4,745
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Advances and future directions of biochar characterization methods and applications

, , , , , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 2275-2330 | Published online: 08 Feb 2018

References

  • Abdel-Fattah, T. M., Mahmoud, M. E., Ahmed, S. B., Huff, M. D., Lee, J. W., and Kumar, S. (2015). Biochar from woody biomass for removing metal contaminants and carbon sequestration. J. Ind. Eng. Chem., 22, 103–109. doi:10.1016/j.jiec.2014.06.030
  • Abdullah, H., and Wu, H. (2009). Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels, 23, 4174–4181. doi:10.1021/ef900494t
  • Abid, M., Niazi, N. K., Bibi, I., Farooqi, A., Ok, Y. S., Kunhikrishnan, A., Ali, F., Ali, S., Igalavithana, A. D., and Arshad, M. (2016). Arsenic(V) biosorption by charred orange peel in aqueous environments. Int. J. Phytorem., 18, 442–449. doi:10.1080/15226514.2015.1109604
  • Abu El-Rub, Z., Bramer, E. A., and Brem, G. (2008). Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel, 87, 2243–2252. doi:10.1016/j.fuel.2008.01.004
  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., and Ok, Y. S. (2012a). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol., 118, 536–544. doi:10.1016/j.biortech.2012.05.042
  • Ahmad, M., Lee, S. S., Oh, S. E., Mohan, D., Moon, D. H., Lee, Y. H., and Ok, Y. S. (2013a). Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environ. Sci. Pollut. Res., 20, 8364–8373. doi:10.1007/s11356-013-1676-z
  • Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., Lee, S. E., and Ok, Y. S. (2013b). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour. Technol., 143, 615–622. doi:10.1016/j.biortech.2013.06.033
  • Ahmad, M., Moon, D. H., Vithanage, M., Koutsospyros, A., Lee, S. S., Yang, J. E., Lee, S. E., Jeon, C., and Ok, Y. S. (2014a). Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J. Chem. Technol. Biotechnol., 89, 150–157. doi:10.1002/jctb.4157
  • Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., Lee, Y. H., Al-Wabel, M. I., Lee, S. E., and Lee, S. S. (2016). Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. J. Hazard. Mater., 301, 179–186. doi:10.1016/j.jhazmat.2015.08.029
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., and Ok, Y. S. (2014b). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071
  • Ahmad, M., Soo Lee, S., Yang, J. E., Ro, H. M., Han Lee, Y., and Sik Ok, Y. (2012b). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol. Environ. Saf., 79, 225–231. doi:10.1016/j.ecoenv.2012.01.003
  • Ahn, S. Y., Eom, S. Y., Rhie, Y. H., Sung, Y. M., Moon, C. E., Choi, G. M., and Kim, D. J. (2013). Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl. Energy, 105, 207–216. doi:10.1016/j.apenergy.2013.01.023
  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., and Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol., 131, 374–379. doi:10.1016/j.biortech.2012.12.165
  • Alexis, M. A., Rasse, D. P., Rumpel, C., Bardoux, G., Péchot, N., Schmalzer, P., Drake, B., and Mariotti, A. (2007). Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry, 82, 201–216. doi:10.1007/s10533-006-9063-1
  • Almaroai, Y. A., Usman, A. R. A., Ahmad, M., Moon, D. H., Cho, J. S., Joo, Y. K., Jeon, C., Lee, S. S., and Ok, Y. S. (2014). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ. Earth Sci., 71, 1289–1296. doi:10.1007/s12665-013-2533-6
  • Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., and Sherlock, R. R. (2011). Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia (Jena), 54, 309–320. doi:10.1016/j.pedobi.2011.07.005
  • Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol., 128, 593–597. doi:10.1016/j.biortech.2012.10.150
  • Ascough, P. L., Bird, M. I., Scott, A. C., Collinson, M. E., Cohen-Ofri, I., Snape, C. E., and Le Manquais, K. (2010). Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. J. Archaeol. Sci., 37, 1590–1599. doi:10.1016/j.jas.2010.01.020
  • ASTM D1762-84. (2013). ASTM D1762 – 84(2013) standard test method for chemical analysis of wood charcoal [WWW Document]. URL https://www.astm.org/Standards/D1762.htm (accessed 12.25.16).
  • ASTM D3174-12. (n.d.). ASTM D3174 – 12 Standard test method for ash in the analysis sample of coal and coke from coal [WWW Document]. URL https://www.astm.org/Standards/D3174.htm (accessed 12.25.16).
  • ASTM D3175-11. (n.d.). ASTM D3175 – 11 Standard test method for volatile matter in the analysis sample of coal and coke [WWW Document]. URL https://www.astm.org/Standards/D3175.htm (accessed 12.25.16).
  • ASTM D422-63. (1998). Standard test method for particle-size analysis of soils [WWW Document]. ASTM Int. West Conshohocken, PA. URL https://www.astm.org/DATABASE.CART/HISTORICAL/D422-63R98.htm (accessed 1.17.17).
  • ASTM D4607-94. (2006). ASTM D4607 – 94(2006) Standard test method for determination of iodine number of activated carbon [WWW Document]. Stand. Test method determ. Iodine number act. Carbon, ASTM Int. West Conshohocken, PA. URL www.astm.org (accessed 1.17.17).
  • ASTM D5142 – 04. (2004). ASTM D5142 – 04 Standard test methods for proximate analysis of the analysis sample of coal and coke by instrumental procedures [WWW Document]. URL https://www.astm.org/DATABASE.CART/HISTORICAL/D5142-04.htm (accessed 12.25.16).
  • ASTM D6556-10. (2010). ASTM D6556-10, Standard test method for carbon black-total and external surface area by nitrogen adsorption [WWW Document]. ASTM Int. West Conshohocken, PA. URL www.astm.org (accessed 1.17.17).
  • Atkinson, C. J., Fitzgerald, J. D., and Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil, 337, 1–18. doi:10.1007/s11104-010-0464-5
  • Awad, Y. M., Blagodatskaya, E., Ok, Y. S., and Kuzyakov, Y. (2012). Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. Eur. J. Soil Biol., 48, 1–10. doi:10.1016/j.ejsobi.2011.09.005
  • Ayodele, A., Oguntunde, P., Joseph, A., Dias Junior, M., and de, S. (2009). Numerical analysis of the impact of charcoal production on soil hydrological behavior, runoff response and erosion susceptibility. Rev. Bras. Ciência do Solo, 33, 137–146. doi:10.1590/S0100-06832009000100015
  • Bair, D. A., Mukome, F. N. D., Popova, I. E., Ogunyoku, T. A., Jefferson, A., Wang, D., Hafner, S. C., Young, T. M., and Parikh, S. J. (2016). Sorption of pharmaceuticals, heavy metals, and herbicides to biochar in the presence of biosolids. J. Environ. Qual., 45, 1998. doi:10.2134/jeq2016.03.0106
  • Basri, N. H., Deraman, M., Kanwal, S., Talib, I. A., Manjunatha, J. G., Aziz, A. A., and Farma, R. (2013). Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass and Bioenergy, 59, 370–379. doi:10.1016/j.biombioe.2013.08.035
  • Beesley, L., and Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut., 159, 474–480. doi:10.1016/j.envpol.2010.10.016
  • Begaudeau, K., Morizet, Y., Florian, P., Paris, M., and Mercier, J. C. (2012). Solid-state NMR analysis of Fe-bearing minerals: Implications and applications for Earth sciences. Eur. J. Mineral., 24, 535–550. doi:10.1127/0935-1221/2012/0024-2192
  • Betts, A. R., Chen, N., Hamilton, J. G., Peak, D. (2013). Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. Environ. Sci. Technol., 47, 14350–14357. doi:10.1021/es4032198
  • Bhandari, P. N., Kumar, A., Bellmer, D. D., and Huhnke, R. L. (2014). Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas. Renew. Energy, 66, 346–353. doi:10.1016/j.renene.2013.12.017
  • Bjeoumikhov, A., Langhoff, N., Rabe, J., Wedell, R. (2004). A modular system for XRF and XRD applications consisting of a microfocus X-ray source and different capillary optics. X-Ray Spectrom., 33, 312–316. doi:10.1002/xrs.733
  • Böehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon N. Y., 32, 759–769. doi:10.1016/0008-6223(94)90031-0
  • Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., and Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176–185. doi:10.1016/j.biombioe.2014.03.059
  • Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., and Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy, 28, 386–396. doi:10.1002/ep.10378
  • Brewer, C. E., Unger, R., Schmidt-Rohr, K., and Brown, R. C. (2011). Criteria to select biochars for field studies based on biochar chemical properties. BioEnergy Res., 4, 312–323. doi:10.1007/s12155-011-9133-7
  • Brown, R. (2009). Biochar production technology, In: Lehmann, J. and Joseph, S. (Eds.), Environmental management: Science and technology. (pp. 127–139). Earthscan, London.
  • Bruun, S., Jensen, E. S., and Jensen, L. S. (2008). Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration. Org. Geochem., 39, 839–845. doi:10.1016/j.orggeochem.2008.04.020
  • Budai, A., Zimmerman, A. R., Cowie, A. L., Webber, J. B. W., Singh, B. P., Glaser, B., Masiello, C. A., Andersson, D., Shields, F., and Lehmann, J. (2013). Biochar carbon stability test method: An assessment of methods to determine biochar carbon stability. [WWW Document]. Int. Biochar Initiat. URL http://www.biochar-international.org/sites/default/files/IBI_Report_Biochar_Stability_Test_Method_Final.pdf (accessed 12.25.16).
  • Busch, D., Stark, A., Kammann, C. I., and Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicol. Environ. Saf., 97, 59–66. doi:10.1016/j.ecoenv.2013.07.003
  • Cançado, L. G., Jorio, A., and Pimenta, M. A. (2007). Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B., 76, 64304. doi:10.1103/PhysRevB.76.064304
  • Carrier, M., Joubert, J. E., Danje, S., Hugo, T., Görgens, J., and Knoetze, J. H. (2013). Impact of the lignocellulosic material on fast pyrolysis yields and product quality. Bioresour. Technol., 150, 129–138. doi:10.1016/j.biortech.2013.09.134
  • Castle, J. E. (1990). Practical surface analysis by Auger and X-ray photoelectron spectroscopy, 2nd ed, Surface and Interface Analysis. Chichester, England: John Wiley & Sons.
  • Cheah, S., Malone, S. C., and Feik, C. J. (2014). Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. Environ. Sci. Technol., 48, 8474–8480. doi:10.1021/es500073r
  • Chia, C. H., Gong, B., Joseph, S. D., Marjo, C. E., Munroe, P., and Rich, A. M. (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX. Vib. Spectrosc., 62, 248–257. doi:10.1016/j.vibspec.2012.06.006
  • Chintala, R., Clay, D. E., Schumacher, T. E., Malo, D. D., and Julson, J. L. (2013). Optimization of oxygen parameters for determination of Carbon and Nitrogen in biochar materials. Anal. Lett., 46, 532–538. doi:10.1080/00032719.2012.721103
  • Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., Clay, S. A., and Julson, J. L. (2014). Phosphorus sorption and availability from biochars and soil/biochar mixtures. CLEAN – Soil, Air, Water, 42, 626–634. doi:10.1002/clen.201300089
  • Choung, S. W., Um, W. Y., Kim, M. Y., and Kim, M. G. (2013). Uptake mechanism for iodine species to black Carbon. Environ. Sci. Technol., 130827075129003. doi:10.1021/es401570a
  • Clough, T. J., Bertram, J. E., Ray, J. L., Condron, L. M., O'Callaghan, M., Sherlock, R. R., and Wells, N. S. (2010). Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci. Soc. Am. J., 74, 852. doi:10.2136/sssaj2009.0185
  • Das, O., Bhattacharyya, D., Hui, D., and Lau, K.-T. (2016). Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos. Part B Eng., 106, 120–128. doi:10.1016/j.compositesb.2016.09.020
  • de Jonge, H., and Mittelmeijer-Hazeleger, M. C. (1996). Adsorption of CO2 and N2 on Soil organic matter: Nature of porosity, surface area, and diffusion mechanisms. Environ. Sci. Technol., 30, 408–413. doi:10.1021/es950043t
  • Dean, J. A. (1999). Lange's handbook of chemistry. New York: McGraw-Hill, Inc.
  • Dehkhoda, A. M., West, A. H., and Ellis, N. (2010). Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A Gen., 382, 197–204. doi:10.1016/j.apcata.2010.04.051
  • Dincer, I., Midilli, A., and Kucuk, H. (2014). Progress in exergy, energy, and the environment. Cham: Springer International Publishing. doi:10.1007/978-3-319-04681-5
  • Dong, D., Feng, Q., McGrouther, K., Yang, M., Wang, H., and Wu, W. (2015). Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments, 15, 153–162. doi:10.1007/s11368-014-0984-3
  • Doumer, M. E., Arízaga, G. G. C., Silva, D.A. da, Yamamoto, C. I., Novotny, E. H., Santos, J. M., Santos, L.O. dos, Wisniewski, A., Andrade, J.B. de, and Mangrich, A. S. (2015). Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J. Anal. Appl. Pyrolysis, 113, 434–443. doi:10.1016/j.jaap.2015.03.006
  • Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol., 114, 644–653. doi:10.1016/j.biortech.2012.03.022
  • Fang, Y., Singh, B., Singh, B. P., and Krull, E. (2014). Biochar carbon stability in four contrasting soils. Eur. J. Soil Sci., 65, 60–71. doi:10.1111/ejss.12094
  • Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., and Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour. Technol., 132, 254–261. doi:10.1016/j.biortech.2013.01.044
  • Fellet, G., Marmiroli, M., and Marchiol, L. (2014). Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci. Total Environ., 468–469, 598–608. doi:10.1016/j.scitotenv.2013.08.072
  • Ganesh, K., and Jambeck, J. R. (2013). Treatment of landfill leachate using microbial fuel cells: Alternative anodes and semi-continuous operation. Bioresour. Technol., 139, 383–387. doi:10.1016/j.biortech.2013.04.013
  • Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., and Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE, 51, 2061–2069. doi:10.13031/2013.25409
  • Genovese, M., Jiang, J., Lian, K., and Holm, N. (2015). High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. J. Mater. Chem. A, 3, 2903–2913. doi:10.1039/C4TA06110A
  • Gerlach, A., and Schmidt, H. P. (2012). The use of biochar in cattle farming. Ithaka Journal [WWW Document]. URL http://www.ithaka-journal.net/pflanzenkohle-in-der-rinderhaltung?lang=en (accessed 12.25.16).
  • Ghani, W.A.W.A.K., Mohd, A., da Silva, G., Bachmann, R. T., Taufiq-Yap, Y. H., Rashid, U., and Al-Muhtaseb, A. H. (2013). Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Ind. Crops Prod., 44, 18–24. doi:10.1016/j.indcrop.2012.10.017
  • Glaser, B., Parr, M., Braun, C., and Kopolo, G. (2009). Biochar is carbon negative. Nat. Geosci., 2, 2–2. doi:10.1038/ngeo395
  • Goertzen, S. L., Thériault, K. D., Oickle, A. M., Tarasuk, A. C., and Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon N. Y., 48, 1252–1261. doi:10.1016/j.carbon.2009.11.050
  • Goodman, P. A., Li, H., Gao, Y., Lu, Y. F., Stenger-Smith, J. D., and Redepenning, J. (2013). Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes. Carbon N. Y., 55, 291–298. doi:10.1016/j.carbon.2012.12.066
  • Graham, E. (2006). A neotropical framework for Terra Preta, In: Balée W, E. C. (Ed.), Time and complexity in historical ecology: Studies in the Neotropical Lowlands (pp. 57–86). Columbia University Press.
  • Güereña, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., and Riha, S. (2013). Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil, 365, 239–254. doi:10.1007/s11104-012-1383-4
  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., and Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ., 206, 46–59. doi:10.1016/j.agee.2015.03.015
  • Gupta, R. K., Dubey, M., Kharel, P., Gu, Z., and Fan, Q. H. (2015). Biochar activated by oxygen plasma for supercapacitors. J. Power Sources, 274, 1300–1305. doi:10.1016/j.jpowsour.2014.10.169
  • Hale, L., Luth, M., and Crowley, D. (2015). Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol. Biochem., 81, 228–235. doi:10.1016/j.soilbio.2014.11.023
  • Hale, L., Luth, M., Kenney, R., and Crowley, D. (2014). Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl. Soil Ecol., 84, 192–199. doi:10.1016/j.apsoil.2014.08.001
  • Hale, S., Hanley, K., Lehmann, J., Zimmerman, A., and Cornelissen, G. (2011). Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated Carbon and Biochar. Environ. Sci. Technol., 45, 10445–10453. doi:10.1021/es202970x
  • Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma, V., O'Toole, A., Sundqvist, K. L., Arp, H. P. H., and Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and Dioxins in Biochars. Environ. Sci. Technol., 46, 2830–2838. doi:10.1021/es203984k
  • Hamer, U., Marschner, B., Brodowski, S., and Amelung, W. (2004). Interactive priming of black carbon and glucose mineralisation. Org. Geochem., 35, 823–830. doi:10.1016/j.orggeochem.2004.03.003
  • Hans-Peter, S. S. A. (2013). European biochar certificate -guidelines for a sustainable production of biochar. European Biochar Found [WWW Document]. URL http://www.bio-inspecta.ch/htm/dl_detail.htm?sprache=e&id=105&p=3 (accessed 12.25.16).
  • Hansen, V., Müller-Stöver, D., Ahrenfeldt, J., Holm, J. K., Henriksen, U. B., and Hauggaard-Nielsen, H. (2015). Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass and Bioenergy, 72, 300–308. doi:10.1016/j.biombioe.2014.10.013
  • Heymann, K., Lehmann, J., Solomon, D., Schmidt, M. W. I., and Regier, T. (2011). C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon. Org. Geochem., 42, 1055–1064. doi:10.1016/j.orggeochem.2011.06.021
  • Hmid, A., Mondelli, D., Fiore, S., Fanizzi, F. P., Al Chami, Z., and Dumontet, S. (2014). Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass and Bioenergy, 71, 330–339. doi:10.1016/j.biombioe.2014.09.024
  • Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., and Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage., 92, 223–228. doi:10.1016/j.jenvman.2010.09.008
  • Hossain, M. K., Strezov, V., Yin Chan, K., and Nelson, P. F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78, 1167–1171. doi:10.1016/j.chemosphere.2010.01.009
  • Huggins, T., Latorre, A., Biffinger, J., and Ren, Z. (2016). Biochar based microbial fuel cell for enhanced wastewater treatment and nutrient recovery. Sustainability, 8, 169. doi:10.3390/su8020169
  • Huggins, T. M., Pietron, J. J., Wang, H., Ren, Z. J., and Biffinger, J. C. (2015). Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour. Technol., 195, 147–153. doi:10.1016/j.biortech.2015.06.012
  • Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., Ammara, U., Ok, Y. S., and Siddique, K. H. M. (2016). Biochar for crop production: Potential benefits and risks. J. Soils Sediments, 1–32. doi:10.1007/s11368-016-1360-2
  • IBI. (2015). Standardized product definition and product testing guidelines for biochar: That is used in soil [WWW Document]. URL http://www.biochar-international.org/sites/default/files/IBI_Biochar_Standards_V2.1_Final.pdf. (accessed 12.25.16).
  • Ibrahim, A., Usman, A. R. A., Al-Wabel, M. I., Nadeem, M., Ok, Y. S., and Al-Omran, A. (2017). Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: influence of particle size and application depth. Arch. Agron. Soil Sci., 63, 185–197. doi:10.1080/03650340.2016.1193785
  • Igalavithana, A. D., Lee, S. E., Lee, Y. H., Tsang, D. C. W., Rinklebe, J., Kwon, E. E., and Ok, Y. S. (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603. doi.org/10.1016/j.chemosphere.2017.01.148.
  • Igalavithana, A. D., Ok, Y. S., Usman, A. R. A., Al-Wabel, M. I., Oleszczuk, P., and Lee, S. S. (2016). The effects of biochar amendment on soil fertility, In: Guo, M., He, Z., and Uchimiya, S. M. (Eds.), Agricultural and environmental applications of biochar: Advances and barriers. (pp. 123–144). Soil Science Society of America, Inc. doi:10.2136/sssaspecpub63.2014.0040
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., and Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol., 110, 50–56. doi:10.1016/j.biortech.2012.01.072
  • Inyang, M., Gao, B., Zimmerman, A., Zhang, M., and Chen, H. (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem. Eng. J., 236, 39–46. doi:10.1016/j.cej.2013.09.074
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., and Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol., 46, 406–433. doi:10.1080/10643389.2015.1096880
  • Ippolito, J. A., Ducey, T. F., Cantrell, K. B., Novak, J. M., and Lentz, R. D. (2016). Designer, acidic biochar influences calcareous soil characteristics. Chemosphere, 142, 184–191. doi:10.1016/j.chemosphere.2015.05.092
  • Jaafar, N. M., Clode, P. L., and Abbott, L. K. (2015). Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere, 25, 770–780. doi:10.1016/S1002-0160(15)30058-8
  • Jamieson, T., Sager, E., and Guéguen, C. (2014). Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere, 103, 197–204. doi:10.1016/j.chemosphere.2013.11.066
  • Jarvis, J. M., Page-Dumroese, D. S., Anderson, N. M., Corilo, Y., and Rodgers, R. P. (2014). Characterization of fast pyrolysis products generated from several Western USA woody species. Energy & Fuels, 28, 6438–6446. doi:10.1021/ef501714j
  • Jeffery, S., Verheijen, F. G. A., van der Velde, M., and Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ., 144, 175–187. doi:10.1016/j.agee.2011.08.015
  • Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., and Ma, S. (2013). Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim. Acta., 113, 481–489. doi:10.1016/j.electacta.2013.09.121
  • Jin, H., Wang, X., Gu, Z., and Polin, J. (2013). Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J. Power Sources, 236, 285–292. doi:10.1016/j.jpowsour.2013.02.088
  • Jindo, K., Suto, K., Matsumoto, K., García, C., Sonoki, T., and Sanchez-Monedero, M. A. (2012). Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour. Technol., 110, 396–404. doi:10.1016/j.biortech.2012.01.120
  • Jorio, A., Ribeiro-Soares, J., Cançado, L. G., Falcão, N. P. S., Dos Santos, H. F., Baptista, D. L., Martins Ferreira, E. H., Archanjo, B. S., and Achete, C. A. (2012). Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils. Soil Tillage Res., 122, 61–66. doi:10.1016/j.still.2012.02.009
  • Joseph, S., Peacocke, C., Lehmann, J., and Munroe, P. (2009). Developing a biochar classification and test methods, In: Lehmann, J. and Joseph, S. (Eds.), Biochar for environmental management: Science and technology (pp. 107–112). London: Earthscan Publications Ltd.
  • Joseph, S., Pow, D., Dawson, K., Mitchell, D. R. G., Rawal, A., Hook, J., Taherymoosavi, S., Van Zwieten, L., Rust, J., Donne, S., Munroe, P., Pace, B., Graber, E., Thomas, T., Nielsen, S., Ye, J., Lin, Y., Pan, G., Li, L., and Solaiman, Z. M. (2015). Feeding biochar to cows: An innovative solution for improving soil fertility and farm productivity. Pedosphere, 25, 666–679. doi:10.1016/S1002-0160(15)30047-3
  • Kaal, J., Schneider, M. P. W., and Schmidt, M. W. I. (2012). Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study. Biomass and Bioenergy, 45, 115–129. doi:10.1016/j.biombioe.2012.05.021
  • Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., and Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (Biochars). Environ. Sci. Technol., 44, 6189–6195. doi:10.1021/es1014423
  • Kastner, J. R., Miller, J., Geller, D. P., Locklin, J., Keith, L. H., and Johnson, T. (2012). Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today, 190, 122–132. doi:10.1016/j.cattod.2012.02.006
  • Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black Carbon (Biochar). Environ. Sci. Technol., 44, 1247–1253. doi:10.1021/es9031419
  • Khan, N., Clark, I., Sánchez-Monedero, M. A., Shea, S., Meier, S., and Bolan, N. (2014). Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresour. Technol., 168, 245–251. doi:10.1016/j.biortech.2014.02.123
  • Kim, W. K., Shim, T., Kim, Y. S., Hyun, S., Ryu, C., Park, Y. K., and Jung, J. (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour. Technol., 138, 266–270. doi:10.1016/j.biortech.2013.03.186
  • Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., and Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ., 505, 102–112. doi:10.1016/j.scitotenv.2014.09.096
  • Kothari, R., Tyagi, V. V., and Pathak, A. (2010). Waste-to-energy: A way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev., 14, 3164–3170. doi:10.1016/j.rser.2010.05.005
  • Kuhlbusch, T. A. J., and Crutzen, P. J. (1995). Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem. Cycles, 9, 491–501. doi:10.1029/95GB02742
  • Kumar, D., and Pant, K. K. (2015). Production and characterization of biocrude and biochar obtained from non-edible de-oiled seed cakes hydrothermal conversion. J. Anal. Appl. Pyrolysis, 115, 77–86. doi:10.1016/j.jaap.2015.06.014
  • Kuzyakov, Y., Bogomolova, I., and Glaser, B. (2014). Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem., 70, 229–236. doi:10.1016/j.soilbio.2013.12.021
  • Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., and Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem., 41, 210–219. doi:10.1016/j.soilbio.2008.10.016
  • Kwon, S., and Pignatello, J. J. (2005). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (Char):  Pseudo pore blockage by model lipid components and its implications for N2-Probed surface properties of natural sorbents. Environ. Sci. Technol., 39, 7932–7939. doi:10.1021/ES050976H
  • Laird, D., Fleming, P., Wang, B., Horton, R., and Karlen, D. (2010). Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma, 158, 436–442. doi:10.1016/j.geoderma.2010.05.012
  • Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan III, A. C., Garten, C. T., and Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environ. Sci. Technol., 44, 7970–7974. doi:10.1021/es101337x
  • Lehmann, J., and Joseph, S. (2009). Biochar for environmental management: An introduction, In: Lehmann, J. and Joseph, S. (Eds.), Biochar for environmental management: Science and technology (pp. 1–9). London.
  • Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi, J., Schäfer, T., Wirick, S., and Jacobsen, C. (2005). Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles. Global Biogeochem. Cycles, 19. doi:10.1029/2004GB002435
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biol. Biochem., 43, 1812–1836. doi:10.1016/j.soilbio.2011.04.022
  • Li, J., Lv, G., Bai, W., Liu, Q., Zhang, Y., and Song, J. (2014). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalin. Water Treat., 1–13. doi:10.1080/19443994.2014.994104
  • Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., Yu, G. (2013). Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS One, 8, e65949. doi:10.1371/journal.pone.0065949
  • Liang, B., Lehmann, J., Sohi, S. P., Thies, J. E., O'Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Grossman, J., Neves, E. G., and Luizão, F. J. (2010). Black carbon affects the cycling of non-black carbon in soil. Org. Geochem., 41, 206–213. doi:10.1016/j.orggeochem.2009.09.007
  • Lievens, C., Mourant, D., Gunawan, R., Hu, X., and Wang, Y. (2015). Organic compounds leached from fast pyrolysis mallee leaf and bark biochars. Chemosphere, 139, 659–664. doi:10.1016/j.chemosphere.2014.11.009
  • lightsources.org. (2016). Light source facility information [WWW Document]. URL http://www.lightsources.org/light-source-facility-information (accessed 1.17.17).
  • Lim, J. E., Moon, D. H., Kim, K. R., Yang, J. E., Lee, S. S., and Ok, Y. S. (2015). Heavy metal stabilization in soils using waste resources – A critical review. J. Appl. Biol. Chem., 58, 157–174. doi:10.3839/jabc.2015.027
  • Lin, Y., Munroe, P., Joseph, S., Ziolkowski, A., van Zwieten, L., Kimber, S., and Rust, J. (2013). Chemical and structural analysis of enhanced biochars: Thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere, 91, 35–40. doi:10.1016/j.chemosphere.2012.11.063
  • Liu, M. C., Kong, L. Bin, Zhang, P., Luo, Y. C., and Kang, L. (2012). Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta, 60, 443–448. doi:10.1016/j.electacta.2011.11.100
  • Liu, N., Charrua, A. B., Weng, C. H., Yuan, X., and Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresour. Technol., 198, 55–62. doi:10.1016/j.biortech.2015.08.129
  • Liu, W. J., Jiang, H., and Yu, H. Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev., 115, 12251–12285. doi:10.1021/acs.chemrev.5b00195
  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., and Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res., 46, 854–862. doi:10.1016/j.watres.2011.11.058
  • Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N., Pei, J., and Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric. Ecosyst. Environ., 191, 124–132. doi:10.1016/j.agee.2014.04.010
  • Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y. S., Van Zwieten, L., Singh, B. P., Kirkham, M. B., Choppala, G., Spokas, K., and Naidu, R. (2016a). Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Crit. Rev. Environ. Sci. Technol., 46, 1367–1401. doi:10.1080/10643389.2016.1239975
  • Mandal, S., Sarkar, B., Bolan, N., Ok, Y. S., and Naidu, R. (2017). Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manage., 186, 277–284. doi:10.1016/j.jenvman.2016.05.034
  • Mandal, S., Thangarajan, R., Bolan, N. S., Sarkar, B., Khan, N., Ok, Y. S., and Naidu, R. (2016b). Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere, 142, 120–127. doi:10.1016/j.chemosphere.2015.04.086
  • Manikandan, A., and Subramanian, K. S. (2013). Urea Intercalated Biochar–a Slow Release Fertilizer Production and Characterisation. Indian J. Sci. Technol., 6, 5579–5584. doi:10.17485/IJST/2013/V6I12/43619
  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol., 46, 7939–7954. doi:10.1021/es301029g
  • Mao, J. D., Johnson, R. L., Lehmann, J., Olk, D. C., Neves, E. G., Thompson, M. L., and Schmidt-Rohr, K. (2012). Abundant and stable char residues in soils: Implications for soil fertility and carbon sequestration. Environ. Sci. Technol., 46, 9571–9576. doi:10.1021/es301107c
  • Martin, S. L., Clarke, M. L., Othman, M., Ramsden, S. J., and West, H. M. (2015). Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates. Biomass and Bioenergy, 79, 39–49. doi:10.1016/j.biombioe.2015.04.030
  • Martinez-Hernandez, A., Velasco-Santos, C., and Castano, V. (2010). Carbon nanotubes composites: Processing, grafting and mechanical and thermal properties. Curr. Nanosci., 6, 12–39. doi:10.2174/157341310790226270
  • McHenry, M. P. (2010). Carbon-based stock feed additives: a research methodology that explores ecologically delivered C biosequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations. J. Sci. Food Agric., 90, 183–187. doi:10.1002/jsfa.3818
  • McLaughlin, H., Anderson, P. S., Shields, F. E., and Reed, T. B. (2009). All Biochars are not created equal, and how to tell them apart, in: Version 2 (October 2009), which supercedes the digital reprint issued at the North American biochar conference, boulder, CO – August 2009.
  • Melligan, F., Dussan, K., Auccaise, R., Novotny, E. H., Leahy, J. J., Hayes, M. H. B., and Kwapinski, W. (2012). Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus. Bioresour. Technol., 108, 258–263. doi:10.1016/j.biortech.2011.12.110
  • Meyer, S., Glaser, B., Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol., 45, 9473–9483. doi:10.1021/es201792c
  • Micháleková-Richveisová, B., Frišták, V., Pipíška, M., Ďuriška, L., Moreno-Jimenez, E., and Soja, G. (2017). Iron-impregnated biochars as effective phosphate sorption materials. Environ. Sci. Pollut. Res., 24, 463–475. doi:10.1007/s11356-016-7820-9
  • Mimmo, T., Panzacchi, P., Baratieri, M., Davies, C. A., and Tonon, G. (2014). Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass and Bioenergy, 62, 149–157. doi:10.1016/j.biombioe.2014.01.004
  • Mohan, D., Sarswat, A., Ok, Y. S., and Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresour. Technol., 160, 191–202. doi:10.1016/j.biortech.2014.01.120
  • Mohan, D., Sharma, R., Singh, V. K., Steele, P., and Pittman, C. U. (2012). Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modeling. Ind. Eng. Chem. Res., 51, 900–914. doi:10.1021/ie202189v
  • Moon, D. H., Park, J. W., Chang, Y. Y., Ok, Y. S., Lee, S. S., Ahmad, M., Koutsospyros, A., Park, J. H., and Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res., 20, 8464–8471. doi:10.1007/s11356-013-1964-7
  • Moussavi, G., and Khosravi, R. (2012). Preparation and characterization of a biochar from pistachio hull biomass and its catalytic potential for ozonation of water recalcitrant contaminants. Bioresour. Technol., 119, 66–71. doi:10.1016/j.biortech.2012.05.101
  • Mukherjee, A., and Lal, R. (2014). The biochar dilemma. Soil Res., 52, 217–230. doi:10.1071/SR13359
  • Mukome, F. N. D., Kilcoyne, A. L. D., and Parikh, S. J. (2014). Alteration of biochar carbon chemistry during soil incubations: SR-FTIR and NEXAFS investigation. Soil Sci. Soc. Am. J., 78, 1632. doi:10.2136/sssaj2014.05.0206
  • Mukome, F. N. D., and Parikh, S. J. (2015). Chemical, physical, and surface characterization of biochar, In: Ok, Y. S., Uchimiya, S. M., Chang, S. X., and Bolan, N. (Eds.), Production, characterization, and applications. (pp. 67–96). Boca Raton: CRC Press.
  • Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., and Parikh, S. J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agric. Food Chem., 61, 2196–2204. doi:10.1021/jf3049142
  • Mulcahy, D. N., Mulcahy, D. L., and Dietz, D. (2013). Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J. Arid Environ., 88, 222–225. doi:10.1016/j.jaridenv.2012.07.012
  • Nanda, S., Mohanty, P., Pant, K. K., Naik, S., Kozinski, J. A., and Dalai, A. K. (2013). Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. BioEnergy Res., 6, 663–677. doi:10.1007/s12155-012-9281-4
  • Nelissen, V., Saha, B. K., Ruysschaert, G., and Boeckx, P. (2014). Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem., 70, 244–255. doi:10.1016/j.soilbio.2013.12.026
  • Neves, E. G., and Petersen, J. B. (2006). Political economy and pre-Columbian landscape transformations in Central Amazonia, In: Balée, W. and Erickson, C. L. (Eds.), Time and complexity in historical ecology: studies in the neotropical lowlands (pp. 279–309). New York: Columbia University Press.
  • Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A., and Niandou, M. A. S. (2010). Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154, 281–288. doi:10.1016/j.geoderma.2009.10.014
  • Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., and Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy Sand. Ann. Environ. Sci., 3, 195–206.
  • Ogawa, M., Okimori, Y., Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitig. Adapt. Strateg. Glob. Chang., 11, 421–436. doi:10.1007/s11027-005-9007-4
  • Ok, Y. S., Chang, S. X., Gao, B., and Chung, H. J. (2015). SMART biochar technology-A shifting paradigm towards advanced materials and healthcare research. Environ. Technol. Innov., 4, 206–209. doi:10.1016/j.eti.2015.08.003
  • Oleszczuk, P., Jośko, I., and Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. J. Hazard. Mater., 260, 375–382. doi:10.1016/j.jhazmat.2013.05.044
  • Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N. D., and Calderón, F. J. (2014). Chapter one – soil chemical insights provided through vibrational spectroscopy. Adv. Agron., 126, 1–148.
  • Park, J. H., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., and Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77–83. doi:10.1016/j.chemosphere.2015.05.093
  • Park, J. H., Ok, Y. S., Kim, S. H., Kang, S. W., Cho, J. S., Heo, J. S., Delaune, R. D., and Seo, D. C. (2015). Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. J. Korean Soc. Appl. Biol. Chem., 58, 751–760. doi:10.1007/s13765-015-0103-1
  • Pastor-Villegas, J., Pastor-Valle, J. F., Rodríguez, J. M. M., and García, M. G. (2006). Study of commercial wood charcoals for the preparation of carbon adsorbents. J. Anal. Appl. Pyrolysis, 76, 103–108. doi:10.1016/j.jaap.2005.08.002
  • Pastor-Villegas, J., Valenzuela-Calahorro, C., Bernalte-Garcia, A., and Gomez-Serrano, V. (1993). Characterization study of char and activated carbon prepared from raw and extracted rockrose. Carbon N. Y., 31, 1061–1069. doi:10.1016/0008-6223(93)90057-H
  • Pietikainen, J., Kiikkila, O., and Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89, 231–242. doi:10.1034/j.1600-0706.2000.890203.x
  • Pituello, C., Francioso, O., Simonetti, G., Pisi, A., Torreggiani, A., Berti, A., and Morari, F. (2015). Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soils Sediments, 15, 792–804. doi:10.1007/s11368-014-0964-7
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., and Huhnke, R. (2015). Recent advances in utilization of biochar. Renew. Sustain. Energy Rev., 42, 1055–1064. doi:10.1016/j.rser.2014.10.074
  • Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K. R., Chang, J. Y., Lee, S. S., and Ok, Y. S. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environ. Geochem. Health, 37, 931–942. doi:10.1007/s10653-015-9694-z
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C. W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N. S., and Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291. doi:10.1016/j.chemosphere.2016.01.043
  • Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., and Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour. Technol., 166, 303–308. doi:10.1016/j.biortech.2014.05.029
  • Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., and Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils, 48, 271–284. doi:10.1007/s00374-011-0624-7
  • Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., and Ok, Y. S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environ. Sci. Pollut. Res., 23, 2230–2248. doi:10.1007/s11356-015-5697-7
  • Ronsse, F., van Hecke, S., Dickinson, D., and Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5, 104–115. doi:10.1111/gcbb.12018
  • Rutherford, D. W., Wershaw, R. L., Rostad, C. E., and Kelly, C. N. (2012). Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass and Bioenergy, 46, 693–701. doi:10.1016/j.biombioe.2012.06.026
  • Saikia, R., Chutia, R. S., Kataki, R., and Pant, K. K. (2015). Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour. Technol., 188, 265–272. doi:10.1016/j.biortech.2015.01.089
  • Salame, I. I., and Bandosz, T. J. (2001). Surface chemistry of activated carbons: Combining the results of temperature-programmed desorption, boehm, and potentiometric titrations. J. Colloid Interface Sci., 240, 252–258. doi:10.1006/jcis.2001.7596
  • Shahkarami, S., Azargohar, R., Dalai, A. K., and Soltan, J. (2015). Breakthrough CO2 adsorption in bio-based activated carbons. J. Environ. Sci., 34, 68–76. doi:10.1016/j.jes.2015.03.008
  • Shen, Y., Linville, J. L., Ignacio-de Leon, P. A. A., Schoene, R. P., and Urgun-Demirtas, M. (2016). Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. J. Clean. Prod., 135, 1054–1064. doi:10.1016/j.jclepro.2016.06.144
  • Shneour, E. A. (1966). Oxidation of graphitic carbon in certain soils. Science, 151, 991–992. doi:10.1126/science.151.3713.991
  • Sigmund, G., Hüffer, T., Hofmann, T., and Kah, M. (2016). Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Sci. Total Environ., doi:10.1016/j.scitotenv.2016.12.023
  • Singh, B. P., Hatton, B. J., Balwant, S., Cowie, A. L., and Kathuria, A. (2010). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual., 39, 1224–35.
  • Smith, C. R., Sleighter, R. L., Hatcher, P. G., and Lee, J. W. (2013). Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol., 47, 13294–13302. doi:10.1021/es4034777
  • Sorrenti, G., Masiello, C. A., Dugan, B., and Toselli, M. (2016). Biochar physico-chemical properties as affected by environmental exposure. Sci. Total Environ., 563, 237–246. doi:10.1016/j.scitotenv.2016.03.245
  • Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., and Nichols, K. A. (2012). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual., 41, 973. doi:10.2134/jeq2011.0069
  • Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G., and Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85, 869–882. doi:10.1016/j.chemosphere.2011.06.108
  • Spokas, K. A., and Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci., 3.
  • Srinivasan, P., Sarmah, A. K., Smernik, R., Das, O., Farid, M., and Gao, W. (2015). A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications. Sci. Total Environ., 512, 495–505. doi:10.1016/j.scitotenv.2015.01.068
  • Stefaniuk, M., and Oleszczuk, P. (2015). Characterization of biochars produced from residues from biogas production. J. Anal. Appl. Pyrolysis, 115, 157–165. doi:10.1016/j.jaap.2015.07.011
  • Steiner, C., Das, K. C., Melear, N., and Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual., 39, 1236–1242.
  • Steiner, C., Teixeira, W. G., Lehmann, J., and Zech, W. (2004). Microbial response to charcoal amendments of highly weathered soils and amazonian dark earths in central amazonia — preliminary results, in: amazonian dark earths: explorations in space and time (pp. 195–212). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-05683-7_15
  • Sun, L., Wan, S., and Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresour. Technol., 140, 406–413. doi:10.1016/j.biortech.2013.04.116
  • Sunyoto, N. M. S., Zhu, M., Zhang, Z., and Zhang, D. (2016). Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol., 219, 29–36. doi:10.1016/j.biortech.2016.07.089
  • Tsechansky, L., and Graber, E. R. (2014). Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration. Carbon N. Y., 66, 730–733. doi:10.1016/j.carbon.2013.09.044
  • UC Davis Biochar Database. (2015). UC davis biochar database [WWW Document]. URL http://biochar.ucdavis.edu/download/ (accessed 12.25.16).
  • Uchimiya, M., Lima, I. M., Klasson, K. T., and Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80, 935–940. doi:10.1016/j.chemosphere.2010.05.020
  • Uchimiya, S. M. (2015). Biochar production technology: An overview, In: Ok, Y. S., Uchimiya, S. M., Chang, S. X., and Bolan, N. (Eds.), Biochar production, characterization and applications (pp. 45–65). Broken Sound Parkway NW: CRC Press.
  • USDA. (2015). USDA, soil survey technical note 8 [WWW Document]. URL https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_053575 (accessed 12.25.16).
  • Usman, A. R. A., Abduljabbar, A., Vithanage, M., Ok, Y. S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S. S., and Al-Wabel, M. I. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis, 115, 392–400. doi:10.1016/j.jaap.2015.08.016
  • van Zwieten, L., Kimber, S., Morris, S., Downie, A., Berger, E., Rust, J., and Scheer, C. (2010). Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res., 48, 555. doi:10.1071/SR10004
  • Vithanage, M., Mayakaduwa, S. S., Herath, I., Ok, Y. S., and Mohan, D. (2016). Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 150, 781–789. doi:10.1016/j.chemosphere.2015.11.002
  • Vithanage, M., Rajapaksha, A. U., Ahmad, M., Uchimiya, M., Dou, X., Alessi, D. S., and Ok, Y. S. (2015). Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. J. Environ. Manage., 151, 443–449. doi:10.1016/j.jenvman.2014.11.005
  • Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S.-E., and Ok, Y. S. (2014). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J. Environ. Manage., 141, 95–103. doi:10.1016/j.jenvman.2014.02.030
  • Wagner, A., Kaupenjohann, M., Hu, Y., Kruse, J., and Leinweber, P. (2015). Biochar-induced formation of Zn-P-phases in former sewage field soils studied by P K-edge XANES spectroscopy. J. Plant Nutr. Soil Sci., 178, 582–585. doi:10.1002/jpln.201400601
  • Wang, D., Yuan, W., and Ji, W. (2011). Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl. Energy, 88, 1656–1663. doi:10.1016/j.apenergy.2010.11.041
  • Wang, Y., Lin, Y., Chiu, P. C., Imhoff, P. T., and Guo, M. (2015). Phosphorus release behaviors of poultry litter biochar as a soil amendment. Sci. Total Environ., 512, 454–463. doi:10.1016/j.scitotenv.2015.01.093
  • Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., and Xing, B. (2013). Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ. Pollut., 174, 289–296. doi:10.1016/j.envpol.2012.12.003
  • Wardle, D. A., Nilsson, M. C., and Zackrisson, O. (2008). Fire-derived charcoal causes loss of Forest Humus. Science (80-.)., 320.
  • Wells, H. C., Sizeland, K. H., Edmonds, R. L., Aitkenhead, W., Kappen, P., Glover, C., Johannessen, B., and Haverkamp, R. G. (2014). Stabilizing chromium from leather waste in Biochar. ACS Sustain. Chem. Eng., 2, 1864–1870. doi:10.1021/sc500212r
  • Winter, M., and Brodd, R. J. (2004). What are Batteries, fuel cells, and supercapacitors? Chem. Rev., 104, 4245–4270. doi:10.1021/CR020730K
  • Wu, H., Yip, K., Tian, F., Xie, Z., and Li, C. Z. (2009). Evolution of char structure during the steam gasification of biochars produced from the pyrolysis of various Mallee Biomass Components. Ind. Eng. Chem. Res., 48, 10431–10438. doi:10.1021/ie901025d
  • Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., and Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268–276. doi:10.1016/j.biombioe.2012.09.034
  • Xu, G., Sun, J., Shao, H., and Chang, S. X. (2014). Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng., 62, 54–60. doi:10.1016/j.ecoleng.2013.10.027
  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., and Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J., 200, 673–680. doi:10.1016/j.cej.2012.06.116
  • Yan, Q., Wan, C., Liu, J., Gao, J., Yu, F., Zhang, J., and Cai, Z. (2013). Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chem., 15, 1631. doi:10.1039/c3gc37107g
  • Yanai, Y., Toyota, K., and Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr., 53, 181–188. doi:10.1111/j.1747-0765.2007.00123.x
  • Yao, F. X., Arbestain, M. C., Virgel, S., Blanco, F., Arostegui, J., Maciá-Agulló, J. A., and Macías, F. (2010). Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere, 80, 724–732. doi:10.1016/j.chemosphere.2010.05.026
  • Yao, Y., Gao, B., Chen, J., and Yang, L. (2013a). Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environ. Sci. Technol., 47, 8700–8708. doi:10.1021/es4012977
  • Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., and Yang, L. (2013b). Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresour. Technol., 138, 8–13. doi:10.1016/j.biortech.2013.03.057
  • Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A. E., Sun, Y., and Yang, L. (2014). Characterization and environmental applications of clay–biochar composites. Chem. Eng. J., 242, 136–143. doi:10.1016/j.cej.2013.12.062
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., and Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard. Mater., 190, 501–507. doi:10.1016/j.jhazmat.2011.03.083
  • Yargicoglu, E. N., Sadasivam, B. Y., Reddy, K. R., and Spokas, K. (2015). Physical and chemical characterization of waste wood derived biochars. Waste Manag., 36, 256–268. doi:10.1016/j.wasman.2014.10.029
  • Yip, K., Wu, H., and Zhang, D. (2007). Effect of Inherent Moisture in Collie Coal during Pyrolysis Due to in-Situ Steam Gasification. Energy and Fuels, 21, 2883–2891. doi:10.1021/EF7002443
  • Yuan, S., Zhou, Z., Li, J., Chen, X., and Wang, F. (2010). HCN and NH3 Released from biomass and soybean cake under rapid pyrolysis. Energy & Fuels, 24, 6166–6171. doi:10.1021/ef100959g
  • Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., and Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ., 139, 469–475. doi:10.1016/j.agee.2010.09.003
  • Zhang, M., and Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem. Eng. J., 226, 286–292. doi:10.1016/j.cej.2013.04.077
  • Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., and Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol., 130, 457–462. doi:10.1016/j.biortech.2012.11.132
  • Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M. (2012). Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci. Total Environ., 435, 567–572. doi:10.1016/j.scitotenv.2012.07.038
  • Zhao, S., Huang, B., Ye, X. P., Shu, X., and Jia, X. (2014). Utilizing bio-char as a bio-modifier for asphalt cement: A sustainable application of bio-fuel by-product. Fuel, 133, 52–62. doi:10.1016/j.fuel.2014.05.002
  • Zhao, X., Ouyang, W., Hao, F., Lin, C., Wang, F., Han, S., and Geng, X. (2013). Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresour. Technol., 147, 338–344. doi:10.1016/j.biortech.2013.08.042
  • Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., and Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour. Technol., 152, 538–542. doi:10.1016/j.biortech.2013.11.021
  • Zhou, Y., Gao, B., Zimmerman, A. R., Fang, J., Sun, Y., and Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem. Eng. J., 231, 512–518. doi:10.1016/j.cej.2013.07.036
  • Zielińska, A., and Oleszczuk, P. (2015). The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass and Bioenergy, 75, 235–244. doi:10.1016/j.biombioe.2015.02.019
  • Zimmerman, A. R. (2010). Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environ. Sci. Technol., 44, 1295–1301. doi:10.1021/es903140c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.