garcia, N. (2015). The Asiatic Clam (Corbicula fluminea) as a bio-monitor for determining the distribution of antimony, arsenic and thallium in the water column and sediments of Manadas Creek, Laredo, Texas. M.Sc thesis, Texas A&M International University, p. 59.
  • Gebel, T. (1997). Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-Biological Interactions 107, 131–144. doi:10.1016/S0009-2797(97)00087-2.
  • Gebel, T., Birkenkamp, P., Luthin, S., and Dunkelberg, H. (1998). Arsenic(III), but not antimony(III), induces DNA-protein crosslinks. Anticancer Research 18, 4253–4257.
  • Gebel, T., Christensen, S., and Dunkelberg, H. (1997). Comparative and environmental genotoxicity of antimony and arsenic. Anticancer Research 17, 2603–2607.
  • Grosskopf, C., Schwerdtle, T., Mullenders, L.H.F., and Hartwig, A. (2010). Antimony impairs nucleotide excision repair: XPA and XPE as potential molecular targets. Chemical Research in Toxicology 23, 1175–1183. doi:10.1021/tx100106x.
  • Grothe, D.R., and Johnson, D.E. (1996). Bacterial interference in whole-effluent toxicity tests. Environmental Toxicology and Chemistry 15, 761–764.
  • Haldar, A.K., Sen, P., and Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: current status and future directions. Molecular Biology International 2011, 23. doi:10.4061/2011/571242.
  • Hammel, W., Steubing, L., and Debus, R. (1998). Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test. Ecotoxicology and Environmental Safety 40, 173–176. doi:10.1006/eesa.1998.1659.
  • Hansen, C., Hansen, E.W., Hansen, H.R., Gammelgaard, B., and Stürup, S. (2011). Reduction of Sb(V) in a human macrophage cell line measured by HPLC-ICP-MS. Biological Trace Element Research 144, 234–243. doi:10.1007/s12011-011-9079-9.
  • Hares, R.J., and Ward, N.I. (1999). Comparison of the heavy metal content of motorway stormwater following discharge into wet biofiltration and dry detention ponds along the London Orbital (M25) motorway. Science of The Total Environment 235, 169–178. doi:10.1016/S0048-9697(99)00210-7.
  • He, M. (2007). Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environmental Geochemistry and Health 29, 209–219. doi:10.1007/s10653-006-9066-9.
  • He, M., Wang, X., Wu, F., and Fu, Z. (2012). Antimony pollution in China. Science of The Total Environment 421–422, 41–50. doi:10.1016/j.scitotenv.2011.06.009.
  • Heier, L.S., Lien, I.B., Strømseng, A.E., Ljønes, M., Rosseland, B.O., Tollefsen, K.-E., and Salbu, B. (2009). Speciation of lead, copper, zinc and antimony in water draining a shooting range—Time dependant metal accumulation and biomarker responses in brown trout (Salmo trutta L.). Science of The Total Environment 407, 4047–4055. doi:10.1016/j.scitotenv.2009.03.002.
  • Heier, L.S., Mariussen, E., Teien, H.C., Kleiven, M., Rosseland, B.O., Song, Y., K.E., T., and Salbu, B. (2011). Uptake and effect of antimony in Atlantic Salmon (Salmo salar). In Proceedings of the 2nd International Workshop on Antimony in the Environment. Jena, Germany, August 21–24, 2011.
  • Hellou, J. (2011). Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environmental Science and Pollution Research 18, 1–11. doi:10.1007/s11356-010-0367-2.
  • Henckens, M.L.C.M., Driessen, P.P.J., and Worrell, E. (2016). How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use. Resources, Conservation and Recycling 108, 54–62. doi:10.1016/j.resconrec.2016.01.012.
  • Hepp, L.U., Pratas, J.A.M.S., and Graça, M.A.S. (2017). Arsenic in stream waters is bioaccumulated but neither biomagnified through food webs nor biodispersed to land. Ecotoxicology and Environmental Safety 139, 132–138. doi:10.1016/j.ecoenv.2017.01.035.
  • Herath, I., Vithanage, M., and Bundschuh, J. (2017). Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environmetal Pollution 223, 545–559. doi:10.1016/j.envpol.2017.01.057.
  • Hill, W.R., and Larsen, I.L. (2005). Growth dilution of metals in microalgal biofilms. Environmental Science & Technology 39, 1513–1518. doi:10.1021/es049587y.
  • Hjortenkrans, D.S.T., Bergbäck, B.G., and Häggerud, A.V. (2007). Metal emissions from brake linings and tires: Case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science & Technology 41, 5224–5230. doi:10.1021/es070198o.
  • Hockmann, K., Lenz, M., Tandy, S., Nachtegaal, M., Janousch, M., and Schulin, R. (2014a). Release of antimony from contaminated soil induced by redox changes. Journal of Hazardous Materials 275, 215–221. doi:10.1016/j.jhazmat.2014.04.065.
  • Hockmann, K., Tandy, S., Lenz, M., and Schulin, R. (2014b). Antimony leaching from contaminated soil under manganese- and iron-reducing conditions: column experiments. Environmental Chemistry 11, 624–631. doi:10.1071/EN14123.
  • Hockmann, K., and Schulin, R., 2013. Leaching of antimony from contaminated soils. In Selim, H.M. (Ed.), Competitive sorption and transport of heavy metals in soils (pp. 119–145). Boca Raton: CRC Press. Taylor & Francis Group.
  • Hook, S.E., Gallagher, E.P., and Batley, G.E. (2014). The role of biomarkers in the assessment of aquatic ecosystem health. Integrated Environmental Assessment and Management 10, 327–341. doi:10.1002/ieam.1530.
  • Hu, X., He, M., and Li, S. (2015). Antimony leaching release from brake pads: effect of pH, temperature and organic acids. Journal of Environmental Sciences 29, 11–17. doi:10.1016/j.jes.2014.08.020.
  • IARC. (1989). Antimony trioxide and antimony trisulfide. IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer (IARC), vol. 47, pp 291–305 (accessed 04.09.14).
  • IARC. (2012). Agents classified by the IARC monographs, Vol. 1–112. International Agency for Research on Cancer(IARC). https://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf (accessed 04.09.14).
  • Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K., and Furuta, N. (2008). Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environmental Science & Technology 42, 2937–2942. doi:10.1021/es702137g.
  • Ikemoto, T., Tu, N., Okuda, N., Iwata, A., Omori, K., Tanabe, S., Tuyen, B., and Takeuchi, I. (2008). Biomagnification of trace elements in the aquatic food web in the mekong delta, south vietnam using stable carbon and nitrogen isotope analysis. Archives of Environmental Contamination and Toxicology 54, 504–515. doi:10.1007/s00244-007-9058-5.
  • Jenkins, R., Craig, P., Goessler, W., and Irgolic, K. (1998a). Antimony leaching from cot mattresses and sudden infant death syndrome (SIDS). Human & Experimental Toxicology 17, 138–139. doi:10.1177/096032719801700302.
  • Jenkins, R., Craig, P., Goessler, W., and Irgolic, K. (1998b). Biovolatilization of antimony and sudden infant death syndrome (SIDS). Human & Experimental Toxicology 17, 231–238. doi:10.1177/096032719801700406.
  • Johnson, L.M. (1991). Growth and development of larval northern cricket frogs (Acris crepitans) in relation to phytoplankton abundance. Freshwater Biology 25, 51–59. doi:10.1111/j.1365-2427.1991.tb00472.x.
  • Kanematsu, K., and Kada, T. (1978). Mutagenicity of metal compounds. Mutation Research/Environmental Mutagenesis and Related Subjects 53, 207–208. doi:10.1016/0165-1161(78)90253-4.
  • Kanematsu, N., Hara, M., and Kada, T. (1980). Rec assay and mutagenicity studies on metal compounds. Mutation Research/Genetic Toxicology 77, 109–116. doi:10.1016/0165-1218(80)90127-5.
  • Kappen, P., Ferrando-Miguel, G., Reichman, S.M., Innes, L., Welter, E., and Pigram, P.J. (2017). Antimony leaching and chemical species analyses in an industrial solid waste: Surface and bulk speciation using ToF-SIMS and XANES. J. Hazardous Materials 329, 131–140. doi:10.1016/j.jhazmat.2017.01.022.
  • Kato, K.C., Morais-Teixeira, E., Reis, P.G., Silva-Barcellos, N.M., Salaün, P., Campos, P.P., Dias Corrêa-Junior, J., Rabello, A., Demicheli, C., and Frézard, F. (2014). Hepatotoxicity of pentavalent antimonial drug: Possible role of residual Sb(III) and protective effect of ascorbic acid. Antimicrobial Agents and Chemotherapy 58, 481–488. doi:10.1128/AAC.01499-13.
  • Kaviraj, A., Unlu, E., Gupta, A., and El Nemr, A. (2014). Biomarkers of environmental pollutants. BioMed Research International 2014, 2. doi:10.1155/2014/806598.
  • Kawamoto, Y., and Morisawa, S. (2003). The distribution and speciation of antimony in river water, sediment and biota in Yodo River, Japan. Environmental Technology 24, 1349–1356. doi:10.1080/09593330309385679.
  • Kidd, K., Clayden, M., and Jardine, T. (2011). Bioaccumulation and biomagnification of mercury through food webs, in Environmental chemistry and toxicology of mercury (eds G. Liu, Y. Cai and N. O'Driscoll). John Wiley & Sons, Inc., Hoboken, NJ, USA. doi:10.1002/9781118146644.ch14.
  • Kirkland, D., Whitwell, J., Deyo, J., and Serex, T. (2007). Failure of antimony trioxide to induce micronuclei or chromosomal aberrations in rat bone-marrow after sub-chronic oral dosing. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 627, 119–128. doi:10.1016/j.mrgentox.2006.10.012.
  • Kong, L., He, M., and Hu, X. (2016). Rapid photooxidation of Sb(III) in the presence of different Fe(III) species. Geochimica et Cosmochimica Acta 180, 214–226. doi:10.1016/j.gca.2016.02.022.
  • Kruchten, S.D., Bacon, K.M., and Lee, B.Y. (2014). The impact of human immunodeficiency virus (HIV) co-infection on the economic burden of cutaneous leishmaniasis (CL) in Brazil and potential value of new CL drug treatments. American Journal of Tropical Medicine and Hygiene 91, 520–527. doi:10.4269/ajtmh.13-0309.
  • Kulp, T.R., Miller, L.G., Braiotta, F., Webb, S.M., Kocar, B.D., Blum, J.S., and Oremland, R.S. (2014). Microbiological reduction of Sb(V) in anoxic freshwater sediments. Environmental Science & Technology 48, 218–226. doi:10.1021/es403312j.
  • Kumari, B., Kumar, V., Sinha, A.K., Ahsan, J., Ghosh, A.K., Wang, H., and DeBoeck, G. (2017). Toxicology of arsenic in fish and aquatic systems. Environmental Chemistry Letters 15, 43–64. doi:10.1007/s10311-016-0588-9.
  • Kuroda, K., Endo, G., Okamoto, A., Yoo, Y.S., and Horiguchi, S. (1991). Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutatation Research 264, 163–170.
  • Lantzsch, H., and Gebel, T. (1997). Genotoxicity of selected metal compounds in the SOS chromotest. Mutation Research 389, 191–197. doi:10.1016/S1383-5718(96)00146-5.
  • Leguay, S., Lavoie, I., Levy, J.L., and Fortin, C. (2016). Using biofilms for monitoring metal contamination in lotic ecosystems: the protective effects of hardness and pH on metal bioaccumulation. Environmental Toxicology and Chemistry 35, 1489–1501. doi:10.1002/etc.3292.
  • Lehr, C.D., Kashyap, D.R., and McDermott, T.R. (2007). New insights into microbial oxidation of antimony and arsenic. Applied and Environmental Microbiology 73, 2386–2389. doi:10.1128/AEM.02789-06.
  • Léonard, A., and Gerber, G.B. (1996). Mutagenicity, carcinogenicity and teratogenicity of antimony compounds. Mutation Research 366, 1–8. doi:10.1016/S0165-1110(96)90003-2.
  • Leuz, A.-K., Mönch, H., and Johnson, C.A. (2006a). Sorption of Sb(III) and Sb(V) to goethite:  Influence on Sb(III) oxidation and mobilization. Environmental Science & Technology 40, 7277–7282. doi:10.1021/es061284b.
  • Leuz, A.-K., Hug, S.J., Wehrli, B., and Johnson, C.A. (2006b). Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation. Environmental Science & Technology 40, 2565–2571. doi:10.1021/es052059h.
  • Leuz, A.-K., and Johnson, A.C. (2005). Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions. Geochimica et Cosmochimica Acta 69, 1165–1172. doi:10.1016/j.gca.2004.08.019.
  • Li, J., Wang, Q., Oremland, R.S., Kulp, T.R., Rensing, C., and Wang, G. (2016). Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways. Applied and Environmental Microbiology 82, 5482–5495. doi:10.1128/AEM.01375-16.
  • Li, J., Wang, Q., Zhang, S., Qin, D., and Wang, G. (2013). Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil. International Biodeterioration & Biodegradation 76, 76–80. doi:10.1016/j.ibiod.2012.06.009.
  • Liu, F., Le, X.C., McKnight-Whitford, A., Xia, Y., Wu, F., Elswick, E., Johnson, C., and Zhu, C. (2010). Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. Environmental Geochemistry and Health 32, 401–413. doi:10.1007/s10653-010-9284-z.
  • López, S., Aguilar, L., Mercado, L., Bravo, M., and Quiroz, W. (2015). Sb(V) reactivity with human blood components: redox effects. PLoS ONE 10, e0114796. doi:10.1371/journal.pone.0114796.
  • Luoma, S.N., and Rainbow, P.S. (2005). Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environmental Science & Technology 39, 1921–1931. doi:10.1021/es048947e.
  • Macgregor, K., MacKinnon, G., Farmer, J.G., and Graham, M.C. (2015). Mobility of antimony, arsenic and lead at a former antimony mine, Glendinning, Scotland. Science of The Total Environment 529, 213–222. doi:10.1016/j.scitotenv.2015.04.039.
  • Maciaszczyk-Dziubinska, E., Wawrzycka, D., and Wysocki, R. (2012). Arsenic and antimony transporters in eukaryotes. International Journal of Molecular Sciences 13, 3527–3548. doi:10.3390/ijms13033527.
  • MacPhee, C., and Ruelle, R. (1969). Lethal effects of 1888 chemicals upon four species of fish from Western North America. University of Idaho [Forest, Wildlife, and Range Experiment Station, Moscow, Idaho]. Bulletin No. 3, pp. 1–17.
  • Mandal, S.K., Ray, R., Chowdhury, C., Majumder, N., and Jana, T.K. (2013). Implication of organic matter on arsenic and antimony sequestration in sediment: Evidence from Sundarban Mangrove Forest, India. Bulletin of Environmental Contamination and Toxicology 90, 451–455. doi:10.1007/s00128-012-0934-y.
  • Maron, D.M., and Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects 113, 173–215. doi:10.1016/0165-1161(83)90010-9.
  • McDiarmid, R.W., and Altig, R. (1999). Tadpoles: the biology of anuran larvae. Chicago, IL, USA: University of Chicago Press.
  • McKenzie, E.R., Money, J.E., Green, P.G., and Young, T.M. (2009). Metals associated with stormwater-relevant brake and tire samples. The Science of the total environment 407, 5855–5860. doi:10.1016/j.scitotenv.2009.07.018.
  • Meng, Y.-L., Liu, Z., and Rosen, B.P. (2004). As(III) and Sb(III) uptake by glpf and efflux by ArsB in Escherichia coli. Journal of Biological Chemistry 279, 18334–18341. doi:10.1074/jbc.M400037200.
  • Mestrot, A., Ji, Y., Tandy, S., and Wilcke, W. (2016). A novel method to determine trimethylantimony concentrations in plant tissue. Environmental Chemistry 13, 919–926. doi:10.1071/EN16018.
  • Meylan, S., Behra, R., and Sigg, L. (2003). Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater. Environmental Science & Technology 37, 5204–5212. doi:10.1021/es034566+.
  • MGC. (2014). Facts on antimony. Midas Gold Project. Midas Gold Corporation, USA.
  • Min, E.Y., Ahn, T.Y., and Kang, J.-C. (2016). Bioaccumulation, alterations of metallothionein, and antioxidant enzymes in the mullet Mugil cephalus exposed to hexavalent chromium. Fisheries and Aquatic Sciences 19, 19. doi:10.1186/s41240-016-0020-1.
  • Moiseenko, T.I. (2015). Impact of geochemical factors of aquatic environment on the metal bioaccumulation in fish. Geochemistry International 53, 213–223. doi:10.1134/S001670291503009X.
  • Mori, C., Orsini, A., and Migon, C. (1999). Impact of arsenic and antimony contamination on benthic invertebrates in a minor Corsican river. Hydrobiologia 392, 73–80. doi:10.1023/A:1003597122752.
  • Morizot, G., Jouffroy, R., Faye, A., Chabert, P., Belhouari, K., Calin, R., Charlier, C., Miailhes, P., Siriez, J.-Y., Mouri, O., Yera, H., Gilquin, J., Tubiana, R., Lanternier, F., Mamzer, M.-F., Legendre, C., Peyramond, D., Caumes, E., Lortholary, O., and Buffet, P. (2016). Antimony to cure visceral leishmaniasis unresponsive to liposomal amphotericin B. PLOS Neglected Tropical Diseases 10, e0004304. doi:10.1371/journal.pntd.0004304.
  • MRCL. (2017). Antimony: 2017 World market review and forecast. Merchant Research and Consulting Limited, UK.
  • Multani, R.S., Feldmann, T., and Demopoulos, G.P. (2016). Antimony in the metallurgical industry: a review of its chemistry and environmental stabilization options. Hydrometallurgy 164, 141–153. doi:10.1016/j.hydromet.2016.06.014.
  • Nakamaru, Y.M., and Altansuvd, J. (2014). Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111, 366–371. doi:10.1016/j.chemosphere.2014.04.024.
  • Nakamaru, Y.M., and Martín Peinado, F.J. (2017). Effect of soil organic matter on antimony bioavailability after the remediation process. Environmental Pollution 228, 425–432. doi:10.1016/j.envpol.2017.05.042.
  • Nam, S.-H., Yang, C.-Y., and An, Y.-J. (2009). Effects of antimony on aquatic organisms (Larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata). Chemosphere 75, 889–893. doi:10.1016/j.chemosphere.2009.01.048.
  • Neely, W.B. (1980). Chemicals in the environment: Distribution, transport, fate, analysis. M. Dekker, New York.
  • NHMRC-NRMMC. (2011). Australian drinking water guidelines 6. national water quality management strategy. national health and medical research council, national resource management ministerial council, commonwealth of Australia, Canberra. Version 3.4 updated October 2017. Available at https://www.nhmrc.gov.au/_files_nhmrc/file/publications/nhmrc_adwg_6_version_3.4_final.pdf (accessed 20.11.17).
  • Nishioka, H. (1975). Mutagenic activities of metal compounds in bacteria. Mutation Research/Environmental Mutagenesis and Related Subjects 31, 185–189. doi:10.1016/0165-1161(75)90088-6.
  • NPI. (2016). Antimony and compounds. National pollutant inventory. department of the environment, Canberra ACT, Australia. http://www.npi.gov.au/npidata/action/load/summary-result/criteria/substance/10/destination/ALL/source-type/ALL/substance-name/Antimony%2B%2526%2Bcompounds/subthreshold-data/Yes/year/2016 (accessed 04.04.17).
  • NPRI. (2015). National pollutant release inventory (Internet Database). In National pollutant release inventory: Tracking pollution in Canada. Gatineau, QC: Environment Canada.
  • Nriagu, J.O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49. doi:10.1038/338047a0.
  • NTP. (1992). NTP Report on the toxicity studies of antimony potassium tartrate in F344/N Rats and B6C3F1 mice (drinking water and intraperitoneal injection studies). National Toxicology Program, Research Triangle, Park, NC 27709, USA, pp. 1–43.
  • NTP. (2010). Micronucleus study for antimony trioxide in rats (CAS No. 1309-64-4). National toxicology program (US). Study No. G10676. Research Triangle Park (NC): National institute of health's national institute of environmental health sciences (NIEHS). http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm?fuseaction = micronucleus.choosestudytype&cas_no = 1309-64-4&endpointlist = MN (accessed 13.04.15).
  • Obiakor, M.O., Okonkwo, J.C., and Ezeonyejiaku, C.D. (2014). Genotoxicity of freshwater ecosystem shows DNA damage in preponderant fish as validated by in vivo micronucleus induction in gill and kidney erythrocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 775–776, 20–30. doi:10.1016/j.mrgentox.2014.09.010.
  • Oda, Y., Nakamura, S.-i., Oki, I., Kato, T., and Shinagawa, H. (1985). Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutation Research/Environmental Mutagenesis and Related Subjects 147, 219–229. doi:10.1016/0165-1161(85)90062-7.
  • Okkenhaug, G., Grasshorn Gebhardt, K.-A., Amstaetter, K., Lassen Bue, H., Herzel, H., Mariussen, E., Rossebø Almås, Å., Cornelissen, G., Breedveld, G.D., Rasmussen, G., and Mulder, J. (2016). Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. Journal of Hazardous Materials 307, 336–343. doi:10.1016/j.jhazmat.2016.01.005.
  • Pacyna, J.M., and Pacyna, E.G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews 9, 269–298. doi:10.1139/a01-012.
  • Paoletti, F., Sirini, P., Seifert, H., and Vehlow, J. (2001). Fate of antimony in municipal solid waste incineration. Chemosphere 42, 533–543. doi:10.1016/S0045-6535(00)00225-3.
  • Penders, E.J.M., and Hoogenboezem, W. (2003). Evaluation of the Ames TA98, Umu and Comet assay for quality monitroing surface water. Association of River Waterworks – RIWA, The Netherland, pp. 1–34.
  • Phillips, M.A., Cánovas, A., Wu, P.-W., Islas-Trejo, A., Medrano, J.F., and Rice, R.H. (2016). Parallel responses of human epidermal keratinocytes to inorganic SbIII and AsIII. Environmental Chemistry 13, 963–970. doi:10.1071/EN16019.
  • Pierart, A., Shahid, M., Séjalon-Delmas, N., and Dumat, C. (2015). Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials 289, 219–234. doi:10.1016/j.jhazmat.2015.02.011.
  • Poste, A.E., Muir, D.C.G., Guildford, S.J., and Hecky, R.E. (2015). Bioaccumulation and biomagnification of mercury in African lakes: The importance of trophic status. Science of The Total Environment 506–507, 126–136. doi:10.1016/j.scitotenv.2014.10.094.
  • Prasad, M.N.V., Sajwan, K.S., and Naidu, R. (2005). Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. CRC Press.
  • Qi, C., Wu, F., Deng, Q., Liu, G., Mo, C., Liu, B., and Zhu, J. (2011). Distribution and accumulation of antimony in plants in the super-large Sb deposit areas, China. Microchemical Journal 97, 44–51. doi:10.1016/j.microc.2010.05.016.
  • Quentel, F., and Filella, M. (2002). Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: stability of the trivalent state. Analytica Chimica Acta 452, 237–244. doi:10.1016/S0003-2670(01)01474-X.
  • Quentel, F., Filella, M., Elleouet, C., and Madec, C.-L. (2004). Kinetic studies on Sb(III) oxidation by hydrogen peroxide in aqueous solution. Environmental Science and Technology 38, 2843–2848. doi:10.1021/es035019r.
  • Quentel, F., Filella, M., Elleouet, C., and Madec, C.-L. (2006). Sb(III) oxidation by iodate in seawater: a cautionary tale. Science of The Total Environment 355, 259–263. doi:10.1016/j.scitotenv.2005.01.048.
  • Quillardet, P., and Hofnung, M. (1993). The SOS chromotest: a review. Mutation Research/Reviews in Genetic Toxicology 297, 235–279. doi:10.1016/0165-1110(93)90019-J.
  • Quillardet, P., Huisman, O., D'Ari, R., and Hofnung, M. (1982). SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proceedings of the National Academy of Sciences of the United States of America 79, 5971–5975. doi:10.1073/pnas.79.19.5971.
  • Quiroz, W., Aguilar, L., Barría, M., Veneciano, J., Martínez, D., Bravo, M., Lobos, M.G., and Mercado, L. (2013). Sb(V) and Sb(III) distribution in human erythrocytes: speciation methodology and the influence of temperature, time and anticoagulants. Talanta 115, 902–910. doi:10.1016/j.talanta.2013.06.052.
  • Rajapaksha, A.U., Ahmad, M., Vithanage, M., Kim, K.-R., Chang, J.Y., Lee, S.S., and Ok, Y.S. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health 37, 931–942. doi:10.1007/s10653-015-9694-z.
  • Reimann, C., Matschullat, J., Birke, M., and Salminen, R. (2010). Antimony in the environment: lessons from geochemical mapping. Applied Geochemistry 25, 175–198. doi:10.1016/j.apgeochem.2009.11.011.
  • Retief, N.R., Avenant-Oldewage, A., and du Preez, H. (2006). The use of cestode parasites from the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913) in the Vaal Dam, South Africa as indicators of heavy metal bioaccumulation. Physics and Chemistry of the Earth, Parts A/B/C 31, 840–847. doi:10.1016/j.pce.2006.08.004.
  • RIC. (2013). China Antimony Industry Report, 2013–2015. Research In China. http://www.researchinchina.com/htmls/report/2013/6749.html (accessed 03.01.16).
  • RIC. (2014). China Antimony Industry Report, 2014–2017. Research In China. http://www.researchinchina.com/Htmls/Report/2014/8034.html (accessed 03.01.16).
  • Richardson, B. (1994). Sudden infant death syndrome: a possible primary cause. Journal of the Forensic Science Society 34, 199–204. doi:10.1016/S0015-7368(94)72915-7.
  • RIS. (2015). The World Market for Antimony to 2020. Roskill Information Services reports on metals and minerals, October 16, 2015, 12th Edition: 274p.
  • Rojas, R., Valderrama, L., Valderrama, M., Varona, M.X., Ouellette, M., and Saravia, N.G. (2006). Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. The Journal of Infectious Diseases 193, 1375–1383. doi:10.1086/503371.
  • Rybniker, J., Goede, V., Mertens, J., Ortmann, M., Kulas, W., Kochanek, M., Benzing, T., Arribas, J.R., and Fätkenheuer, G. (2010). Treatment of visceral leishmaniasis with intravenous pentamidine and oral fluconazole in an HIV-positive patient with chronic renal failure — a case report and brief review of the literature. International Journal of Infectious Diseases 14, e522–e525. doi:10.1016/j.ijid.2009.06.010.
  • Schäfer, S., Buchmeier, G., Claus, E., Duester, L., Heininger, P., Körner, A., Mayer, P., Paschke, A., Rauert, C., Reifferscheid, G., Rüdel, H., Schlechtriem, C., Schröter-Kermani, C., Schudoma, D., Smedes, F., Steffen, D., and Vietoris, F. (2015). Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environmental Sciences Europe 27, 5. doi:10.1186/s12302-014-0036-z.
  • Schaumloffel, N., and Gebel, T. (1998). Heterogeneity of the DNA damage provoked by antimony and arsenic. Mutagenesis 13, 281–286. doi:10.1093/mutage/13.3.281.
  • Scheinost, A.C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A.-K., Funke, H., and Johnson, C.A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta 70, 3299–3312. doi:10.1016/j.gca.2006.03.020.
  • Scott, G.R., and Sloman, K.A. (2004). The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology 68, 369–392. doi:10.1016/j.aquatox.2004.03.016.
  • Sekhon, B.S. (2013). Metalloid compounds as drugs. Research in Pharmaceutical Sciences 8, 145–158.
  • Sereno, D., Maia, C., and Aït-Oudhia, K. (2012). Antimony resistance and environment: elusive links to explore during Leishmania life cycle. International Journal for Parasitology: Drugs and Drug Resistance 2, 200–203.
  • Shi, H., Shi, X., and Liu, K.J. (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Molecular and Cellular Biochemistry 255, 67–78. doi:10.1023/B:MCBI.0000007262.26044.e8.
  • Shotyk, W., Cheburkin, A.K., Appleby, P.G., Fankhauser, A., and Kramers, J.D. (1996). Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth and Planetary Science Letters 145, E1–E7. doi:10.1016/S0012-821X(96)00197-5.
  • Shotyk, W., Chen, B., and Krachler, M. (2005a). Lithogenic, oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog, Myrarnar, Faroe Islands. Journal of Environmental Monitoring 7, 1148–1154. doi:10.1039/b509928p.
  • Shotyk, W., Krachler, M., and Chen, B. (2005b). Anthropogenic impacts on the biogeochemistry and cycling of antimony. Metal Ions in Biological Systems 44, 171–203.
  • Smith, K.S., and Huyck, H.L.O. (1999). An overview of the abundance, relative mobility, bioavailability and human toxicity of metals, In G. S. Plumlee, and M. J. Logsdon, (Eds.) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues. Reviews in Economic Geology 6A (pp. 29–70). Littleton, CO: Society of Economic Geologists.
  • Snedeker, S.M. (2014). Toxicants in food packaging and household plastics: Exposure and health risks to consumers. Springer.
  • Sparling, D.W., Linder, G., Bishop, C.A., and Krest, S.K. (2010). Ecotoxicology of amphibians and reptiles. CRC Press.
  • Spellman, F.R. (2013). Handbook of water and wastewater treatment plant operations. CRC Press.
  • Stechmann, H., and Dannecker, W. (1990). Characterization and source analysis of vehicle-generated aerosols. Journal of Aerosol Science 21, Supplement 1, S287–S290. doi:10.1016/0021-8502(90)90240-X.
  • Steely, S., Amarasiriwardena, D., and Xing, B. (2007). An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Environmental Pollution 148, 590–598. doi:10.1016/j.envpol.2006.11.031.
  • Sternbeck, J., and Munthe, J. (2001). Metaller i avfallsaskor och brännbart avfall – delrapport. IVL A 21150 as cited in EURAR 2008.
  • Sternbeck, J., Sjödin, Å., and Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment 36, 4735–4744. doi:10.1016/S1352-2310(02)00561-7.
  • Stemmer, K.L. (1976). Pharmacology and toxicology of heavy metals: antimony. Pharmacology and Therapeutics. Part A: Chemotherapy, Toxicology and Metabolic Inhibitors 1, 157–160.
  • Sun, H. (2010). Biological chemistry of arsenic, antimony and bismuth. John Wiley & Sons.
  • Sundar, S., and Chakravarty, J. (2010). Antimony toxicity. International Journal of Environmental Research and Public Health 7, 4267–4277. doi:10.3390/ijerph7124267.
  • Tainer, J.A. (2013). Response to question: What is the difference between mutagenicity and genotoxicity? Available at https://www.researchgate.net/post/What_is_the_difference_between_mutagenicity_and_genotoxicity (accessed 12.11.2017).
  • Takayanagi, K. (2001). Acute toxicity of waterborne Se(IV), Se(VI), Sb(III), and Sb(V) on Red Seabream (Pargus major). Bulletin of Environmental Contamination and Toxicology 66, 808–813.
  • Takayanagi, K., and Cossa, D. (1997). Vertical distributions of Sb(III) and Sb(V) in Pavin Lake, France. 31, 671–674.
  • Takigami, H., Matsui, S., Matsuda, T., and Shimizu, Y. (2002). The Bacillus subtilis rec-assay: a powerful tool for the detection of genotoxic substances in the water environment. Prospect for assessing potential impact of pollutants from stabilized wastes. Waste Management (Oxford) 22, 209–213. doi:10.1016/S0956-053X(01)00071-X.
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., and Sutton, D.J. (2012). Heavy metals toxicity and the environment. EXS 101, 133–164.
  • Telford, K., Maher, W., Krikowa, F., Foster, S., Ellwood, M.J., Ashley, P.M., Lockwood, P.V., and Wilson, S.C. (2009). Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environmental Chemistry 6, 133. doi:10.1071/EN08097.
  • Terry, L.R., Kulp, T.R., Wiatrowski, H., Miller, L.G., and Oremland, R.S. (2015). Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments. Applied and Environmental Microbiology 81, 8478–8488. doi:10.1128/AEM.01970-15.
  • Thomsen, P.F., and Willerslev, E. (2015). Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183, 4–18. doi:10.1016/j.biocon.2014.11.019.
  • Tian, H., Zhao, D., Cheng, K., Lu, L., He, M., and Hao, J. (2012). Anthropogenic atmospheric emissions of antimony and its spatial distribution characteristics in China. Environmental Science & Technology 46, 3973–3980. doi:10.1021/es2041465.
  • Tian, H., Zhou, J., Zhu, C., Zhao, D., Gao, J., Hao, J., He, M., Liu, K., Wang, K., and Hua, S. (2014). A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities, 1995–2010. Environmental Science & Technology 48, 10235–10241. doi:10.1021/es405817u.
  • Tighe, M., Ashley, P., Lockwood, P., and Wilson, S. (2005a). Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Science of The Total Environment 347, 175–186. doi:10.1016/j.scitotenv.2004.12.008.
  • Tighe, M., Lockwood, P., and Wilson, S. (2005b). Adsorption of antimony(v) by floodplain soils, amorphous iron(III) hydroxide and humic acid. Journal of Environmental Monitoring 7, 1177–1185. doi:10.1039/b508302h.
  • Tirmenstein, M.A., Mathias, P.I., Snawder, J.E., Wey, H.E., and Toraason, M. (1997). Antimony-induced alterations in thiol homeostasis and adenine nucleotide status in cultured cardiac myocytes. Toxicology 119, 203–211. doi:10.1016/S0300-483X(97)03628-7.
  • Tirmenstein, M.A., Plews, P.I., Walker, C.V., Woolery, M.D., Wey, H.E., and Toraason, M.A. (1995). Antimony-Induced Oxidative Stress and Toxicity in Cultured Cardiac Myocytes. Toxicology and Applied Pharmacology 130, 41–47. doi:10.1006/taap.1995.1006.
  • Titma, T., Shimmo, R., Siigur, J., and Kahru, A. (2016). Toxicity of antimony, copper, cobalt, manganese, titanium and zinc oxide nanoparticles for the alveolar and intestinal epithelial barrier cells in vitro. Cytotechnology 68, 2363–2377. doi:10.1007/s10616-016-0032-9.
  • Tschan, M., Robinson, B.H., and Schulin, R. (2009). Antimony in the soil–plant system – a review. Environmental Chemistry 6, 106–115. doi:10.1071/EN08111.
  • USEPA. (1979). Water-Related Environmental Fate of 129 Priority Pollutants. Volume I: Introduction and Technical Background, Metals and Inorganics, Pesticides and PCBs. United States Environmental Protection Agency Office of Water Programs, Washington. Accession Number: PB80-204373; Contract Number: EPA-68-01-3852. http://www.ntis.gov/search/product.aspx?abbr = PB80204373 (accessed 03.06.15).
  • USEPA. (1988). Ambient aquatic life water quality criteria for antimony(III). Document 440-5-88-093, Draft 8/30/88, Duluth, MN: U.S Environmental Protection Agency.
  • USEPA. (1999). National primary drinking water standards. United States Environmental Protection Agency, Office of Water, Washington DC. Available at https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#two. Updated July 2017 (accessed 21.11.2017).
  • USEPA. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. US Environmental Protection Agency, Office of Water (4303T), 1200 Pennsylvania Avenue, NW, Washington, DC 20460.
  • USEPA. (2014). Technical factsheet on: Antimony. Part of national primary drinking water regulations, United States Environmental Protection Agency..
  • USEPA. (2017). TRI Explorer (2015 National analysis dataset (released October 2016) (updated November 29, 2016)) [Internet database]. United States Environmental Protection Agency Toxic Release Inventory. Retrieved from https://www.epa.gov/triexplorer, (April 04, 2017).
  • USGS. (2004). Mineral commodity profiles: antimony. United States Geological Survey. Open file report 03–019, pp. 1–35. http://pubs.usgs.gov/of/2003/of03-019/of03-019.pdf (accessed 04.18.14).
  • USGS. (2010). Mineral commodity summaries 2010: Antimony. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2010/mcs2010.pdf (accessed 11.04.14).
  • USGS. (2011). Mineral commodity summaries 2011: Antimony. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2011/mcs2011.pdf (accessed 10.04.14).
  • USGS. (2012). Mineral commodity summaries 2012: Antimony. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2012/mcs2012.pdf (accessed 10.04.14).
  • USGS. (2013). Mineral commodity summaries 2013: Antimony. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2013/mcs2013.pdf (accessed 10.04.14).
  • USGS. (2014). Mineral commodity summaries 2014: Antimony. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2014/mcs2014.pdf (10.04.14).
  • USGS. (2015). Mineral commodity summaries 2015: Antimony. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf (accessed 27.12.15).
  • USGS. (2016). Mineral commodity summaries 2016: Antimony. United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/antimony/mcs-2016-antim.pdf (accessed 31.05.16).
  • USGS. (2017). Mineral commodity summaries 2017. United States Geological Survey. https://minerals.usgs.gov/minerals/pubs/mcs/2017/mcs2017.pdf (accessed 08. 02. 17).
  • Uthe, J.F., and Bligh, E.G. (1971). Preliminary survey of heavy metal contamination of Canadian freshwater fish. Journal of the Fisheries Research Board of Canada 28, 786–788. doi:10.1139/f71-114.
  • Vainio, H. (2001). Review Use of biomarkers in risk assessment. International Journal of Hygiene and Environmental Health 204, 91–102. doi:10.1078/1438-4639-00088.
  • van der Oost, R., Beyer, J., Nico, P.E., and Vermeulen. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13, 57–149. doi:10.1016/S1382-6689(02)00126-6.
  • Vasquez, L., Scorza Dagert, J.V., Scorza, J.V., Vicuna-Fernandez, N., Petit de Pena, Y., Lopez, S., Bendezu, H., Rojas, E., Vasquez, L., and Perez, B. (2006). Pharmacokinetics of experimental pentavalent antimony after intramuscular administration in adult volunteers. Current Therapeutic Research 67, 193–203.
  • Ventura-Lima, J., Bogo, M.R., and Monserrat, J.M. (2011). Arsenic toxicity in mammals and aquatic animals: A comparative biochemical approach. Ecotoxicology and Environmental Safety 74, 211–218. doi:10.1016/j.ecoenv.2010.11.002.
  • von Uexküll, O., Skerfving, S., Doyle, R., and Braungart, M. (2005). Antimony in brake pads-a carcinogenic component? Journal of Cleaner Production 13, 19–31. doi:10.1016/j.jclepro.2003.10.008.
  • Wetzel, R.G. (2001). Limnology: Lake and river ecosystems. Academic Press.
  • Whiles, M.R., Lips, K.R., Pringle, C.M., Kilham, S.S., Bixby, R.J., Brenes, R., Connelly, S., Colon-Gaud, J.C., Hunte-Brown, M., and Huryn, A.D. (2006). The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Frontiers in Ecology and the Environment 4, 27–34. doi:10.1890/1540-9295(2006)004%5b0027:TEOAPD%5d2.0.CO;2.
  • Wilson, S.C., Lockwood, P.V., Ashley, P.M., and Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution 158, 1169–1181. doi:10.1016/j.envpol.2009.10.045.
  • Wilson, S.C., Tighe, M., Paterson, E., and Ashley, P.M. (2014). Food crop accumulation and bioavailability assessment for antimony (Sb) compared with arsenic (As) in contaminated soils. Environmental Science and Pollution Research 21, 11671–11681. doi:10.1007/s11356-014-2577-5.
  • Winship, K. (1986). Toxicity of antimony and its compounds. Adverse Drug Reactions and Acute Poisoning Reviews 6, 67–90.
  • Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., and Liao, H. (2011). Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area. Science of the Total Environment 409, 3344–3351. doi:10.1016/j.scitotenv.2011.05.033.
  • Xi, J., He, M., and Wang, P. (2014). Adsorption of antimony on sediments from typical water systems in China: A comparison of Sb(III) and Sb(V) pattern. Soil and Sediment Contamination: An International Journal 23, 37–48. doi:10.1080/15320383.2013.774319.
  • Xu, W., Wang, H., Liu, R., Zhao, X., and Qu, J. (2011). The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn binary oxide. Journal of Colloid and Interface Science 363, 320–326. doi:10.1016/j.jcis.2011.07.026.
  • Yamamoto, A., Kohyama, Y., and Hanawa, T. (2002). Mutagenicity evaluation of forty-one metal salts by the umu test. Journal of Biomedical Materials Research 59, 176–183. doi:10.1002/jbm.1231.
  • Yan, L., Song, J., Chan, T., and Jing, C. (2017). Insights into antimony adsorption on {001} TiO2: XAFS and DFT study. Environmental Science & Technology 51, 6335–6341. doi:10.1021/acs.est.7b00807.
  • Yang, H., Lu, X., and He, M. (2017). Effect of organic matter on mobilization of antimony from nanocrystalline titanium dioxide. Environmental Technology, 1–7. doi: 10.1080/09593330.2017.1332107
  • Yang, J.L. (2014). Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense). Biological Research 47, 1–4.
  • Yang, J.-L., Hu, T.-J., and Lee, H.-Y. (2010). Sublethal antimony (III) exposure of freshwater swamp shrimp (Macrobrachium nipponense): effects on oxygen consumption and hepatopancreatic histology. Journal of Water Resource and Protection 02, 42–47. doi:10.4236/jwarp.2010.21005.
  • Zanoni, L.Z., Brustoloni, Y.M., Melnikov, P., and Cônsolo, C.E.Z. (2009). Antimony containing drug and ecg abnormalities in children with visceral leishmaniasis. Biological Trace Element Research 132, 35. doi:10.1007/s12011-009-8387-9.
  • Zhou, J., Tian, H., Zhu, C., Hao, J., Gao, J., Wang, Y., Xue, Y., Hua, S., and Wang, K. (2015). Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050. Atmospheric Environment 120, 385–392. doi:10.1016/j.atmosenv.2015.09.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.