2,753
Views
260
CrossRef citations to date
0
Altmetric
Original Articles

Removal of various pollutants from water and wastewater by modified chitosan adsorbents

ORCID Icon &
Pages 2331-2386 | Published online: 23 Jan 2018

References

  • Abu-Saied, M. A., Wycisk, R., Abbassy, M. M., El-Naim, G. A., El-Demerdash, F., Youssef, M. E., Bassuony, H., and Pintauro, P. N. (2017). Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions—Fabrication and sorption studies. Carbohydrate Polymers 165, 149–158. doi:10.1016/j.carbpol.2016.12.039.
  • Aliramaji, S., Zamanian, A., and Mozafari, M. (2017). Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science & Engineering C-Materials for Biological Applications 70, 736–744. doi:10.1016/j.msec.2016.09.039.
  • Alsbaiee, A., Smith, B. J., Xiao, L., Ling, Y., Helbling, D. E., and Dichtel, W. R. (2016). Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529(7585), 190–194. doi:10.1038/nature16185.
  • Amerkhanova, S., Shlyapov, R., and Uali, A. (2017). The active carbons modified by industrial wastes in process of sorption concentration of toxic organic compounds and heavy metals ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 532(5), 36–40. doi:10.1016/j.colsurfa.2017.07.015.
  • Annadurai, G. (2000). Design of optimum response surface experiments for adsorption of direct dye on chitosan. Bioprocess Engineering 23(5), 451–455. doi:10.1007/s004499900164.
  • Annadurai, G., Ling, L. Y., and Lee, J. F. (2008). Adsorption of reactive dye from an aqueous solution by chitosan: Isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials 152(1), 337–346. doi:10.1016/j.jhazmat.2007.07.002.
  • Appunni, S., Rajesh, M. P., and Prabhakar, S. (2016). Nitrate decontamination through functionalized chitosan in brackish water. Carbohydrate Polymers 147, 525–532. doi:10.1016/j.carbpol.2016.03.075.
  • Ayati, A., Tanhaei, B., and Sillanpää, M. (2017). Lead(II)-ion removal by ethylenediaminetetraacetic acid ligand functionalized magnetic chitosan-aluminum oxide-iron oxide nanoadsorbents and microadsorbents: Equilibrium, kinetics, and thermodynamics. Journal of Applied Polymer Science 134(4), 44360. doi:10.1002/app.44360.
  • Babel, S., and Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials 97(1–3), 219–243. doi:10.1016/S0304-3894(02)00263-7.
  • Badry, M. D., Wahba, M. A., Khaled, R., Ali, M. M., and Farghali, A. A. (2017). Synthesis, characterization, and in vitro anticancer evaluation of iron oxide/chitosan nanocomposites. Inorganic and Nano-Metal Chemistry 47(3), 405–411. doi:10.1080/15533174.2016.1186064.
  • Bai, Z. Y., Zhou, C. L., Gao, N., Pang, H. J., and Ma, H. Y. (2016). A chitosan-Pt nanoparticles/carbon nanotubes-doped phosphomolybdate nanocomposite as a platform for the sensitive detection of nitrite in tap water. Rsc Advances 6(2), 937–946. doi:10.1039/C5RA19383D.
  • Bailey, S. E., Olin, T. J., Bricka, R. M., and Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research 33(11), 2469–2479. doi:10.1016/S0043-1354(98)00475-8.
  • Banu, H. T., and Meenakshi, S. (2017). One pot synthesis of chitosan grafted quaternized resin for the removal of nitrate and phosphate from aqueous solution. International Journal of Biological Macromolecules 104(Pt B), 1517–1527. doi:10.1016/j.ijbiomac.2017.03.043.
  • Barrer, R. M., and MacLeod, D. M. (1954). Intercalation and sorption by montmorillonite transactions of the Faraday Society, 50, 980–989.
  • Bekci, Z., Ozveri, C., Seki, Y., and Yurdakoc, K. (2008). Sorption of malachite green on chitosan bead. Journal of Hazardous Materials 154(1–3), 254–261. doi:10.1016/j.jhazmat.2007.10.021.
  • Benamer, S., Mahlous, M., Tahtat, D., Nacer-Khodja, A., Arabi, M., Lounici, H., and Mameri, N. (2011). Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption. Radiation Physics and Chemistry 80(12), 1391–1397. doi:10.1016/j.radphyschem.2011.06.013.
  • Bhatnagar, A., and Sillanpaa, M. (2009). Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater – A short review. Advances in Colloid and Interface Science 152(1–2), 26–38. doi:10.1016/j.cis.2009.09.003.
  • Boddu, V. M., Abburi, K., Talbott, J. L., and Smith, E. D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science & Technology 37(19), 4449–4456. doi:10.1021/es021013a.
  • Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Arguelles-Monal, W., Desbrieres, J., and Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8), 3569–3580. doi:10.1016/S0032-3861(00)00713-8.
  • Bursali, E. A., Seki, Y., Seyhan, S., Delener, M., and Yurdakoc, M. (2011). Synthesis of chitosan beads as boron sorbents. Journal of Applied Polymer Science 122(1), 657–665. doi:10.1002/app.33331.
  • Caner, H., Hasipoglu, H., Yilmaz, O. and Yilmaz, E. (1998). Graft copolymerization of 4-vinylpyridine onto chitosan-I. by ceric ion initiation. European Polymer Journal 34(3–4), 493–497.
  • Cárdenas, G., Orlando, P., and Edelio, T. (2001). Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. International Journal of Biological Macromolecules 28(2), 167–174. doi:10.1016/S0141-8130(00)00156-2.
  • Casimiro, M. H., Botelho, M. L., Leal, J. P. and Gil, M. H. (2005). Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan. Radiation Physics and Chemistry 72(6), 731–735.
  • Chang, M. Y., and Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science 278(1), 18–25. doi:10.1016/j.jcis.2004.05.029.
  • Chang, Y. C., Chang, S. W., and Chen, D. H. (2006). Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co(II) ions. Reactive and Functional Polymers 66(3), 335–341. doi:10.1016/j.reactfunctpolym.2005.08.006.
  • Chang, Y. H., Zhang, L., Ying, H. J., Li, Z. J., Lv, H., and Ouyang, P. K. (2010). Desulfurization of gasoline using molecularly imprinted chitosan as selective adsorbents. Applied Biochemistry and Biotechnology 160(2), 593–603. doi:10.1007/s12010-008-8441-7.
  • Chatterjee, S., Chatterjee, S., Chatterjee, B. P., Das, A. R., and Guha, A. K. (2005). Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. Journal of Colloid and Interface Science 288(1), 30–35. doi:10.1016/j.jcis.2005.02.055.
  • Chatterjee, S., Chatterjee, S., Chatterjee, B. P., and Guha, A. K. (2007). Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 299(1–3), 146–152. doi:10.1016/j.colsurfa.2006.11.036.
  • Chatterjee, S., Chatterjee, T., Lim, S. R., and Woo, S. H. (2011a). Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environmental Technology 32(13), 1503–1514. doi:10.1080/09593330.2010.543157.
  • Chatterjee, S., Chatterjee, T., and Woo, S. H. (2011b). Influence of the polyethyleneimine grafting on the adsorption capacity of chitosan beads for Reactive Black 5 from aqueous solutions. Chemical Engineering Journal 166(1), 168–175. doi:10.1016/j.cej.2010.10.047.
  • Chen, A. H., Liu, S. C., Chen, C. Y., and Chen, C. Y. (2008). Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. Journal of Hazardous Materials 154(1–3), 184–191. doi:10.1016/j.jhazmat.2007.10.009.
  • Chen, C., and Wang, J. L. (2010). Removal of heavy metal ions by waste biomass of Saccharomyces Cerevisiae. Journal of Environmental Engineering 136(1), 95–102. doi:10.1061/(ASCE)EE.1943-7870.0000128.
  • Chen, Y. W., and Wang, J. L. (2009). The radiation-induced synthesis of hydrogels and their application for removal of heavy metal ions from aqueous solution. Progress in Chemistry (in Chinese) 21(10), 2250–2256.
  • Chen, Y. W., and Wang, J. L. (2012a). The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan. Nuclear Engineering and Design 242, 452–457. doi:10.1016/j.nucengdes.2011.11.004.
  • Chen, Y. W., and Wang, J. L. (2012b). Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nuclear Engineering and Design 242, 445–451. doi:10.1016/j.nucengdes.2011.10.059.
  • Chen, Y. W., and Wang, J. L. (2016). Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde. Nuclear Science and Techniques 27(2), 1–6. doi:10.1007/s41365-016-0033-6.
  • Cheung, W. H., Szeto, Y. S., and McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology 98(15), 2897–2904. doi:10.1016/j.biortech.2006.09.045.
  • Chiou, M. S., Ho, P. Y., and Li, H. Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments 60(1), 69–84. doi:10.1016/S0143-7208(03)00140-2.
  • Chiou, M. S., and Li, H. Y. (2002). Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Journal of Hazardous Materials 93(2), 233–248. doi:10.1016/S0304-3894(02)00030-4.
  • Chiou, M. S., and Li, H. Y. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50(8), 1095–1105. doi:10.1016/S0045-6535(02)00636-7.
  • Copello, G. J., Varela, F., Vivot, R. M., and Diaz, L. E. (2008). Immobilized chitosan as biosorbent for the removal of Cd(II), Cr(III) and Cr(VI) from aqueous solutions. Bioresource Technology 99(14), 6538–6544. doi:10.1016/j.biortech.2007.11.055.
  • Crini, G., and Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science 33(4), 399–447. doi:10.1016/j.progpolymsci.2007.11.001.
  • Crini, G., Gimbert, F., Robert, C., Martel, B., Adam, O., Morin-Crini, N., De Giorgi, F., and Badot, P. M. (2008a). The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: Batch studies. Journal of Hazardous Materials 153(1–2), 96–106. doi:10.1016/j.jhazmat.2007.08.025.
  • Crini, G., Martel, B., and Torri, G. (2008b). Adsorption of C.I. Basic Blue 9 on chitosan-based materials. International Journal of Environment and Pollution 34(1–4), 451–465. doi:10.1504/IJEP.2008.020809.
  • Dai, J., Yang, H., Yan, H., Shangguan, Y. G., Zheng, Q., and Cheng, R. S. (2011). Phosphate adsorption from aqueous solutions by disused adsorbents: Chitosan hydrogel beads after the removal of copper(II). Chemical Engineering Journal 166(3), 970–977. doi:10.1016/j.cej.2010.11.085.
  • Demey, H., Vincent, T., Ruiz, M., Sastre, A. M., and Guibal, E. (2014). Development of a new chitosan/Ni(OH)2-based sorbent for boron removal. Chemical Engineering Journal 244, 576–586. doi:10.1016/j.cej.2014.01.052.
  • Dhanya, A., and Aparna, K. (2016). Synthesis and evaluation of TiO2/Chitosan based hydrogel for the adsorptional photocatalytic degradation of azo and anthraquinone dye under UV light irradiation. Procedia Technology 24, 611–618.
  • Dong, C. L., Chen, W., Liu, C., Liu, Y., and Liu, H. C. (2014). Synthesis of magnetic chitosan nanoparticle and its adsorption property for humic acid from aqueous solution. Colloids and Surfaces a-Physicochemical and Engineering Aspects 446, 179–189.
  • Dotto, G. L., Moura, J. M., Cadaval, T. R. S., and Pinto, L. A. A. (2013). Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chemical Engineering Journal 214, 8–16. doi:10.1016/j.cej.2012.10.027.
  • Dotto, G. L., and Pinto, L. A. (2011a). Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. Journal of Hazardous Materials 187(1–3), 164–170. doi:10.1016/j.jhazmat.2011.01.016.
  • Dotto, G. L., and Pinto, L. A. A. (2011b). Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohydrate Polymers 84(1), 231–238. doi:10.1016/j.carbpol.2010.11.028.
  • Elbarbary, A. M., and Ghobashy, M. M. (2017). Phosphorylation of chitosan/HEMA interpenetrating polymer network prepared by γ-radiation for metal ions removal from aqueous solutions. Carbohydrate Polymers 162, 16–27.
  • Elwakeel, K. Z., El-Bindary, A. A., Ismail, A., and Morshidy, A. M. (2017). Magnetic chitosan grafted with polymerized thiourea for remazol brilliant blue R recovery: Effects of uptake conditions. Journal of Dispersion Science and Technology 38(7), 943–952. doi:10.1080/01932691.2016.1216436.
  • Fan, L., Li, M., Lv, Z., Sun, M., Luo, C. N., Lu, F. G., and Qiu, H. M. (2012). Fabrication of magnetic chitosan nanoparticles grafted with beta-cyclodextrin as effective adsorbents toward hydroquinol. Colloids and Surfaces B: Biointerfaces 95, 42–49. doi:10.1016/j.colsurfb.2012.02.007.
  • Fan, L. L., Luo, C. N., Sun, M., Qiu, H. M., and Li, X. J. (2013). Synthesis of magnetic beta-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B-Biointerfaces 103, 601–607. doi:10.1016/j.colsurfb.2012.11.023.
  • Filipkowska, U. (2006). Adsorption and desorption of reactive dyes onto chitin and chitosan flakes and beads. Adsorption Science and Technology 24(9), 781–795. doi:10.1260/026361706781388932.
  • Garza-Navarro, M. A., Torres-Castro, A., García-Gutiérrez, D. I., Ortiz-Rivera, L., Wang, Y. C., and González-González, V. A. (2010). Synthesis of spinel-metal-oxide/biopolymer hybrid nanostructured materials. The Journal of Physical Chemistry C 114(41), 17574–17579. doi:10.1021/jp106811w.
  • Gazi, M., and Shahmohammadi, S. (2012). Removal of trace boron from aqueous solution using iminobis-(propylene glycol) modified chitosan beads. Reactive and Functional Polymers 72(10), 680–686. doi:10.1016/j.reactfunctpolym.2012.06.016.
  • Ge, H. C., Chen, H., and Huang, S. Y. (2012). Microwave preparation and properties of O-crosslinked maleic acyl chitosan adsorbent for Pb2+ and Cu2+. Journal of Applied Polymer Science 125(4), 2716–2723. doi:10.1002/app.36588.
  • Ge, H. C., and Hua, T. T. (2016). Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption. Carbohydrate Polymers 153, 246–252. doi:10.1016/j.carbpol.2016.07.110.
  • Ge, H. C., and Huang, S. Y. (2010). Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. Journal of Applied Polymer Science 115(1), 514–519. doi:10.1002/app.30843.
  • Ge, H. C., and Luo, D. K. (2005). Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydrate Research 340(7), 1351–1356. doi:10.1016/j.carres.2005.02.025.
  • Golie, W. M., and Upadhyayula, S. (2016). Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. Journal of Water Process Engineering 12, 58–65. doi:10.1016/j.jwpe.2016.06.007.
  • Golie, W. M., and Upadhyayula, S. (2017). An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. International Journal of Biological Macromolecules 97, 489–502. doi:10.1016/j.ijbiomac.2017.01.066.
  • Goncalves, J. O., Santos, J. P., Rios, E. C., Crispim, M. M., Dotto, G. L., and Pinto, L. A. A. (2017). Development of chitosan based hybrid hydrogels for dyes removal from aqueous binary system. Journal of Molecular Liquids 225, 265–270. doi:10.1016/j.molliq.2016.11.067.
  • Guibal, E. (2005). Heterogeneous catalysis on chitosan-based materials: A review. Progress in Polymer Science 30(1), 71–109. doi:10.1016/j.progpolymsci.2004.12.001.
  • Guibal, E., McCarrick, P., and Tobin, J. M. (2003). Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Separation Science and Technology 38(12–13), 3049–3073. doi:10.1081/SS-120022586.
  • Guibal, E., Touraud, E., and Roussy, J. (2005). Chitosan interactions with metal ions and dyes: Dissolved-state vs. solid-state application. World Journal of Microbiology and Biotechnology 21(6), 913–920. doi:10.1007/s11274-004-6559-5.
  • Guo, H. F., Lam, N. Y. K., Yang, C. X., and Li, L. (2017). Simulating three-dimensional dynamics of flexible fibers in a ring spinning triangle: Chitosan and cotton fibers. Textile Research Journal 87(11), 1403–1410. doi:10.1177/0040517516654106.
  • Guo, P., Anderson, J. D., Bozell, J. J., and Zivanovic, S. (2016). The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohydrate Polymers 140, 171–180. doi:10.1016/j.carbpol.2015.12.015.
  • Guo, T. Y., Xia, Y. Q., Hao, G. J., Zhang, B. H., Fu, G. Q., Yuan, Z., He, B. L., and Kennedy, J. F. (2005). Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer. Carbohydrate Polymers 62(3), 214–221. doi:10.1016/j.carbpol.2005.03.012.
  • Gutha, Y., Zhang, Y., Zhang, W. and Jiao, X. (2017). Magnetic-epichlorohydrin crosslinked chitosan schiff's base (m-ECCSB) as a novel adsorbent for the removal of Cu(II) ions from aqueous environment. International Journal of Biological Macromolecules 97, 85–98.
  • Habiba, U., Afifi, A. M., Salleh, A., and Ang, B. C. (2017). Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials 322(Pt A), 182–194. doi:10.1016/j.jhazmat.2016.06.028.
  • Hadi, P., Xu, M., Ning, C., Sze Ki Lin, C., and McKay, G. (2015). A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal 260, 895–906. doi:10.1016/j.cej.2014.08.088.
  • Hasan, M., Ahmad, A. L., and Hameed, B. H. (2008). Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chemical Engineering Journal 136(2–3), 164–172. doi:10.1016/j.cej.2007.03.038.
  • Huang, C. H., Hsieh, T. H., and Chiu, W. Y. (2015). Evaluation of thermally crosslinkable chitosan-based nanofibrous mats for the removal of metal ions. Carbohydrate Polymers 116, 249–254. doi:10.1016/j.carbpol.2014.07.029.
  • Huang, D. J., Wang, W. B., Kang, Y. R. and Wang, A. Q. (2012). Efficient adsorption and recovery of Pb(II) from aqueous solution by a granular pH-sensitive chitosan-based semi-IPN hydrogel. Journal of Macromolecular Science A 49(11), 971–979.
  • Huang, X. Y., Bin, J. P., Bu, H. T., Jiang, G. B., and Zeng, M. H. (2011). Removal of anionic dye eosin Y from aqueous solution using ethylenediamine modified chitosan. Carbohydrate Polymers 84(4), 1350–1356. doi:10.1016/j.carbpol.2011.01.033.
  • Ignat, M. E., Dulman, V., and Onofrei, T. (2012). Reactive red 3 and direct brown 95 dyes adsorption onto chitosan. Cellulose Chemistry and Technology 46(5–6), 357–367.
  • Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N., and Rayalu, S. (2009). New modified chitosan-based adsorbent for defluoridation of water. Journal of Colloid and Interface Science 332(2), 280–290. doi:10.1016/j.jcis.2008.11.080.
  • Jagtap, S., Yenkie, M. K. N., Labhsetwar, N., and Rayalu, S. (2011). Defluoridation of drinking water using chitosan based mesoporous alumina. Microporous and Mesoporous Materials 142(2–3), 454–463. doi:10.1016/j.micromeso.2010.12.028.
  • Jayakumar, R., Prabaharan, M., Nair, S. V., Tokura, S., Tamura, H., and Selvamurugan, N. (2010). Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science 55(7), 675–709. doi:10.1016/j.pmatsci.2010.03.001.
  • Jayakumar, R., Prabaharan, M., Reis, R. L., and Mano, J. F. (2005). Graft copolymerized chitosan – present status and applications. Carbohydrate Polymers 62(2), 142–158. doi:10.1016/j.carbpol.2005.07.017.
  • Jo, A., Jang, G., Namgung, H., Kim, C., Kim, D., Kim, Y., Kim, J., and Lee, T. S. (2015). Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates. Journal of Hazardous Materials 300, 227–234. doi:10.1016/j.jhazmat.2015.06.051.
  • Jones, W. J., and Ross, R. A. (1967). The sorption of sulphur dioxide on silica gel. Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1021–1026. doi:10.1039/j19670001021.
  • Juang, R. S., Tseng, R. L., Wu, F. C., and Lee, S. H. (1997). Adsorption behavior of reactive dyes from aqueous solutions on chitosan. Journal of Chemical Technology and Biotechnology 70(4), 391–399. doi:10.1002/(SICI)1097-4660(199712)70:4%3c391::AID-JCTB792%3e3.0.CO;2-V.
  • Kamari, A., Ngah, W. S. W., Chong, M. Y., and Cheah, M. L. (2009a). Sorption of acid dyes onto GLA and H2SO4 cross-linked chitosan beads. Desalination 249(3), 1180–1189. doi:10.1016/j.desal.2009.04.010.
  • Kamari, A., Wan Saime, W. N., and Lai Ken, L. (2009b). Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences 21(3), 296–302. doi:10.1016/S1001-0742(08)62267-6.
  • Kaushik, A., Solanki, P. R., Pandey, M. K., Ahmad, S., and Malhotra, B. D. (2009). Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. Applied Physics Letters 95(17), 173707. doi:10.1063/1.3249586.
  • Kazemi, E., Dadfarnia, S., Shabani, A. M. H., and Ranjbar, M. (2017). Synthesis, characterization, and application of a Zn (II)-imprinted polymer grafted on graphene oxide/magnetic chitosan nanocomposite for selective extraction of zinc ions from different food samples. Food Chemistry 237, 921–928. doi:10.1016/j.foodchem.2017.06.053.
  • Kim, T. Y., Park, S. S., and Cho, S. Y. (2012). Adsorption characteristics of Reactive Black 5 onto chitosan beads cross-linked with epichlorohydrin. Journal of Industrial and Engineering Chemistry 18(4), 1458–1464. doi:10.1016/j.jiec.2012.02.006.
  • Kluczka, J., Gnus, M., Dudek, G., and Turczyn, R. (2017). Removal of boron from aqueous solution by composite chitosan beads. Separation Science and Technology 52(9), 1559–1571.
  • Konaganti, V. K., Kota, R., Patil, S., and Madras, G. (2010). Adsorption of anionic dyes on chitosan grafted poly(alkyl methacrylate)s. Chemical Engineering Journal 158(3), 393–401. doi:10.1016/j.cej.2010.01.003.
  • Kongkaoroptham, P., Piroonpan, T., Hemvichian, K., Suwanmala, P., Rattanasakulthong, W. and Pasanphan, W. (2015). Poly(ethylene glycol) methyl ether methacrylate-graft-chitosan nanoparticles as a biobased nanofiller for a poly(lactic acid) blend: Radiation-induced grafting and performance studies. Journal of Applied Polymer Science 132(37), 425522.
  • Kurita, K., Sannan, T., and Iwakura, Y. (1979). Studies on chitin. VI. Binding of metal cations. Journal of Applied Polymer Science 23(2), 511–515. doi:10.1002/app.1979.070230221.
  • Kyzas, G. Z., Kostoglou, M., Vassiliou, A. A., and Lazaridis, N. K. (2011). Treatment of real effluents from dyeing reactor: Experimental and modeling approach by adsorption onto chitosan. Chemical Engineering Journal 168(2), 577–585. doi:10.1016/j.cej.2011.01.026.
  • Kyzas, G. Z., Lazaridis, N. K., and Kostoglou, M. (2012). Modelling the effect of pre-swelling on adsorption dynamics of dyes by chitosan derivatives. Chemical Engineering Science 81, 220–230. doi:10.1016/j.ces.2012.07.007.
  • Kyzas, G. Z., Lazaridis, N. K., and Kostoglou, M. (2014). Adsorption/desorption of a dye by a chitosan derivative: Experiments and phenomenological modeling. Chemical Engineering Journal 248, 327–336. doi:10.1016/j.cej.2014.03.063.
  • Lazaridis, N. K., and Keenan, H. (2010). Chitosan beads as barriers to the transport of azo dye in soil column. Journal of Hazardous Materials 173(1–3), 144–150. doi:10.1016/j.jhazmat.2009.08.062.
  • Li, C. G., Cui, J. H., Wang, F., Peng, W. G., and He, Y. H. (2016a). Adsorption removal of Congo red by epichlorohydrin-modified cross-linked chitosan adsorbent. Desalination and Water Treatment 57(30), 14060–14066. doi:10.1080/19443994.2015.1060904.
  • Li, K., Li, P., Cai, J., Xiao, S. J., Yang, H., and Li, A. (2016b). Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere 154, 310–318. doi:10.1016/j.chemosphere.2016.03.100.
  • Li, L. L., Fan, L. L., Sun, M., Qiu, H. M., Li, X. J., Duan, H. M., and Luo, C. N. (2013a). Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. Colloids and Surfaces B: Biointerfaces 107, 76–83. doi:10.1016/j.colsurfb.2013.01.074.
  • Li, N., and Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology 42(3), 237–247.
  • Li, N., and Bai, R. (2006). Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance cn in heavy metal removal. Water Science and Technology 54(10), 103–113. doi:10.2166/wst.2006.736.
  • Li, Y., Qiu, T. B., and Xu, X. Y. (2013b). Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. European Polymer Journal 49(6), 1487–1494. doi:10.1016/j.eurpolymj.2013.04.002.
  • Lin, Y., Hong, Y., Song, Q., Zhang, Z., Gao, J. and Tao, T. (2017). Highly efficient removal of copper ions from water using poly(acrylic acid)-grafted chitosan adsorbent. Colloid and Polymer Science 295(4), 627–635.
  • Liu, B. J., Wang, D. F., Yu, G. L., and Meng, X. H. (2013). Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives – A review. Journal of Ocean University of China 12(3), 500–508. doi:10.1007/s11802-013-2113-0.
  • Liu, Q., Yang, B. C., Zhang, L. J., and Huang, R. H. (2015). Simultaneous adsorption of aniline and Cu2+ from aqueous solution using activated carbon/chitosan composite. Desalination and Water Treatment 55(2), 410–419. doi:10.1080/19443994.2014.923331.
  • Mahmoodi, N. M., Salehi, R., Arami, M., and Bahrami, H. (2011). Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 267(1), 64–72. doi:10.1016/j.desal.2010.09.007.
  • Malik, D. S., Jain, C. K., and Yadav, A. K. (2016). Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Applied Water Science 7(5), 2113–2136. doi:10.1007/s13201-016-0401-8.
  • Masri, M. S., Reuter, F. W., and Friedman, M. (1974). Binding of metal cations by natural substances. Journal of Applied Polymer Science 18(3), 675–681. doi:10.1002/app.1974.070180305.
  • Mello, K. G. P. C. D., Bernusso, L. D. C., and Polakiewicz, B. (2006). Synthesis and physicochemical characterization of chemically modified chitosan by succinic anhydride. Brazilian Archives of Biology and Technology 49(4), 665–668. doi:10.1590/S1516-89132006000500017.
  • Merrifield, J. D., Davids, W. G., MacRae, J. D., and Amirbahman, A. (2004). Uptake of mercury by thiol-grafted chitosan gel beads. Water Research 38(13), 3132–3138. doi:10.1016/j.watres.2004.04.008.
  • Mi, F. L., Shyu, S. S., Wu, Y. B., Lee, S. T., Shyong, J. Y., and Huang, R. N. (2001). Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22(2), 165–173. doi:10.1016/S0142-9612(00)00167-8.
  • Min, L. L., Yuan, Z. H., Zhong, L. B., Liu, Q., Wu, R. X., and Zheng, Y. M. (2015). Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution. Chemical Engineering Journal 267, 132–141. doi:10.1016/j.cej.2014.12.024.
  • Miretzky, P., and Cirelli, A. F. (2011). Fluoride removal from water by chitosan derivatives and composites: A review. Journal of Fluorine Chemistry 132(4), 231–240. doi:10.1016/j.jfluchem.2011.02.001.
  • Mirmohseni, A., Seyed Dorraji, M. S., Figoli, A., and Tasselli, F. (2012). Chitosan hollow fibers as effective biosorbent toward dye: Preparation and modeling. Bioresource Technology 121, 212–220. doi:10.1016/j.biortech.2012.06.067.
  • Monier, M., and Abdel-Latif, D. A. (2017). Fabrication of Au(III) ion-imprinted polymer based on thiol-modified chitosan. International Journal of Biological Macromolecules 105(Pt 1), 777–787. doi:10.1016/j.ijbiomac.2017.07.098.
  • Morais, W. A., Fernandes, A. L. P., Dantas, T. N. C., Pereira, M. R., and Fonseca, J. L. C. (2007). Sorption studies of a model anionic dye on crosslinked chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 310(1–3), 20–31. doi:10.1016/j.colsurfa.2007.05.055.
  • Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., and Kundu, P. P. (2015). pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. International Journal of Biological Macromolecules 72, 640–648. doi:10.1016/j.ijbiomac.2014.08.040.
  • Nagireddi, S., Katiyar, V., and Uppaluri, R. (2017). Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. International Journal of Biological Macromolecules 94, 72–84. doi:10.1016/j.ijbiomac.2016.09.088.
  • Ngah, W. S. W., Endud, C. S., and Mayanar, R. (2002). Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive & Functional Polymers 50(2), 181–190. doi:10.1016/S1381-5148(01)00113-4.
  • Ngah, W. S. W., and Musa, A. (1998). Adsorption of humic acid onto chitin and chitosan. Journal of Applied Polymer Science 69(12), 2305–2310. doi:10.1002/(SICI)1097-4628(19980919)69:12%3c2305::AID-APP1%3e3.0.CO;2-C.
  • Ngah, W. S. W., Teong, L. C., and Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers 83(4), 1446–1456. doi:10.1016/j.carbpol.2010.11.004.
  • Nishad, P. A., Bhaskarapillai, A., Velmurugan, S., and Narasimhan, S. V. (2012). Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination. Carbohydrate Polymers 87(4), 2690–2696. doi:10.1016/j.carbpol.2011.11.061.
  • Oladipo, A. A., and Gazi, M. (2016). Hydroxyl-enhanced magnetic chitosan microbeads for boron adsorption: Parameter optimization and selectivity in saline water. Reactive & Functional Polymers 109, 23–32. doi:10.1016/j.reactfunctpolym.2016.09.005.
  • Oladipo, A. A., Gazi, M., and Yilmaz, E. (2015). Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: Selectivity factor and Box-Behnken process design. Chemical Engineering Research and Design 104, 264–279. doi:10.1016/j.cherd.2015.08.018.
  • Pandey, S. and Tiwari, S. (2015). Facile approach to synthesize chitosan based composite-Characterization and cadmium(II) ion adsorption studies. Carbohydrate Polymers 134, 646–656.
  • Paulino, A. T., Belfiore, L. A., Kubota, L. T., Muniz, E. C., Almeida, V. C., and Tambourgi, E. B. (2011). Effect of magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan-based hydrogels. Desalination 275(1–3), 187–196. doi:10.1016/j.desal.2011.02.056.
  • Pérez-Calixto, M. P., Ortega, A., Garcia-Uriostegui, L., and Burillo, G. (2016). Synthesis and characterization of N-vinylcaprolactam/N,N-dimethylacrylamide grafted onto chitosan networks by gamma radiation. Radiation Physics and Chemistry 119, 228–235. doi:10.1016/j.radphyschem.2015.10.030.
  • Pestov, A., and Bratskaya, S. (2016). Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21(3), 330. doi:10.3390/molecules21030330.
  • Pillai, C. K. S., Paul, W. and Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science 34(7), 641–678.
  • Qin, C. Q., Du, Y. M., Zhang, Z. Q., Liu, Y., Xiao, L., and Shi, X. W. (2003). Adsorption of Chromium (VI) on a Novel Quaternized Chitosan Resin. Journal of Applied Polymer Science 90(2), 505–510 doi:10.1002/app.12687.
  • Radwan, A. A., Alanazi, F. K., and Alsarra, I. A. (2010). Microwave irradiation-assisted synthesis of a novel crown ether crosslinked chitosan as a chelating agent for heavy metal ions (Mn+). Molecules 15(9), 6257–6268. doi:10.3390/molecules15096257.
  • Rafique, A., Mahmood Zia, K., Zuber, M., Tabasum, S., and Rehman, S. (2016). Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. International Journal of Biological Macromolecules 87, 141–154. doi:10.1016/j.ijbiomac.2016.02.035.
  • Rajiv Gandhi, M., Viswanathan, N., and Meenakshi, S. (2010). Preparation and application of alumina/chitosan biocomposite. International Journal of Biological Macromolecules 47(2), 146–154. doi:10.1016/j.ijbiomac.2010.05.008.
  • Rangel-Mendez, J. R., Monroy-Zepeda, R., Leyva-Ramos, E., Diaz-Flores, P. E., and Shirai, K. (2009). Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: PH and organic matter effect. Journal of Hazardous Materials 162(1), 503–511. doi:10.1016/j.jhazmat.2008.05.073.
  • Renu, Agarwal, M., and Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination 7(4), 387–419. doi:10.2166/wrd.2016.104.
  • Ren, Y., Abbood, H. A., He, F. B., Peng, H. and Huang, K. X. (2013). Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal 226, 300–311.
  • Repo, E., Koivula, R., Harjula, R., and Sillanpaa, M. (2013). Effect of EDTA and some other interfering species on the adsorption of Co(II) by EDTA-modified chitosan. Desalination 321, 93–102. doi:10.1016/j.desal.2013.02.028.
  • Repo, E., Malinen, L., Koivula, R., Harjula, R., and Sillanpaa, M. (2011). Capture of Co(II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan. Journal of Hazardous Materials 187(1–3), 122–132. doi:10.1016/j.jhazmat.2010.12.113.
  • Repo, E., Warchol, J. K., Kurniawan, T. A., and Sillanpaa, M. E. T. (2010). Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chemical Engineering Journal 161(1–2), 73–82. doi:10.1016/j.cej.2010.04.030.
  • Rezende de Almeida, F. T., Silva Ferreira, B. C., da Silva Lage Moreira, A. L., de Freitas, R. P., Gil, L. F. and Alves Gurgel, L. V. (2016). Application of a new bifunctionalized chitosan derivative with zwitterionic characteristics for the adsorption of Cu2+, Co2+, Ni2+, and oxyanions of Cr6+ from aqueous solutions: Kinetic and equilibrium aspects. Journal of Colloid and Interface Science 466, 297–309.
  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science 31(7), 603–632. doi:10.1016/j.progpolymsci.2006.06.001.
  • Rinaudo, M., Le Dung, P., Gey, C., and Milas, M. (1992). Substituent distribution on O,N-carboxymethylchitosans by 1H and 13C n.m.r. International Journal of Biological Macromolecules 14(3), 122–128. doi:10.1016/S0141-8130(05)80001-7.
  • Rinaudo, M., Milas, M., and Le Dung, P. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules 15(5), 281–285. doi:10.1016/0141-8130(93)90027-J.
  • Rocha, L. S., Almeida, A., Nunes, C., Henriques, B., Coimbra, M. A., Lopes, C. B., Silva, C. M., Duarte, A. C., and Pereira, E. (2016). Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chemical Engineering Journal 300, 217–229. doi:10.1016/j.cej.2016.04.054.
  • Saha, S., Chhatbar, M. U., Mahato, P., Praveen, L., Siddhanta, A. K., and Das, A. (2012). Rhodamine-alginate conjugate as self indicating gel beads for efficient detection and scavenging of Hg2+ and Cr3+ in aqueous media. Chemical Communications (Cambridge, England) 48(11), 1659–1661. doi:10.1039/C1CC16554B.
  • Sakkayawong, N., Thiravetyan, P., and Nakbanpote, W. (2005). Adsorption mechanism of synthetic reactive dye wastewater by chitosan. Journal of Colloid and Interface Science 286(1), 36–42. doi:10.1016/j.jcis.2005.01.020.
  • Salehi, E., Daraei, P., and Arabi Shamsabadi, A. (2016a). A review on chitosan-based adsorptive membranes. Carbohydrate Polymers 152, 419–432. doi:10.1016/j.carbpol.2016.07.033.
  • Salehi, E., Daraei, P., and Shamsabadi, A. A. (2016b). A review on chitosan-based adsorptive membranes. Carbohydrate Polymers 152, 419–432. doi:10.1016/j.carbpol.2016.07.033.
  • Santhana Krishna Kumar, A., Uday Kumar, C., Rajesh, V., and Rajesh, N. (2014). Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr(VI) adsorption. International Journal of Biological Macromolecules 66, 135–143.
  • Sargin, I., and Arslan, G. (2016). Effect of glutaraldehyde cross-linking degree of chitosan/sporopollenin microcapsules on removal of copper(II) from aqueous solution. Desalination and Water Treatment 57(23), 10664–10676. doi:10.1080/19443994.2015.1038738.
  • Sarkar, K., Banerjee, S. L., and Kundu, P. P. (2012). Removal of anionic dye in acid solution by self crosslinked insoluble dendronized chitosan. Journal of Hydrology Current Research 3, 2–9.
  • Sashiwa, H., and Aiba, S. I. (2004). Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science 29(9), 887–908. doi:10.1016/j.progpolymsci.2004.04.001.
  • Shaker, M. A. (2015). Adsorption of Co(II), Ni(II) and Cu(II) ions onto chitosan-modified poly(methacrylate) nanoparticles: Dynamics, equilibrium and thermodynamics studies. Journal of the Taiwan Institute of Chemical Engineers 57, 111–122. doi:10.1016/j.jtice.2015.05.027.
  • Sharififard, H., Zokaee Ashtiani, F., and Soleimani, M. (2013). Adsorption of palladium and platinum from aqueous solutions by chitosan and activated carbon coated with chitosan. Asia-Pacific Journal of Chemical Engineering 8(3), 74–85.
  • Shimizu, Y., Izumi, S., Saito, Y., and Yamaoka, H. (2004). Ethylenediamine tetraacetic acid modification of crosslinked chitosan designed for a novel metal-ion adsorbent. Journal of Applied Polymer Science 92(5), 2758–2764. doi:10.1002/app.20262.
  • Shimizu, Y., Saito, Y., and Nakamura, T. (2006). Crosslinking of chitosan with a trifunctional crosslinker and the adsorption of acid dyes and metal ions onto the resulting polymer. Adsorption Science and Technology 24(1), 29–39. doi:10.1260/026361706778062568.
  • Singh, V., Tripathi, D. N., Tiwari, A. and Sanghi, R. (2006). Microwave synthesized chitosan-graft-poly(methylmethacrylate): An efficient Zn2+ ion binder. Carbohydrate Polymers 65(1), 35–41.
  • Sowmya, A., and Meenakshi, S. (2013). An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions. Journal of Environmental Chemical Engineering 1(4), 906–915. doi:10.1016/j.jece.2013.07.031.
  • Spera, M. B. M., Taketa, T. B., and Beppu, M. M. (2017). Roughness dynamic in surface growth: Layer-by-layer thin films of carboxymethyl cellulose/chitosan for biomedical applications. Biointerphases 12(4), 401. doi:10.1116/1.4986057.
  • Stawinski, W., Wegrzyn, A., Danko, T., Freitas, O., Figueiredo, S., and Chmielarz, L. (2017). Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere 173, 107–115. doi:10.1016/j.chemosphere.2017.01.039.
  • Su, F. C., Zhou, H. J., Zhang, Y. X., and Wang, G. Z. (2016). Three-dimensional honeycomb-like structured zero-valent iron/chitosan composite foams for effective removal of inorganic arsenic in water. Journal of Colloid and Interface Science 478, 421–429. doi:10.1016/j.jcis.2016.06.035.
  • Sun, S. L., Wang, L., and Wang, A. Q. (2006). Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions. Journal of Hazardous Materials 136(3), 930–937. doi:10.1016/j.jhazmat.2006.01.033.
  • Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Bao, N., and Ma, Y. (2008). The effects of pH and ionic strength on fulvic acid uptake by chitosan hydrogel beads. Colloids and Surfaces a-Physicochemical and Engineering Aspects 324(1–3), 28–34.
  • Tang, X. J., Gan, L., Duan, Y. X., Sun, Y. M., Zhang, Y. F., and Zhang, Z. D. (2017). A novel Cd2+-imprinted chitosan-based composite membrane for Cd2+ removal from aqueous solution. Materials Letters 198, 121–123. doi:10.1016/j.matlet.2017.04.006.
  • Tanhaei, B., Ayati, A., Lahtinen, M., Mahmoodzadeh Vaziri, B., and Sillanpää, M. (2016). A magnetic mesoporous chitosan based core-shells biopolymer for anionic dye adsorption: Kinetic and isothermal study and application of ANN. Journal of Applied Polymer Science 133(22), n/a–n/a. doi:10.1002/app.43466.
  • Tanhaei, B., Ayati, A., Lahtinen, M., and Sillanpää, M. (2015). Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption. Chemical Engineering Journal 259, 1–10. doi:10.1016/j.cej.2014.07.109.
  • Thakre, D., Jagtap, S., Sakhare, N., Labhsetwar, N., Meshram, S., and Rayalu, S. (2010). Chitosan based mesoporous Ti-Al binary metal oxide supported beads for defluoridation of water. Chemical Engineering Journal 158(2), 315–324. doi:10.1016/j.cej.2010.01.008.
  • Thakur, V. K., and Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate Polymers 146, 148–165. doi:10.1016/j.carbpol.2016.03.030.
  • Trung, T. S., Ng, C. H., and Stevens, W. F. (2003). Characterization of decrystallized chitosan and its application in biosorption of textile dyes. Biotechnology Letters 25(14), 1185–1190. doi:10.1023/A:1024562900548.
  • Turek, M., Dydo, P., Trojanowska, J., and Campen, A. (2007). Adsorption/co-precipitation—reverse osmosis system for boron removal. Desalination 205(1–3), 192–199. doi:10.1016/j.desal.2006.02.056.
  • Turker, O. C., and Baran, T. (2017). A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water. International Journal of Phytoremediation. doi:10.1080/15226514.2017.1350137.
  • Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., Gholami, Z., and Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers 113, 115–130. doi:10.1016/j.carbpol.2014.07.007.
  • Varma, A. J., Deshpande, S. V., and Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: A review. Carbohydrate Polymers 55(1), 77–93. doi:10.1016/j.carbpol.2003.08.005.
  • Vincent, C., Barre, Y., Vincent, T., Taulemesse, J. M., Robitzer, M., and Guibal, E. (2015). Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions. Journal of Hazardous Materials 287, 171–179. doi:10.1016/j.jhazmat.2015.01.041.
  • Viswanathan, N., and Meenakshi, S. (2010). Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials 178(1–3), 226–232. doi:10.1016/j.jhazmat.2010.01.067.
  • Viswanathan, N., Sundaram, C. S., and Meenakshi, S. (2009). Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads. Colloids and Surfaces B-Biointerfaces 68(1), 48–54. doi:10.1016/j.colsurfb.2008.09.009.
  • Wang, J. L., and Bai, Z. Y. (2017). Fe-Based Catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chemical Engineering Journal 312, 79–98.
  • Wang, J. L., and Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review, Biotechnology Advances, 24, 427–451.
  • Wang, J. L., and Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances 27, 195–226. doi:10.1016/j.biotechadv.2008.11.002.
  • Wang, J. L., and Chen, C. (2014). Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology 160, 129–141. doi:10.1016/j.biortech.2013.12.110.
  • Wang, J. L., and Chu, L. B. (2016). Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview.. Radiation Physics and Chemistry 125, 56–64.
  • Wang, J. L., and Wang, S. Z. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management 182, 620–640.
  • Wang, J. L., and Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology 42(3), 251–325.
  • Wang, J. P., Chen, Y. Z., Ge, X. W. and Yu, H. Q. (2007). Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant. Chemosphere 66(9), 1752–1757.
  • Wang, J. S., Peng, R. T., Yang, J. H., Liu, Y. C., and Hu, X. J. (2011). Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydrate Polymers 84(3), 1169–1175. doi:10.1016/j.carbpol.2011.01.007.
  • Wang, R., Jiang, X., He, A., Xiang, T., and Zhao, C. S. (2015). An in situ crosslinking approach towards chitosan-based semi-IPN hybrid particles for versatile adsorptions of toxins. Rsc Advances 5(64), 51631–51641. doi:10.1039/C5RA04638F.
  • Wang, S. G., Sun, X. F., Liu, X. W., Gong, W. X., Gao, B. Y., and Bao, N. (2008). Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms. Chemical Engineering Journal 142(3), 239–247. doi:10.1016/j.cej.2007.11.025.
  • Wang, X. L., Liu, Y. K., and Zheng, J. T. (2016). Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: A review. Environmental Science and Pollution Research International 23(14), 13789–13801. doi:10.1007/s11356-016-6602-8.
  • Wang, Y., Qi, Y. X., Li, Y. F., Wu, J. J., Ma, X. J., Yu, C., and Ji, L. (2013). Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. Journal of Hazardous Materials 260, 9–15. doi:10.1016/j.jhazmat.2013.05.001.
  • Wasikiewicz, J. M., Mitomo, H., Seko, N., Tamada, M. and Yoshii, F. (2007). Platinum and palladium ions adsorption at the trace amounts by radiation crosslinked carboxymethylchitin and carboxymethylchitosan hydrogels. Journal of Applied Polymer Science 104(6), 4015–4023.
  • Wong, Y. C., Szeto, Y. S., Cheung, W. H., and McKay, G. (2004a). Adsorption of acid dyes on chitosan – equilibrium isotherm analyses. Process Biochemistry 39(6), 693–702. doi:10.1016/S0032-9592(03)00152-3.
  • Wong, Y. C., Szeto, Y. S., Cheung, W. H., and McKay, G. (2004b). Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Journal of Applied Polymer Science 92, 3049–3073.
  • Wong, Y. C., Szeto, Y. S., Cheung, W. H., and Mckay, G. (2004c). Psudo-first-order kinetic studies of the sorption of acid dyes onto chitosan. Journal of Applied Polymer Science 92(3), 1633–1645. doi:10.1002/app.13714.
  • Wu, F. C., Tseng, R. L., and Juang, R. S. (2001). Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. Journal of Hazardous Materials 81(1–2), 167–177. doi:10.1016/S0304-3894(00)00340-X.
  • Xing, Y., Sun, X. M., and Li, B. H. (2009). Pyromellitic dianhydride-modified chitosan microspheres for enhancement of cationic dyes adsorption. Environmental Engineering Science 26(3), 551–558. doi:10.1089/ees.2007.0346.
  • Xu, L., Huang, Y. A., Zhu, Q. J., and Ye, C. (2015). Chitosan in molecularly-imprinted polymers: Current and future prospects. International Journal of Molecular Sciences 16(8), 18328–18347. doi:10.3390/ijms160818328.
  • Yagi, K., Ruiz, J. A., and Sanchez, M. C. (1980). Cation binding properties of polymethacrylamide derivatives of crown ethers. Macromolecular Chemistry Rapid Communications 1, 263–268. doi:10.1002/marc.1980.030010415.
  • Yang, C. Y., Hsu, C. H., and Tsai, M. L. (2011). Effect of crosslinked condition on characteristics of chitosan/tripolyphosphate/genipin beads and their application in the selective adsorption of phytic acid from soybean whey. Carbohydrate Polymers 86(2), 659–665. doi:10.1016/j.carbpol.2011.05.004.
  • Yang, S. B., Okada, N., and Nagatsu, M. (2016). The highly effective removal of Cs+ by low turbidity chitosan-grafted magnetic bentonite. Journal of Hazardous Materials 301, 8–16. doi:10.1016/j.jhazmat.2015.08.033.
  • Yang, X. M., Tu, Y. F., Li, L., Shang, S. M., and Tao, X. M. (2010). Well-dispersed chitosan/graphene oxide nanocomposites. ACS Applied Materials & Interfaces 2(6), 1707–1713. doi:10.1021/am100222m.
  • Yazdani-Pedram, M., Retuert, J., and Quijada, R. (2000). Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromolecular Chemistry and Physics 201(9), 923–930. doi:10.1002/1521-3935(20000601)201:9%3c923::AID-MACP923%3e3.0.CO;2-W.
  • Yi, R., Ye, G., Wu, F. C., Lv, D. C., and Chen, J. (2016). Magnetic solid-phase extraction of strontium using core-shell structured magnetic microspheres impregnated with crown ether receptors: A response surface optimization. Journal of Radioanalytical and Nuclear Chemistry 308(2), 599–608. doi:10.1007/s10967-015-4468-8.
  • Yin, Y. N., Wang, J. L., Yang, X. Y., and Li, W. H. (2017). Removal of strontium ions by immobilized Saccharomyces Cerevisiae in magnetic chitosan microspheres. Nuclear Engineering and Technology 49(1), 172–177. doi:10.1016/j.net.2016.09.002.
  • Yu, J., Zheng, J. D., Lu, Q. F., Yang, S. X., Wang, X., Zhang, X. M., and Yang, W. (2016a). Reusability and selective adsorption of Pb2+ on chitosan/P(2-acryl amido-2-methyl-1-propanesulfonic acid-co-acrylic acid) hydrogel. Iranian Polymer Journal 25(12), 1009–1019. doi:10.1007/s13726-016-0487-8.
  • Yu, J., Zheng, J. D., Lu, Q. F., Yang, S. X., Zhang, X. M., Wang, X., and Yang, W. (2016b). Selective adsorption and reusability behavior for Pb2+ and Cd2+ on chitosan/poly(ethylene glycol)/poly(acrylic acid) adsorbent prepared by glow-discharge electrolysis plasma. Colloid and Polymer Science 294(10), 1585–1598. doi:10.1007/s00396-016-3920-9.
  • Yu, Q., Deng, S. B., and Yu, G. (2008). Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research 42(12), 3089–3097. doi:10.1016/j.watres.2008.02.024.
  • Zavareh, S., Behrouzi, Z., and Avanes, A. (2017). Cu(II) binded chitosan/Fe3O4 nanocomomposite as a new biosorbent for efficient and selective removal of phosphate. International Journal of Biological Macromolecules 101, 40–50. doi:10.1016/j.ijbiomac.2017.03.074.
  • Zhang, H. F., Dang, Q. F., Liu, C. S., Cha, D. S., Yu, Z. Z., Zhu, W. J., and Fan, B. (2017). Uptake of Pb(II) and Cd(II) on chitosan microsphere surface successively grafted by methyl acrylate and diethylenetriamine. ACS Applied Materials & Interfaces 9(12), 11144–11155.
  • Zhang, L., Zeng, Y. X., and Cheng, Z. J. (2016a). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids 214, 175–191. doi:10.1016/j.molliq.2015.12.013.
  • Zhang, Q. Y., Deng, S. B., Yu, G., and Huang, J. (2011). Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism. Bioresource Technology 102(3), 2265–2271. doi:10.1016/j.biortech.2010.10.040.
  • Zhang, S. P., Dong, Y. Y., Yang, Z., Yang, W. B., Wu, J. Q., and Dong, C. (2016b). Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chemical Engineering Journal 304, 325–334. doi:10.1016/j.cej.2016.06.087.
  • Zhang, Y. L., Zhang, J., Dai, C. M., Zhou, X. F., and Liu, S. G. (2013). Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydrate Polymers 97(2), 809–816. doi:10.1016/j.carbpol.2013.05.072.
  • Zhou, L. M., Jin, J. Y., Liu, Z. R., Liang, X. Z., and Shang, C. (2011). Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. Journal of Hazardous Materials 185(2–3), 1045–1052. doi:10.1016/j.jhazmat.2010.10.012.
  • Zhou, L. M., Liu, J. H. and Liu, Z. R. (2009a). Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Journal of Hazardous materials 172(1), 439–446.
  • Zhou, L. M., Wang, Y. P., Liu, Z. R. and Huang, Q. W. (2009b). Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous materials 161(2–3), 995–1002.
  • Zhou, L. M., Xu, J. P., Liang, X. Z. and Liu, Z. R. (2010). Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Journal of Hazardous materials 182(1–3), 518–524.
  • Zhu, Y., Bai, Z. S., Luo, W. Q., Wang, B. J., and Zhai, L. L. (2017). A facile ion imprinted synthesis of selective biosorbent for Cu2+ via microfluidic technology. Journal of Chemical Technology and Biotechnology 92(8), 2009–2022. doi:10.1002/jctb.5193.
  • Zhu, Y. H., Hu, J., and Wang, J. L. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials 221–222, 155–161. doi:10.1016/j.jhazmat.2012.04.026.
  • Zhu, Y. H., Hu, J., and Wang, J. L. (2014). Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Progress in Nuclear Energy 71, 172–178. doi:10.1016/j.pnucene.2013.12.005.
  • Zhuang, S. T., and Wang, J. L. (2017). Modified alginate beads as biosensor and biosorbent for simultaneous detection and removal of cobalt ions from aqueous solution. Environmental Progress & Sustainable Energy. doi:10.1002/ep.12666.
  • Zhuang, S. T., Yin, Y. N., and Wang, J. L. (2017). Simultaneous detection and removal of cobalt ions from aqueous solution by modified chitosan beads. International Journal of Environmental Science and Technology. doi:10.1007/s13762-017-1388-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.