2,273
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Treatment of municipal wastewater with aerobic granular sludge

, , ORCID Icon &
Pages 119-166 | Published online: 19 Mar 2018

References

  • Ab Halim, M. H., Anuar, A. N., Azmi, S. I., Jamal, N. S. A., Wahab, N. A., Ujang, Z., Shraim, A., and Bob, M. M. (2015). Aerobic sludge granulation at high temperatures for domestic wastewater treatment. Bioresour. Technol., 185, 445–449.
  • Ab Halim, M. H., Anuar, A. N., Jamal, N. S. A., Azmi, S. I., Ujang, Z., and Bob, M. M. (2016). Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater. J. Environ. Manage., 184, 271–280.
  • Adav, S. S., Lee, D. J., Show, K. Y., and Tay, J. H. (2008). Aerobic granular sludge: Recent advances. Biotechnol. Adv., 26, 411–423.
  • Ahn, J., McIlroy, S., Schroeder, S., and Seviour, R. (2009). Biomass granulation in an aerobic:anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH. J. Ind. Microbiol. Biotechnol., 36, 885–893.
  • APHA. (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Health Association.
  • Bao, R., Yu, S., Shi, W., Zhang, X., and Wang, Y. (2009). Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature. J. Hazard. Mater., 168, 1334–1340.
  • Barat, R., Montoya, T., Borras, L., Ferrer, J., and Seco, A. (2008). Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism. Water Res., 42, 3415–3424.
  • Bassin, J. P., Kleerebezem, R., Dezotti, M., and van Loosdrecht, M. C. M. (2012a). Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures. Water Res., 46, 3805–3816.
  • Bassin, J. P., Pronk, M., Muyzer, G., Kleerebezem, R., Dezotti, M., and van Loosdrecht, M. C. M. (2011). Effect of elevated salt concentrations on the aerobic granular sludge process: Linking microbial activity with microbial community structure. Appl. Environ. Microbiol., 77, 7942–7953.
  • Bassin, J. P., Winkler, M. K. H., Kleerebezem, R., Dezotti, M., and van Loosdrecht, M. C. M. (2012b). Improved phosphate removal by selective sludge discharge in aerobic granular sludge reactors. Biotechnol. Bioeng., 109, 1919–1928.
  • Beccari, M., Dionisi, D., Giuliani, A., Majon, M., and Ramadori, R. (2002). Effect of different carbon sources on aerobic storage by activated sludge. Water Sci. Technol., 45, 157–168.
  • Bengtsson, S. (2009). The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates. Biotechnol. Bioeng., 104, 698–708.
  • Bengtsson, S., Karlsson, A., Alexandersson, T., Quadri, L., Hjort, M., Johansson, P., Morgan-Sagastume, F., Anterrieu, S., Arcos-Hernandez, M., Karabegovic, L., Magnusson, P., and Werker, A. (2017). A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. N. Biotechnol., 35, 42–53.
  • Bernat, K., Cydzik-Kwiatkowska, A., Wojnowska-Baryla, I., and Karczewska, M. (2017). Physicochemical properties and biogas productivity of aerobic granular sludge and activated sludge. Biochem. Eng. J., 117, 43–51.
  • Beun, J. J., Heijnen, J. J., and van Loosdrecht, M. C. M. (2001). N-Removal in a granular sludge sequencing batch airlift reactor. Biotechnol. Bioeng., 75, 82–92.
  • Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., and Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Res., 33, 2283–2290.
  • Beun, J. J., van Loosdrecht, M. C. M., and Heijnen, J. J. (2000). Aerobic granulation. Water Sci. Technol., 41, 41–48.
  • Beun, J. J., van Loosdrecht, M. C. M., and Heijnen, J. J. (2002). Aerobic granulation in a sequencing batch airlift reactor. Water Res., 36, 702–712.
  • Bin, Z., Min, J., Zhigang, Q., Huina, L., Jingfeng, W., and Junwen, L. (2011). Microbial population dynamics during sludge granulation in an anaerobic-aerobic biological phosphorus removal system. Bioresour. Technol., 102, 2474–2480.
  • Bishop, P. L. (1997). Biofilm structure and kinetics. Water Sci. Technol., 36, 287–294.
  • Bixler, H. J., and Porse, H. (2011). A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol., 23, 321–335.
  • Boehnke, B., Diering, B., and Zuckut, S. W. (1997). Cost-effective wastewater treatment process for removal of organics and nutrients. Water-Eng. Manag., 144, 18–21.
  • Bond, P. L., Erhart, R., Wagner, M., Keller, J., and Blackall, L. L. (1999). Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl. Environ. Microbiol., 65, 4077–4084.
  • Brdjanovic, D., Logemann, S., Van Loosdrecht, M. C. M., Hooijmans, C. M., Alaerts, G. J., and Heijnen, J. J. (1998a). Influence of temperature on biological phosphorus removal: Process and molecular ecological studies. Water Res., 32, 1035–1048.
  • Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Alaerts, G. J., and Heijnen, J. J. (1998b). Minimal aerobic sludge retention time in biological phosphorus removal systems. Biotechnol. Bioeng., 60, 326–332.
  • Cao, Y., van Loosdrecht, M. C. M., and Daigger, G. T. (2017). Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol., 101, 1365–1383.
  • Carlsson, H., Aspegren, H., Lee, N., and Hilmer, A. (1997). Calcium phosphate precipitation in biological phosphorus removal systems. Water Res., 31, 1047–1055.
  • Carvalho, G., Lemos, P. C., Oehmen, A., and Reis, M. A. M. (2007). Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Res., 41, 4383–4396.
  • Chen, C., Wang, A., Ren, N., Lee, D.-J., and Lai, J.-Y. (2009). High-rate denitrifying sulfide removal process in expanded granular sludge bed reactor. Bioresour. Technol., 100, 2316–2319.
  • Chiesa, S. C., Irvine, R. L., and Manning, J. F. (1985). Feast famine growth environments and activated-sludge population selection. Biotechnol. Bioeng., 27, 562–569.
  • Coma, M., Puig, S., Balaguer, M. D., and Colprim, J. (2010). The role of nitrate and nitrite in a granular sludge process treating low-strength wastewater. Chem. Eng. J., 164, 208–213.
  • Coma, M., Verawaty, M., Pijuan, M., Yuan, Z., and Bond, P. L. (2012). Enhancing aerobic granulation for biological nutrient removal from domestic wastewater. Bioresour. Technol., 103, 101–108.
  • Corsino, S. F., Campo, R., Di Bella, G., Torregrossa, M., and Viviani, G. (2016). Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor. Bioresour. Technol., 200, 1055–1059.
  • Dangcong, P., Bernet, N., Delgenes, J.-P., and Moletta, R. (1999). Aerobic granular sludge—a case report. Water Res., 33, 890–893.
  • de Beer, D., Van Den Heuvel, J. C., and Ottengraf, S. P. P. (1993). Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Appl. Environ. Microbiol., 59, 573–579.
  • de Bruin, L. M. M., de Kreuk, M. K., van der Roest, H. F. R., Uijterlinde, C., and van Loosdrecht, M. C. M. (2004). Aerobic granular sludge technology: An alternative to activated sludge? Water Sci. Technol., 49, 1–7.
  • de Kreuk, M. K., Heijnen, J. J., and Van Loosdrecht, M. C. M. (2005a). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng., 90, 761–769.
  • de Kreuk, M. K., Kishida, N., Tsuneda, S., and van Loosdrecht, M. C. M. (2010). Behavior of polymeric substrates in an aerobic granular sludge system. Water Res., 44, 5929–5938.
  • de Kreuk, M. K., Kishida, N., and van Loosdrecht, M. C. M. (2007a). Aerobic granular sludge – State of the art. Water Sci. Technol., 55, 75–81.
  • de Kreuk, M. K., Picioreanu, C., Hosseini, M., Xavier, J. B., and van Loosdrecht, M. C. M. (2007b). Kinetic model of a granular sludge SBR: Influences on nutrient removal. Biotechnol. Bioeng., 97, 801–815.
  • de Kreuk, M. K., Pronk, M., and Van Loosdrecht, M. C. M. (2005b). Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Res., 39, 4476–4484.
  • de Kreuk, M. K., and van Loosdrecht, M. C. M. (2006). Formation of aerobic granules with domestic sewage. J. Environ. Eng., 132.
  • de Kreuk, M. K., and van Loosdrecht, M. C. M. (2004). Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol., 49, 9–17.
  • Derlon, N., Wagner, J., da Costa, R. H. R., and Morgenroth, E. (2016). Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Water Res., 105, 341–350.
  • Dionisi, D., Levantesi, C., Renzi, V., Tandoi, V., and Majone, M. (2002). PHA storage from several substrates by different morphological types in an anoxic/aerobic SBR. Water Sci. Technol., 46, 337–344.
  • Dircks, K., Henze, M., Van Loosdrecht, M. C. M., Mosbæk, H., and Aspegren, H. (2001). Storage and degradation of poly-β-hydroxybutyrate in activated sludge under aerobic conditions. Water Res., 35, 2277–2285.
  • Drews, A. (2010). Membrane fouling in membrane bioreactors-Characterisation, contradictions, cause and cures. J. Memb. Sci., 363, 1–28.
  • Ebrahimi, S., Gabus, S., Rohrbach-Brandt, E., Hosseini, M., Rossi, P., Maillard, J., and Holliger, C. (2010). Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 A degrees C, 30 A degrees C, and 35 A degrees C. Appl. Microbiol. Biotechnol., 87, 1555–1568.
  • Eiroa, M., Kennes, C., and Veiga, M. C. (2004). Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor. Water Res., 38, 3495–3502.
  • Erdal, U. G., Erdal, Z. K., and Randall, C. W. (2003). The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance. Water Sci. Technol., 47, 1–8.
  • Falås, P., Baillon-Dhumez, A., Andersen, H. R., Ledin, A., and la Cour Jansen, J. (2012). Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals. Water Res., 46, 1167–1175.
  • Fernandez, I., Dosta, J., and Mata-Alvarez, J. (2016). A critical review of future trends and perspectives for the implementation of partial nitritation/anammox in the main line of municipal WWTPs. Desalin. Water Treat., 57, 27890–27898.
  • Filipe, C. D. M., Daigger, G. T., and Grady, C. P. L. (2001). pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms. Water Environ. Res., 73, 223–232.
  • Franco, A., Roca, E., and Lema, J. M. (2006). Granulation in high-load denitrifying upflow sludge bed (USB) pulsed reactors. Water Res., 40, 871–880.
  • Gao, D., Liu, L., Liang, H., and Wu, W.-M. (2011). Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit. Rev. Biotechnol., 31, 137–152.
  • Gao, M., Yang, S., Wang, M., and Wang, X.-H. (2016). Nitrous oxide emissions from an aerobic granular sludge system treating low-strength ammonium wastewater. J. Biosci. Bioeng., 122, 601–605.
  • Giesen, A., de Bruin, L. M. M., Niermans, R. P., and van der Roest, H. F. (2013). Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater. Water Pract. Technol., 8, 47–54.
  • Giesen, A., Loosdrecht, M. Van, Robertson, S., and Buin, B. De. (2015). Aerobic granular biomass technology: further innovation, system development and design optimisation, in: Proc. Water Environ. Federation, WEFTEC. doi:10.2175/193864715819539641.
  • Gonzalez-Gil, G., and Holliger, C. (2011). Dynamics of microbial community structure of and enhanced biological phosphorus removal by aerobic granules cultivated on propionate or acetate. Appl. Environ. Microbiol., 77, 8041–8051.
  • Gonzalez-Martinez, A., Munoz-Palazon, B., Rodriguez-Sanchez, A., Maza-Marquez, P., Mikola, A., Gonzalez-Lopez, J., and Vahala, R. (2017). Start-up and operation of an aerobic granular sludge system under low working temperature inoculated with cold-adapted activated sludge from Finland. Bioresour. Technol., 239, 180–189.
  • Guimarães, L. B., Mezzari, M. P., Daudt, G. C., and da Costa, R. H. R. (2017). Microbial pathways of nitrogen removal in aerobic granular sludge treating domestic wastewater. J. Chem. Technol. Biotechnol., 92, 1756–1765.
  • Gujer, W., Henze, M., Mino, T., and van Loosdrecht, M. (1999). Activated Sludge Model No. 3. Water Sci. Technol., 39, 183–193.
  • Guo, F., Zhang, S.-H., Yu, X., and Wei, B. (2011). Variations of both bacterial community and extracellular polymers: The inducements of increase of cell hydrophobicity from biofloc to aerobic granule sludge. Bioresour. Technol., 102, 6421–6428.
  • Guo, W.-Q., Ren, N.-Q., Chen, Z.-B., Liu, B.-F., Wang, X.-J., Xiang, W.-S., and Ding, J. (2008). Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int. J. Hydrogen Energy, 33, 7397–7404.
  • Gustavsson, D. J. I., Okhravi, A., Persson, F., Llano Alvarez, N., and la Cour Jansen, J. (2015). Experiences of repression of nitrite production in nitritation-anammox on municipal wastewater, in: Conf. Nutr. Removal Recovery: Moving Innov. Pract., Gdansk, Polen, May 18–24 2015. pp. 230–236.
  • Heijnen, J. J., and van Loosdrecht, M. C. M. (1998). Method for acquiring grain-shaped growth of a microorganism in a reactor. WO9837027.
  • Henze, M., Grady, C.P.L.J., Gujer, W., Marais, G. R., and Matsuo, T. (1987). Activated Sludge Model No. 1. ( IAWPRC Scientific and Technical Report No. 1.). London: IAWPRC.
  • Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. V. R., and Van Loosdrecht, M. C. M. (1999). Activated Sludge Model No.2d, ASM2d. Water Sci. Technol., 39, 165–182.
  • Henze, M., van Loosdrecht, M. C. M., Ekama, G. A., and Brdjanovic, D. (2008). Biological Wastewater Treatment: Principles, Modelling and Design. IWA Publishing.
  • IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.
  • Jenicek, P., Svehla, P., Zabranska, J., and Dohanyos, M. (2004). Factors affecting nitrogen removal by nitritation/denitritation. Water Sci. Technol., 49, 73–79.
  • Jiang, Y., Shang, Y., Wang, H., and Yang, K. (2016). Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature. Environ. Technol., 37, 3078–3085.
  • Johnson, K., Jiang, Y., Kleerebezem, R., Muyzer, G., and van Loosdrecht, M. C. M. (2009). Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules, 10, 670–676.
  • Juang, Y.-C., Adav, S. S., Lee, D.-J., and Tay, J.-H. (2010). Stable aerobic granules for continuous-flow reactors: Precipitating calcium and iron salts in granular interiors. Bioresour. Technol., 101, 8051–8057.
  • Judd, S., and Judd, C. (2011). The MBR book – Principles and applications of membrane bioreactors for water and wastewater treatment. Elsevier.
  • Jun, Z., Feng-Lin, Y., Fan-Gang, M., Peng, A., and Di, W. (2007). Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge. J. Environ. Sci., 19, 1281–1286.
  • Kagawa, Y., Tahata, J., Kishida, N., Matsumoto, S., Picioreanu, C., van Loosdrecht, M. C. M., and Tsuneda, S. (2015). Modeling the nutrient removal process in aerobic granular sludge system by coupling the reactor- and granule-scale models. Biotechnol. Bioeng., 112, 53–64.
  • Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Res., 43, 4093–4103.
  • Karahan, O., Martins, A., Orhon, D., and van Loosdrecht, M. C. M. (2006). Experimental evaluation of starch utilization mechanism by activated sludge. Biotechnol. Bioeng., 93, 964–970.
  • Khan, M. Z., Mondal, P. K., and Sabir, S. (2013). Aerobic granulation for wastewater bioremediation: A review. Can. J. Chem. Eng., 91, 1045–1058.
  • Kraemer, J. T., Menniti, A. L., Erdal, Z. K., Constantine, T. A., Johnson, B. R., Daigger, G. T., and Crawford, G. V. (2012). A practitioner's perspective on the application and research needs of membrane bioreactors for municipal wastewater treatment. Bioresour. Technol., 122, 2–10.
  • Kristiansen, R., Nguyen, H. T. T., Saunders, A. M., Nielsen, J. L., Wimmer, R., Le, V. Q., McIlroy, S. J., Petrovski, S., Seviour, R. J., Calteau, A., Nielsen, K. L., and Nielsen, P. H. (2013). A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME J., 7, 543–554.
  • Kuba, T., van Loosdrecht, M. C. M., and Heijnen, J. J. (1996). Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res., 30, 1702–1710.
  • Lamb, H., and Caflisch, R. (1993). Hydrodynamics, Cambridge mathematical library. Cambridge University Press.
  • Langer, M., Vaananen, J., Boulestreau, M., Miehe, U., Bourdon, C., and Lesjean, B. (2017). Advanced phosphorus removal via coagulation, flocculation and microsieve filtration in tertiary treatment. Water Sci. Technol., 75, 2875–2882.
  • Le-Clech, P., Chen, V., and Fane, T. A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment. J. Memb. Sci., 284, 17–53.
  • Lee, D. J., Chen, Y. Y., Show, K. Y., Whiteley, C. G., and Tay, J. H. (2010). Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol. Adv., 28, 919–934.
  • Lemaire, R., Marcelino, M., and Yuan, Z. (2008a). Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater. Biotechnol. Bioeng., 100, 1228–1236.
  • Lemaire, R., Meyer, R., Taske, A., Crocetti, G. R., Keller, J., and Yuan, Z. (2006). Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Biotechnol., 122, 62–72.
  • Lemaire, R., Webb, R. I., and Yuan, Z. (2008b). Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J., 2, 528–541.
  • Lemaire, R., Yuan, Z., Blackall, L. L., and Crocetti, G. R. (2008c). Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system. Environ. Microbiol., 10, 354–363.
  • Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., and Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng., 22, 699–734.
  • Leyva-Diaz, J. C., Martin-Pascual, J., and Poyatos, J. M. (2017). Moving bed biofilm reactor to treat wastewater. Int. J. Environ. Sci. Technol., 14, 881–910.
  • Li, A., Li, X., and Yu, H. (2011). Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules. Process Biochem., 46, 2269–2276.
  • Li, A. J., and Li, X. Y. (2009). Selective sludge discharge as the determining factor in SBR aerobic granulation: Numerical modelling and experimental verification. Water Res., 43, 3387–3396.
  • Li, J., Cai, A., Ding, L., Sellamuthu, B., and Perreault, J. (2015). Aerobic sludge granulation in a Reverse Flow Baffled Reactor (RFBR) operated in continuous-flow mode for wastewater treatment. Sep. Purif. Technol., 149, 437–444.
  • Li, J., Cai, A., Wang, M., Ding, L., and Ni, Y. (2014a). Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier. Bioresour. Technol., 157, 351–354.
  • Li, J., Ding, L. Bin, Cai, A., Huang, G. X., and Horn, H. (2014b). Aerobic sludge granulation in a full-scale sequencing batch reactor. Biomed Res. Int., 2014. doi:10.1155/2014/268789.
  • Li, J., Ma, L., Wei, S., and Horn, H. (2013). Aerobic granules dwelling vorticella and rotifers in an SBR fed with domestic wastewater. Sep. Purif. Technol., 110, 127–131.
  • Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., and Chen, G. (2017). Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept. Water Res., 115, 210–219.
  • Li, Z. H., Kuba, T., and Kusuda, T. (2006). Selective force and mature phase affect the stability of aerobic granule: An experimental study by applying different removal methods of sludge. Enzyme Microb. Technol., 39, 976–981.
  • Li, Z. H., and Wang, X. C. (2008). Effects of salinity on the morphological characteristics of aerobic granules. Water Sci. Technol., 58, 2421–2426.
  • Liébana, R. (2017). Microbial community assembly during aerobic granulation. Licentiate thesis. Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg.
  • Lin, Y., de Kreuk, M., van Loosdrecht, M. C. M., and Adin, A. (2010). Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Res., 44, 3355–3364.
  • Lin, Y. M., Liu, Y., and Tay, J. H. (2003). Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Appl. Microbiol. Biotechnol., 62, 430–435.
  • Lin, Y. M., Nierop, K. G. J., Girbal-Neuhauser, E., Adriaanse, M., and van Loosdrecht, M. C. M. (2015). Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material. Sustain. Mater. Technol., 4, 24–29.
  • Lin, Y. M., Sharma, P. K., and van Loosdrecht, M. C. M. (2013). The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Res., 47, 57–65.
  • Liu, H., and Fang, H. H. P. (2003). Hydrogen production from wastewater by acidogenic granular sludge. Water Sci. Technol., 47, 153–158.
  • Liu, H., Li, Y., Yang, C., Pu, W., He, L., and Bo, F. (2012). Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane. Bioresour. Technol., 121, 111–118.
  • Liu, J., Li, J., Tao, Y., Sellamuthu, B., and Walsh, R. (2017). Analysis of bacterial, fungal and archaeal populations from a municipal wastewater treatment plant developing an innovative aerobic granular sludge process. World J. Microbiol. Biotechnol., 33. doi:10.1007/s11274-016-2179-0.
  • Liu, Y., and Tay, J. H. (2004). State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv., 22, 533–563.
  • Liu, Y., and Tay, J. H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res., 36, 1653–1665.
  • Liu, Y., Wang, Z.-W., and Tay, J.-H. (2005a). A unified theory for upscaling aerobic granular sludge sequencing batch reactors. Biotechnol. Adv., 23, 335–344.
  • Liu, Y., Wang, Z. W., Qin, L., Liu, Y. Q., and Tay, J. H. (2005b). Selection pressure-driven aerobic granulation in a sequencing batch reactor. Appl. Microbiol. Biotechnol., 67, 26–32.
  • Liu, Y., Yang, S. F., and Tay, J. H. (2004). Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J. Biotechnol., 108, 161–169.
  • Liu, Y. Q., Liu, Y., and Tay, J. H. (2005c). Relationship between size and mass transfer resistance in aerobic granules. Lett. Appl. Microbiol., 40, 312–315.
  • Liu, Y. Q., Moy, B., Kong, Y. H., and Tay, J. H. (2010). Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microb. Technol., 46, 520–525.
  • Liu, Y. Q., and Tay, J. H. (2015). Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water Res., 80, 256–266.
  • Lochmatter, S., Gonzalez-Gil, G., and Holliger, C. (2013). Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge. Water Res., 47, 6187–6197.
  • Lochmatter, S., and Holliger, C. (2014). Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous. Water Res., 59, 58–70.
  • Lochmatter, S., Maillard, J., and Holliger, C. (2014). Nitrogen removal over nitrite by aeration control in Aerobic granular sludge sequencing batch reactors. Int. J. Environ. Res. Public Health, 11, 6955–6978.
  • Lopez-Vazquez, C. M., Hooijmans, C. M., Brdjanovic, D., Gijzen, H. J., and van Loosdrecht, M. C. M. (2009a). Temperature effects on glycogen accumulating organisms. Water Res., 43, 2852–2864.
  • Lopez-Vazquez, C. M., Oehmen, A., Hooijmans, C. M., Brdjanovic, D., Gijzen, H. J., Yuan, Z., and van Loosdrecht, M. C. M. (2009b). Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature. Water Res., 43, 450–462.
  • Lopez, C., Pons, M. N., and Morgenroth, E. (2006). Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal. Water Res., 40, 1519–1530.
  • Lotti, T., Kleerebezem, R., Hu, Z., Kartal, B., de Kreuk, M. K., Kip, C., van, E. T., Kruit, J., Hendrickx, T. L. G., and van Loosdrecht, M. C. M. (2015). Pilot-scale evaluation of anammox-based mainstream nitrogen removal from municipal wastewater. Environ. Technol., 36, 1167–1177.
  • Lotti, T., Kleerebezem, R., Hu, Z., Kartal, B., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2014). Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Res., 66, 111–121.
  • Lu, H., Keller, J., and Yuan, Z. (2007). Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Water Res., 41, 4646–4656.
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., and Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ., 473, 619–641.
  • Mahvi, A. H. (2008). Sequencing batch reactor: A promising technology in wastewater treatment. Iranian J. Environ. Health Sci. Eng., 5, 79–90.
  • Majone, M., Massanisso, P., Carucci, A., Lindrea, K., and Tandoi, V. (1996). Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Sci. Technol., 34, 223–32. doi:10.1016/0273-1223(96)00649-X.
  • Majone, M., Dircks, K., and Beun, J. J. (1999). Aerobic storage under dynamic conditions in activated sludge processes. The state of the art. Water Sci. Technol., 39, 61–73.
  • Manas, A., Biscans, B., and Sperandio, M. (2011). Biologically induced phosphorus precipitation in aerobic granular sludge process. Water Res., 45, 3776–3786.
  • Marques, R., Santos, J., Nguyen, H., Carvalho, G., Noronha, J. P., Nielsen, P. H., Reis, M. A. M., and Oehmen, A. (2017). Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Water Res., 122, 159–171.
  • Massara, T. M., Malamis, S., Guisasola, A., Antonio Baeza, J., Noutsopoulos, C., and Katsou, E. (2017). A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ., 596, 106–123.
  • McQuarrie, J. P., and Boltz, J. P. (2011). Moving bed biofilm reactor technology: Process applications, design, and performance. WATER Environ. Res., 83, 560–575.
  • McSwain, B. S., Irvine, R. L., Hausner, M., and Wilderer, P. A. (2005). Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol., 71, 1051–1057.
  • McSwain, B. S., Irvine, R. L., and Wilderer, P. A. (2004a). Effect of intermittent feeding on aerobic granule structure. Water Sci. Technol., 49, 19–25.
  • McSwain, B. S., Irvine, R. L., and Wilderer, P. A. (2004b). The influence of-settling time on the formation of aerobic granules. Water Sci. Technol., 50, 195–202.
  • Meinhold, J., Arnold, E., and Isaacs, S. (1999). Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. Water Res., 33, 1871–1883.
  • Mino, T., Van Loosdrecht, M. C. M., and Heijnen, J. J. (1998). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res., 32, 3193–3207.
  • Mishima, K., and Nakamura, M. (1991). Self-immobilization of aerobic activated sludge – A pilot study of the Aerobic Upflow Sludge Blanket Process in municipal sewage treatment. Water Sci. Technol., 23, 981–990.
  • Morales, N., Figueroa, M., Mosquera-Corral, A., Campos, J. L., and Mendez, R. (2012). Aerobic granular-type biomass development in a continuous stirred tank reactor. Sep. Purif. Technol., 89, 199–205.
  • Morgenroth, E., Sherden, T., Van Loosdrecht, M. C. M., Heijnen, J. J., and Wilderer, P. A. (1997). Aerobic granular sludge in a sequencing batch reactor. Water Res., 31, 3191–3194.
  • Mosquera-Corral, A., De Kreuk, M. K., Heijnen, J. J., and Van Loosdrecht, M. C. M. (2005). Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Res., 39, 2676–2686.
  • Mu, Y., Yu, H.-Q., and Wang, Y. (2006). The role of pH in the fermentative H-2 production from an acidogenic granule-based reactor. Chemosphere., 64, 350–358.
  • Neis, U., and Tiehm, A. (1997). Particle size analysis in primary and secondary waste water effluents. Water Sci. Technol., 36, 151–158.
  • Ni, B. J., Xie, W. M., Liu, S. G., Yu, H. Q., Wang, Y. Z., Wang, G., and Dai, X. L. (2009). Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res., 43, 751–761.
  • Nicolella, C., Van Loosdrecht, M. C. M., and Heijnen, S. J. (2000). Particle-based biofilm reactor technology. Trends Biotechnol., 18, 312–320.
  • Ødegaard, H. (2006). Innovations in wastewater treatment: The moving bed biofilm process. Water Sci. Technol., 53, 17–33.
  • Ødegaard, H. (1998). Optimised particle separation in the primary step of wastewater treatment. Water Sci. Technol., 37, 43–53.
  • Oehmen, A., Carvalho, G., Lopez-Vazquez, C. M., van Loosdrecht, M. C. M., and Reis, M. A. M. (2010). Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Res., 44, 4992–5004.
  • Oehmen, A., Lemos, P., Carvalho, G., Yuan, Z., Keller, J., Blackall, L., and Reis, M. (2007). Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res., 41, 2271–2300.
  • Oehmen, A., Vives, M. T., Lu, H. B., Yuan, Z. G., and Keller, J. (2005). The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. Water Res., 39, 3727–3737.
  • Palmeiro-Sanchez, T., del Rio, A., Mosquera-Corral, A., Campos, J. L., and Mendez, R. (2013). Comparison of the anaerobic digestion of activated and aerobic granular sludges under brackish conditions. Chem. Eng. J., 231, 449–454.
  • Peeters, T. W. T., and Lu, B. (2013). Hybrid wastewater treatment. WO2013151434.
  • Peng, H., Qingliang, Z., Songyan, Q., and Xiu, G. (2005). Quick start-up of Mudanjiang wastewater treatment plant and factors influencing phosphorous removal. In: T., Lekkas ( Ed.), Proceeding of the 9th International Conference on Environmental Science and Technology, (pp. B348–B356).
  • Piculell, M., Welander, P., Jonsson, K., and Welander, T. (2016). Evaluating the effect of biofilm thickness on nitrification in moving bed biofilm reactors. Environ. Technol., 37, 732–743.
  • Pijuan, M., Werner, U., and Yuan, Z. (2011). Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules. Water Res., 45, 5075–5083.
  • Pochana, K., and Keller, J. (1999). Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci. Technol., 39, 61–68.
  • Pronk, M., Bassin, J. P., de Kreuk, M. K., Kleerebezem, R., and van Loosdrecht, M. C. M. (2014). Evaluating the main and side effects of high salinity on aerobic granular sludge. Appl. Microbiol. Biotechnol., 98, 1339–1348.
  • Pronk, M., de Kreuk, M. K., de Bruin, B., Kamminga, P., Kleerebezem, R., and van Loosdrecht, M. C. M. (2015). Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res., 84, 207–217.
  • Regmi, P., Miller, M. W., Holgate, B., Bunce, R., Park, H., Chandran, K., Wett, B., Murthy, S., and Bott, C. B. (2014). Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res., 57, 162–171.
  • Rocktäschel, T., Klarmann, C., Helmreich, B., Ochoa, J., Boisson, P., Sorensen, K. H., and Horn, H. (2013). Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed. Water Res., 47, 6423–6431.
  • Rocktäschel, T., Klarmann, C., Ochoa, J., Boisson, P., Sørensen, K., and Horn, H. (2015). Influence of the granulation grade on the concentration of suspended solids in the effluent of a pilot scale sequencing batch reactor operated with aerobic granular sludge. Sep. Purif. Technol., 142, 234–241.
  • Rubio-Rincón, F. J., Lopez-Vazquez, C. M., Welles, L., van Loosdrecht, M. C. M., and Brdjanovic, D. (2017). Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denirification and phosphate removal processes. Water Res., 120, 156–164.
  • Saito, T., Brdjanovic, D., and van Loosdrecht, M. C. M. (2004). Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res., 38, 3760–3768.
  • Sajjad, M., Kim, I. S., and Kim, K. S. (2016). Development of a novel process to mitigate membrane fouling in a continuous sludge system by seeding aerobic granules at pilot plant. J. Memb. Sci., 497, 90–98.
  • Sarma, S. J., Tay, J. H., and Chu, A. (2017). Finding knowledge gaps aerobic granulation technology. Trends Biotechnol., 35, 66–78.
  • Schuler, A. J., and Jenkins, D. (2002). Effects of pH on enhanced biological phosphorus removal metabolisms. Water Sci. Technol., 46, 171–178.
  • Schwarzenbeck, N., Erley, R., and Wilderer, P. A. (2004). Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci. Technol., 49, 41–46.
  • Seghezzo, L., Zeeman, G., Van Lier, J. B., Hamelers, H. V. M., and Lettinga, G. (1998). A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour. Technol., 65, 175–190.
  • Serafim, L. S., Lemos, P. C., Rossetti, S., Levantesi, C., Tandoi, V., and Reis, M. A. M. (2006). Microbial community analysis with a high PHA storage capacity. Water Sci. Technol., 54, 183–188.
  • Seviour, T., Malde, A. K., Kjelleberg, S., Yuan, Z., and Mark, A. E. (2012a). Molecular dynamics unlocks atomic level self-assembly of the exopolysaccharide matrix of water-treatment granular biofilms. Biomacromolecules, 13, 1965–1972.
  • Seviour, T., Pijuan, M., Nicholson, T., Keller, J., and Yuan, Z. (2009). Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Res., 43, 4469–4478.
  • Seviour, T., Yuan, Z., van Loosdrecht, M. C. M., and Lin, Y. (2012b). Aerobic sludge granulation: A tale of two polysaccharides? Water Res., 46, 4803–4813.
  • Shin, H. S., Lim, K. H., and Park, H. S. (1992). Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors. Water Sci. Technol., 26, 601–605.
  • Show, K. Y., Lee, D. J., and Tay, J. H. (2012). Aerobic granulation: Advances and challenges. Appl. Biochem. Biotechnol., 167, 1622–1640.
  • Singh, M., and Srivastava, R. K. (2011). Sequencing batch reactor technology for biological wastewater treatment: A review. Asia-Pacific J. Chem. Eng., 6, 3–13.
  • Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., and Heijnen, J. J. (1994). Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnol. Bioeng., 43, 461–470.
  • Su, B., Cui, X., and Zhu, J. (2012). Optimal cultivation and characteristics of aerobic granules with typical domestic sewage in an alternating anaerobic/aerobic sequencing batch reactor. Bioresour. Technol., 110, 125–129.
  • Szabó, E. (2017). Composition and dynamics of the bacterial community in aerobic granular sludge reactors. PhD thesis. Gothenburg: Department of Civil and Environmental Engineering, Chalmers University of Technology.
  • Szabó, E., Hermansson, M., Modin, O., Persson, F., and Wilén, B. M. (2016). Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time. Water (Switzerland), 8. doi:10.3390/w8050172.
  • Szabó, E., Liebana, R., Hermansson, M., Modin, O., Persson, F., and Wilen, B.-M. (2017). Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates. Front. Microbiol., 8. doi:10.3389/fmicb.2017.00770.
  • Tay, J. H., Liu, Q. S., and Liu, Y. (2004). The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor. Water Sci. Technol., 49, 35–40.
  • Tay, J. H., Liu, Q. S., and Liu, Y. (2001). Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol., 91, 168–175.
  • Tchobanoglous, G., Burton, F. L., and Stensel, H. D. (2003). Metcalf & Eddy. Wastewater Engineering – Treatment and Reuse. New York: McGraw-Hill.
  • Thanh, B. X., Visvanathan, C., Sperandio, M., and Ben Aim, R. (2008). Fouling characterization in aerobic granulation coupled baffled membrane separation unit. J. Memb. Sci., 318, 334–339.
  • Third, K. A., Burnett, N., and Cord-Ruwisch, R. (2003). Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotechnol. Bioeng., 83, 706–720.
  • Thwaites, B. J., Reeve, P., Dinesh, N., Short, M. D., and van den Akker, B. (2017). Comparison of an anaerobic feed and split anaerobic-aerobic feed on granular sludge development, performance and ecology. Chemosphere, 172, 408–417.
  • Todt, D., and Dörsch, P. (2016). Mechanism leading to N2O production in wastewater treating biofilm systems. Rev. Environ. Sci. Biotechnol., 15, 355–378.
  • Tu, X., Zhang, S., Xu, L., Zhang, M., and Zhu, J. (2010). Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge. Desalination, 261, 191–196.
  • Val del Rio, A., Morales, N., Isanta, E., Mosquera-Corral, A., Campos, J. L., Steyer, J. P., and Carrere, H. (2011). Thermal pre-treatment of aerobic granular sludge: Impact on anaerobic biodegradability. Water Res., 45, 6011–6020.
  • Val del Rio, A., Palmeiro-Sanchez, T., Figueroa, M., Mosquera-Corral, A., Campos, J. L., and Mendez, R. (2014). Anaerobic digestion of aerobic granular biomass: Effects of thermal pre-treatment and addition of primary sludge. J. Chem. Technol. Biotechnol., 89, 690–697.
  • van den Akker, B., Reid, K., Middlemiss, K., and Krampe, J. (2015). Evaluation of granular sludge for secondary treatment of saline municipal sewage. J. Environ. Manage., 157, 139–145.
  • van der Hoek, J. P., de Fooij, H., and Struker, A. (2016). Wastewater as a resource: Strategies to recover resources from Amsterdam's wastewater. Resour. Conserv. Recycl., 113, 53–64.
  • van der Roest, H., van Loosdrecht, M., Langkamp, E. J., and Uijterlinde, C. (2015). Recovery and reuse of alginate from granular Nereda sludge. Water, 21, April, 48.
  • van der Roest, H. F., de Bruin, L. M. M., Gademan, G., and Coelho, F. (2011). Towards sustainable waste water treatment with Dutch Nereda® technology. Water Pract. Technol., 6, 3–6.
  • van der Star, W. R. L., Abma, W. R., Blommers, D., Mulder, J.-W., Tokutomi, T., Strous, M., Picioreanu, C., and Van Loosdrecht, M. C. M. (2007). Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Res., 41, 4149–4163.
  • van Dongen, U., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2001). The SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater. Water Sci. Technol., 44, 153–160.
  • van Loosdrecht, M. C. M., and de Kreuk, M. K. (2004). Method for the treatment of waste water with sludge granules. WO2004024638.
  • van Loosdrecht, M. C. M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L., and Heijnen, J. J. (1995). Biofilm structures. Water Sci. Technol., 32, 35–43.
  • van Loosdrecht, M. C. M., Pot, M. A., and Heijnen, J. J. (1997). Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol., 35, 41–47.
  • van Nieuwenhuijzen, A. F., van der Graaf, J., Kampschreur, M. J., and Mels, A. R. (2004). Particle related fractionation and characterisation of municipal wastewater. Water Sci. Technol., 50, 125–132.
  • Verawaty, M., Tait, S., Pijuan, M., Yuan, Z., and Bond, P. L. (2013). Breakage and growth towards a stable aerobic granule size during the treatment of wastewater. Water Res., 47, 5338–5349.
  • Versprille, A. I., Zuurveen, B., and Stein, T. (1985). The A-B process – A novel 2 stage waste-water treatment system. Water Pract. Technol., 17, 235–246.
  • Wagner, J., and da Costa, R. H. (2013). Aerobic granulation in a sequencing batch reactor using real domestic wastewater. J. Environ. Eng., 139, 1391–1396.
  • Wagner, J., Guimaraes, L. B., Akaboci, T. R. V., and Costa, R. H. R. (2015a). Aerobic granular sludge technology and nitrogen removal for domestic wastewater treatment. Water Sci. Technol., 71, 1040–1046.
  • Wagner, J., Weissbrodt, D. G., Manguin, V., da Costa, R. H., Morgenroth, E., and Derlon, N. (2015b). Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors. Water Res., 85, 158–166.
  • Wang, Y., Zhong, C., Huang, D., Wang, Y., and Zhu, J. (2013). The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux. Bioresour. Technol., 136, 488–495.
  • Weissbrodt, D. G., Holliger, C., and Morgenroth, E. (2017). Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors. Biotechnol. Bioeng., 114, 1688–1702.
  • Weissbrodt, D. G., Lochmatter, S., Ebrahimi, S., Rossi, P., Maillard, J., and Holliger, C. (2012). Bacterial selection during the formation of early-stage aerobic granules in wastewater treatment systems operated under wash-out dynamics. Front. Microbiol., 3. doi:10.3389/fmicb.2012.00332.
  • Weissbrodt, D. G., Neu, T. R., Kuhlicke, U., Rappaz, Y., and Holliger, C. (2013a). Assessment of bacterial and structural dynamics in aerobic granular biofilms. Front. Microbiol., 4. doi:10.3389/fmicb.2013.00175.
  • Weissbrodt, D. G., Schneiter, G. S., Fuerbringer, J.-M., and Holliger, C. (2013b). Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors. Water Res., 47, 7006–7018.
  • Weissbrodt, D. G., Shani, N., and Holliger, C. (2014). Linking bacterial population dynamics and nutrient removal in the granular sludge biofilm ecosystem engineered for wastewater treatment. FEMS Microbiol. Ecol., 88, 579–595.
  • Wett, B. (2007). Development and implementation of a robust deammonification process. Water Sci. Technol., 56, 81–88.
  • Whang, L. M., and Park, J. K. (2006). Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: Effect of temperature and sludge age. Water Environ. Res., 78, 4–11.
  • Wilén, B.-M., Cimbritz, M., Pettersson, T. Jr., and Mattsson, A. (2016). Large scale tertiary filtration – results and experiences from the discfilter plant at the Rya WWTP in Sweden. Water Pract. Technol., 11, 547–555.
  • Wilén, B. M., Gapes, D., Blackall, L. L., and Keller, J. (2004a). Structure and microbial composition of nitrifying microbial aggregates and their relation to internal mass transfer effects. Water Sci. Technol., 50, 213–220.
  • Wilén, B. M., Gapes, D., and Keller, J. (2004b). Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. Biotechnol. Bioeng., 86, 445–457.
  • Winkler, M.-K.H., Bassin, J. P., Kleerebezem, R., de Bruin, L. M. M., van den Brand, T. P. H., and Van Loosdrecht, M. C. M. (2011). Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures. Water Res., 45, 3291–3299.
  • Winkler, M.-K.H., Bassin, J. P., Kleerebezem, R., van der Lans, R.G.J.M., and van Loosdrecht, M. C. M. (2012a). Temperature and salt effects on settling velocity in granular sludge technology. Water Res., 46, 5445–5451.
  • Winkler, M.-K.H., Kleerebezem, R., de Bruin, L. M. M., Verheijen, P. J. T., Abbas, B., Habermacher, J., and van Loosdrecht, M. C. M. (2013a). Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Appl. Microbiol. Biotechnol., 97, 7447–7458.
  • Winkler, M.-K.H., Kleerebezem, R., Khunjar, W. O., de Bruin, B., and van Loosdrecht, M. C. M. (2012b). Evaluating the solid retention time of bacteria in flocculent and granular sludge. WATER Res., 46, 4973–4980.
  • Winkler, M.-K.H., Kleerebezem, R., Strous, M., Chandran, K., and Van Loosdrecht, M. C. M. (2013b). Factors influencing the density of aerobic granular sludge. Appl. Microbiol. Biotechnol., 97, 7459–7468.
  • Winkler, M.-K.H., Meunier, C., Henriet, O., Mahillon, J., Suárez-Ojeda, M. E., Del Moro, G., De Sanctis, M., Di Iaconi, C., and Weissbrodt, D. G. (2018). An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chem. Eng. J., 336, 489–502.
  • Xavier, J. B., de Kreuk, M. K., Picioreanu, C., and van Loosdrecht, M. C. M. (2007). Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge. Environ. Sci. Technol., 41, 6410–6417.
  • Yang, H. G., Li, J., Liu, J., Ding, L. B., Chen, T., Huang, G. X., and Shen, J. Y. (2016). A case for aerobic sludge granulation: From pilot to full scale. J. Water Reuse Desalin., 6, 188–194.
  • Yuan, Z., Pratt, S., and Batstone, D. J. (2012). Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol., 23, 878–883.
  • Zeng, R. J., Lemaire, R., Yuan, Z., and Keller, J. (2003). Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnol. Bioeng., 84, 170–178.
  • Zhang, Q., Hu, J., and Lee, D.-J. (2016). Aerobic granular processes: Current research trends. Bioresour. Technol., 210, 1–7.
  • Zhou, J., Zhang, Z., Zhao, H., Yu, H., Alvarez, P. J. J., Xu, X., and Zhu, L. (2016). Optimizing granules size distribution for aerobic granular sludge stability: Effect of a novel funnel-shaped internals on hydraulic shear stress. Bioresour. Technol., 216, 562–570.
  • Zitomer, D. H., Duran, M., Albert, R., and Guven, E. (2007). Thermophilic aerobic granular biomass for enhanced settleability. Water Res., 41, 819–825.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.