1,381
Views
45
CrossRef citations to date
0
Altmetric
Articles

Utilization of waste products as alternative landfill liner and cover materials – A critical review

ORCID Icon & ORCID Icon
Pages 376-438 | Published online: 10 May 2018

References

  • Abdolahzadeh, A. M., Vachon, B. L., and Cabral, A. R. (2011). Evaluation of the effectiveness of a cover with capillary barrier effect to control percolation into a waste disposal facility. Can. Geotech. J., 48(7), 996–1009. doi:10.1139/t11-017.
  • Abichou, T., Benson, C. H., and Edil, T. B. (2000). Foundry green sands as hydraulic barriers: Laboratory study. J. Geotech. Geoenviron. Eng., 126(12), 1174–1183. doi:10.1061/(ASCE)1090-0241(2000)126:12(1174).
  • Abichou, T., Benson, C. H., and Edil, T. B. (2002). Foundry green sands as hydraulic barriers: Field study. J. Geotech. Geoenviron. Eng., 128(3), 206–215. doi:10.1061/(ASCE)1090-0241(2002)128:3(206).
  • Agamuthu, P. (2013). Landfilling in developing countries. Waste Manage. Res., 31(1), 1–2. DOI:10.1177/0734242X12469169.
  • Allen, A. (2001). Containment landfills: the myth of sustainability. Eng. Geol., 60, 3–19. doi:10.1016/S0013-7952(00)00084-3.
  • Al-Tabbaa, A., and Aravinthan, T. (1998). Natural clay-shredded tire mixtures as landfill barrier materials. Waste Manag., 18(1), 9–16. doi:10.1016/S0956-053X(98)00002-6.
  • Al-Tabbaa, A., Blackwell, O., and Porter, S. A. (1997). An investigation into the geotechnical properties of soil-tyre mixtures. Environ. Technol., 18(8), 855–860. doi:10.1080/09593331808616605.
  • Amadi, A. A. (2011). Hydraulic conductivity tests for evaluating compatibility of lateritic soil – fly ash mixtures with municipal waste leachate. Geotech. Geol. Eng., 29(3), 259–265. doi:10.1007/s10706-010-9358-9.
  • Amadi, A. A., and Eberemu, A. O. (2013). Potential application of lateritic soil stabilized with cement kiln dust (CKD) as liner in waste containment structures. Geotech. Geol. Eng., 31(4), 1221–1230. doi:10.1007/s10706-013-9645-3.
  • Andreas, L., Diener, S., and Lagerkvist, A. (2014). Steel slags in a landfill top cover–Experiences from a full-scale experiment. Waste Manage., 34, 692–701. doi:10.1016/j.wasman.2013.12.003.
  • Aziz, H. A., Yik, W. C., Ramli, H., and Amr, S. S. A. (2016). Investigaations on the hydraulic conductivity and physical properties of silt and sludge as potential landfill capping. Int. J. Geomat., 10(22), 1989–1993.
  • Balkaya, M. (2015). Evaluation of the geotechnical properties of alum sludge, zeolite, and their mixtures for beneficial usage. Environ. Prog. Sustainable Energy, 34(4), 1028–1037. doi:10.1002/ep.12095.
  • Balkaya, M. (2016). Evaluation of the use of alum sludge as hydraulic barrier layer and daily cover material in landfills: a finite element analysis study. Desalin. Water Treat., 57(6), 2400–2412. doi:10.1080/19443994.2015.1005154.
  • Benson, C. H., and Othman, M. A. (1993). Hydraulic and mechanical characteristics of a compacted municipal solid waste compost. Waste Manag. Res., 11(2), 127–142. doi:10.1177/0734242X9301100205.
  • Benson, C. H., and Wang, X. (1999). Hydraulic conductivity assessment of hydraulic barriers constructed with paper sludge. In T. B. Edil and P. J. Fox, Eds., Geotechnics of high water content materials, ASTM STP 1374 (pp. 1–17). West Conshohocken, PA: American Society for Testing and Materials.
  • Boni, M. R., D'Aprile, L., and De Casa, G. (2004). Environmental quality of primary paper sludge. J. Hazard. Mater., 30;108(1–2), 125–128. doi:10.1016/j.jhazmat.2003.11.017.
  • Brännvall, E., and Kumpiene, J. (2016). Fly ash in landfill top covers–a review. Environ Sci Processes Impacts, 18(1), 11–21. doi:10.1039/C5EM00419E.
  • Caniani, D., Masi, S., Mancini, I. M., and Trulli, E. (2013). Innovative reuse of drinking water sludge in geo-environmental applications. Waste Manag., 33(6), 1461–1468. doi:10.1016/j.wasman.2013.02.007.
  • Canty, G. A., Atalay, A., Laguros, J. G., Robertson, J., and Pandey, K. K. (1995). A preliminary assessment of utilizing fluidized bed ash in landfill liner applications. J. Environ. Sci. Health A., 30, 439–459.
  • Carignan, M. P., and Lake, C. B. (2007). Sorption and diffusion of volatile organic compounds through two thermally treated drill mud wastes. Can. Geotech. J., 44(5), 592–602. doi:10.1139/t07-009.
  • Carignan, M. P., Lake, C. B., and Menzies, T. (2007). Assessment of two thermally treated drill mud wastes for landfill containment applications. Waste Manag., 25(5), 394–401. doi:10.1177/0734242X07073652.
  • CEN. (2002). CEN/TC292/WG2 EN 12457 Compliance test for leaching of granular materials and sludges. Characterisation of waste. Leaching. European Committee for Standardization.
  • Chen, P., Zhan, L., and Wilson, W. (2014). Experimental investigation on shear strength and permeability of a deeply dewatered sewage sludge for use in landfill covers. Environ. Earth Sci., 71(10), 4593–4602. doi:10.1007/s12665-013-2851-8.
  • Chen, X. W., Wong, J. T. F., Ng, C. W. W., and Wong, M. H. (2016). Feasibility of biochar application on a landfill final cover – a review on balancing ecology and shallow slope stability. Environ. Sci. Pollut. Res., 23(8), 7111–7125. doi:10.1007/s11356-015-5520-5.
  • Chung, H. I., and Lee, Y. S. (2006). Utilization of stabilized and solidified sewage sludge as a daily landfill cover material. KSCE J. Civil Eng., 10(4), 255–258. doi:10.1007/BF02830779.
  • Cokca, E., and Yilmaz, Z. (2004). Use of rubber and bentonite added fly ash as a liner material. Waste Manag., 24, 153–164. doi:10.1016/j.wasman.2003.10.004.
  • Commission Decision 2014/955/EU of 18 December 2014. amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council. (30.12.2014). Official Journal of the European Union.
  • Commission Regulation (EU) No 1357/2014 of 18 December 2014 replacing Annex III to Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain Directives. (19.12.2014). Official Journal of the European Union.
  • Çoruh, S., and Ergun, O. N. (2010). Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. J. Hazard. Mater., 173(1–3), 468–473. doi:10.1016/j.jhazmat.2009.08.108.
  • Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. (16.1.2003). Official Journal of the European Union.
  • Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. (16.07.1999). Official Journal of the European Communities.
  • Creek, D. N., and Shackelford, C. D. (1992). Permeability and leaching characteristics of fly ash liner materials. Transp. Res. Rec., 1345, 74–83.
  • Daniel, D. E. (1993). Landfills and impoundments. In D. E. Daniel (Ed.), Geotechnical practice for waste disposal ( Chapter 5, pp. 97–112). London: Chapman & Hall.
  • Dedinec, A., Markovska, N., Ristovski, I., Velevski, G., Gjorgjievska, V. T., Grncarovska, T. O., and Zdraveva, P. (2015). Economic and environmental evaluation of climate change mitigation measures in the waste sector of developing countries. J. Clean. Prod., 88, 234–241. doi:10.1016/j.jclepro.2014.05.048.
  • Deng, A., and Tikalsky, P. J. (2006). Metallic characterization of foundry by-products per waste streams and leaching protocols. J. Environ. Eng., 136(6), 586–596.
  • Deka, A., Sekharan, S. (2016). Contaminant retention characteristics of fly ash–bentonite mixes. Waste Manage. Res., 35(1), 40–46. doi:10.1177/0734242X16670002.
  • Diener, S., Andreas, L., Herrmann, I., Ecke, H., and Lagerkvist, A. (2010). Accelerated carbonation of steel slags in a landfill cover construction. Waste Manage., 30, 132–139. doi:10.1016/j.wasman.2009.08.007.
  • Directive 2008/1/EC of the European Parliament and of the Council of 15 January 2008 concerning integrated pollution prevention and control. (29.01.2008). Official Journal of the European Union.
  • Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. (22.11.2008). Official Journal of the European Union.
  • Douglas, S. K. (2003). Toxicity characteristic leaching procedure and iron treatment of brass foundry waste. Environ. Sci. Technol., 37, 367–371. doi:10.1021/es020621n.
  • Duchesne, J., and Doye, I. (2005). Effectiveness of covers and liners made of red mud bauxite and/or cement kiln dust for limiting acid mine drainage. J. Environ. Eng., 131(8),1230–1235. doi:10.1061/(ASCE)0733-9372(2005)131:8(1230).
  • Duffy, D. P. (2016). Landfill Economics: Getting Down to Business–Part 2. MSW Management http://foresternetwork.com/daily/waste/landfill-management/landfill-economics-part-ii-getting-down-to-business-part-i/
  • Dungan, R. S., and Dees, N. H. (2009). The characterization of total and leachable metals in foundry sands. J. Environ. Manag., 90, 539–548. doi:10.1016/j.jenvman.2007.12.004.
  • Eberemu, A. (2013). Evaluation of bagasse ash treated lateritic soil as a potential barrier material in waste containment application. Acta Geotech., 8, 407–421. doi:10.1007/s11440-012-0204-5.
  • Eberemu, A., Amadi, A. A., and Edeh, J. E. (2013). Diffusion of municipal waste contaminants in compacted lateritic soil treated with bagasse ash. Environ. Earth Sci., 70(2), 789–797. doi:10.1007/s12665-012-2168-z.
  • Eberemu, A., Amadi, A. A., and Osinubi, K. J. (2013). The use of compacted tropical clay treated with rice husk ash as a suitable hydraulic barrier material in waste containment applications. Waste Biomass Valor., 4(2), 309–323. doi:10.1007/s12649-012-9161-3.
  • Eckert, J. O., and Guo, Q. (1998). Heavy metals in cement and cement kiln dust from kilns co-fired with hazardous waste-derived fuel: Application of EPA leaching and acid-digestion procedures. J. Hazard. Mater., 59(1), 55–93. doi:10.1016/S0304-3894(97)00090-3.
  • Edil, T. B., Park, J. K., and Kim, J. Y. (2004). Effectiveness of scrap tire chips as sorptive drainage material. J. Environ. Eng., 130(7), 824–831. doi:10.1061/(ASCE)0733-9372(2004)130:7(824).
  • Edil, T. B., Sandstrom, L. K., and Berthouex, P. M. (1992). Interaction of inorganic leachate with compacted pozzolanic fly ash. J. Geotech. Eng., 118(9), 1410–1430. doi:10.1061/(ASCE)0733-9410(1992)118:9(1410).
  • El-Fadel, M., Findikakis, A. N., and Leckie, J. O. (1997). Environmental impacts of solid waste landfilling. J. Environ. Manage., 50, 1–25. doi:10.1006/jema.1995.0131.
  • Elshorbagy, W. A., and Mohamed, A. M.O. (2000). Evaluation of using municipal solid waste compost in landfill closure caps in arid areas. Waste Manag., 20(7), 499–507. doi:10.1016/S0956-053X(00)00025-8.
  • Environmental Agency Japan. (1973). Testing methods for metals in industrial wastes, Notification No. 13 (JLT-13), February 17, 1973.
  • European Commission. (2015). From waste to resources. https://ec.europa.eu/commission/publications/waste-resources_en
  • European Commission. (2016). Construction and demolition waste (CDW). http://ec.europa.eu/environment/waste/construction_demolition.htm
  • EUROSTAT. (2016). http://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_generation_and_landfilling_indicators)
  • Fall, M., Célestin, J., and Sen, H. F. (2009). Suitability of bentonite-paste tailings mix-tures as engineering barrier material for mine waste containment facilities. Miner. Eng., 22, 840–848. doi:10.1016/j.mineng.2009.02.011.
  • Fall, M., Célestin, J., and Sen, H. F. (2010). Potential use of densified polymer-pastefill mixture as waste containment barrier materials. Waste Manag., 30(12), 2570–2578. doi:10.1016/j.wasman.2010.07.016.
  • Gandhi, G. N., Sivakumar Babu, G. L., and Santhosh, L. G. (2015). Evaluation of engineered barrier system for hazardous waste disposal – A case study. Japanese geotechnical society special publication, 2(1), 54–61.
  • Ganjian, E., Claisse, P., Tyrer, M., and Atkinson, A. (2004a). Preliminary investigations into the use of secondary waste minerals as a novel cementitious landfill liner. Constr. Build. Mater., 18(9), 689–699. doi:10.1016/j.conbuildmat.2004.04.020.
  • Ganjian, E., Claisse, P. A., Tyrer, M., and Atkinson, A. (2004b). Selection of cementitious mixes as a barrier for landfill leachate containment. J. Mater. Civil Eng., 16(5), 477–486. doi:10.1061/(ASCE)0899-1561(2004)16:5(477).
  • Goodhue, M. J., Edil, T. B., and Benson, C. H. (2001). Interaction of foundry sands with geosynthetics. J. Geotech. Geoenviron. Eng., 127(4), 353–362. doi:10.1061/(ASCE)1090-0241(2001)127:4(353).
  • Goswami, R. K., and Mahanta, C. (2007). Leaching characteristics of residual lateritic soils stabilised with fly ash and lime for geotechnical applications. Waste Manag., 27, 466–481. doi:10.1016/j.wasman.2006.07.006.
  • Guney, Y., Cetin, B., Aydilek, A. H., Tanyu, B. F., and Koparal, S. (2014). Utilization of sepiolite materials as a bottom liner material in solid waste landfills. Waste Manage., 34, 112–124. doi:10.1016/j.wasman.2013.10.008.
  • He, J., Li, F., Li, Y., and Cui, X. L. (2015). Modified sewage sludge as temporary landfill cover material. Water Sci. Eng., 8(3), 257–262. doi:10.1016/j.wse.2015.03.003.
  • Hegedűs, M., Sas, Z., Tóth-Bodrogi, E., Szántó, T., Somlai, J., and Kovács, T. (2016). Radiological characterization of clay mixed red mud in particular as regards its leaching features. J. Environ. Radioact., 162–163, 1–7. doi: 10.1016/j.jenvrad.2016.05.002.
  • Herrmann, I., Andreas, L., Diener, S., and Lind, L. (2010). Steel slag used in landfill cover liners: laboratory and field tests. Waste Manag. Res., 28(12), 1114–1121. doi:10.1177/0734242X10365095.
  • Herrmann, I., Svensson, M., Ecke, H., Kumpiene, J., Maurice, C., Andreas, L., and Lagerkvist, A. (2009). Hydraulic conductivity of fly ash–sewage sludge mixes for use in landfill cover liners. Water Res., 43(14), 3541–3547. doi:10.1016/j.watres.2009.04.052.
  • Hettiaratchi, J. P. A., Achari, G., Joshi, R. C., and Okoli, R. E. (1999). Feasibility of us-ing fly ash admixtures in landfill bottom liners or vertical barriers at contaminated sites. J. Environ. Sci. Health A, 34(10), 1897–1917. doi:10.1080/10934529909376938.
  • Hoornweg, D., Bhada-Tata, P. (2012). What a Waste: A global review of solid waste management. Urban development series; knowledge papers no. 15. World Bank. Washington, DC: © World Bank.
  • Hyun, J., and Kim, M. G. (2012). Field testing of conversion of sewage sludge to daily landfill cover material. J. Mater. Cycles Waste Manage., 14(1), 14–18. doi:10.1007/s10163-011-0034-9.
  • Joshi, R. C., Hettiaratchi, J. P. A., Achari, G. (1994). Properties of modified Alberta fly ash in relation to utilization in waste management applications. Can J. Civil Eng., 21(3), 419–426. doi:10.1139/l94-046.
  • Jugnia, L.B., Cabral, A. R., and Greer, C. W. (2008). Biotic methane oxidation within an instrumented experimental landfill cover. Ecol. Eng., 33(2), 102–109. doi:10.1016/j.ecoleng.2008.02.003.
  • Kalinski, M. E., and Yerra, P. K. (2006). Hydraulic conductivity of compacted cement–stabilized fly ash. Fuel, 85, 2330–2336. doi:10.1016/j.fuel.2006.04.030.
  • Kalkan, E. (2006). Utilization of red mud as a stabilization material for the preparation of clay liners. Eng. Geol., 87(3–4), 220–229. doi:10.1016/j.enggeo.2006.07.002.
  • Kamon, M., Inazumi, S., and Katsumi, T. (2002b). Performance evaluations of landfill cover systems with sludge barriers. Geotechnical Eng., 33(3), 113–132.
  • Kamon, M., Inazumi, S., Rajasekaran, G., and Katsumi, T. (2002a). Evaluation of waste sludge for landfill cover application. Soils Found., 42(4), 13–27. doi:10.3208/sandf.42.4_13.
  • Kayabalı, K., and Buluş, G. (2000). The usability of bottom ash as an engineering material when amended with different matrices. Eng. Geol., 56, 293–303. doi:10.1016/S0013-7952(99)00097-6.
  • Khoshand, A., and Fall, M. (2014). Geotechnical characterization of compost based biocover materials. Geotech. Geol. Eng., 32(2), 489–503. doi:10.1007/s10706-014-9728-9.
  • Kim, E. H., Cho, J. K., and Yim, S. (2005). Digested sewage sludge solidification by converter slag for landfill cover. Chemosphere, 59(3), 387–395. doi:10.1016/j.chemosphere.2004.10.038.
  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., and Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol., 32(4), 297–336. doi:10.1080/10643380290813462.
  • Koch, D. (2002). Bentonites as a basic material for technical base liners and site encapsulation cut-off walls. Appl. Clay Sci., 21, 1–11. doi:10.1016/S0169-1317(01)00087-4.
  • Kortnik, J., Černec, F., and Hrast, K. (2008). Paper sludge layer as low permeability barrier on waste landfills. Soil Sedim. Contam., 17(4), 381–392. doi:10.1080/15320380802146586.
  • Kovačić, D. (1994). Materials for the final cover of sanitary landfills. Min.-Geol.-Pet. Eng. Bull., 6, 11–15.
  • Kraus, J. F., Benson, C. H., Erickson, A. E., and Chamberlain, E. J. (1997). Freeze-thaw cycling and hydraulic conductivity of bentonitic barriers. J. Geotech. Geoenviron. Eng., 123(3), 229–238. doi:10.1061/(ASCE)1090-0241(1997)123:3(229).
  • Kumar, S., and Burrus, N. (2005). Free swell characteristics of PCC bottom ash-bentonite mixtures with curing for use as fill or liner material. Soil Sed. Contam., 14, 505–514.
  • Kumar, S., and Stewart, J. (2003). Utilization of Illinois PCC dry bottom ash for compacted landfill barriers. Soil Sed. Contam., 12, 401–415.
  • Kumar, S., Stewart, J., and Mishra, S. (2004). Strength characteristics of Illinois coal combustion by-product: PCC dry bottom ash. Int. J. Environ. Stud., 61, 551–562. doi:10.1080/0020723042000183701.
  • Kumpiene, J., Desogus, P., Schulenburg, S., Arenella, M., Renella, G., Brännvall, E., Lagerkvist, A., Andreas, L., and Sjöblom, R. (2013). Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover. Environ. Sci. Pollut. Res., 20(12), 8649–8662. doi:10.1007/s11356-013-1818-3.
  • Kunal, Siddique, R., and Rajor, A. (2012). Use of cement kiln dust in cement concrete and its leachate characteristics. Resour. Conserv. Recycl., 61, 59–68. doi:10.1016/j.resconrec.2012.01.006.
  • Kuokkanen, T., Nurmesniemi, H., Pöykiö, R., Kujala, K., Kaakinen, J., and Kuokkanen, M. (2008). Chemical and leaching properties of paper mill sludge. Chem. Spec. Bioavailab., 20(2), 111–122. doi:10.3184/095422908X324480.
  • Lovejoy, M., Ham, R., Traeger, P., Hippe, J., and Boyle, W. (1996). Evaluation of selected foundry wastes for highway construction. Proc., 19th Int. Madison Waste Conf., University of Wisconsin, Madison.
  • Lu, H., Dong, Y., Li, J., and Wang, C. (2015). The adsorption capacity and geotechnical properties of modified clay containing SSA used as landfill liner-soil materials. J. Chem., 2015, ID 263095. DOI:10.1155/2015/263095.
  • Maltby, V., and Eppstein, L. (1994). A field-scale study of the use of paper industry sludges as hydraulic barriers in landfill cover systems. Hydraulic conductivity and waste contaminant transport in soils. ASTM STP 1142, 546–558.
  • Maritsa, L., Tsakiridis, P. E., Katsiotis, N. S., Tsiavos, H., Velissariou, D., Xenidis, A., and Beazi-Katsioti, M. (2016). Utilization of spilitic mining wastes in the construction of landfill bottom liners. J. Environ. Chem. Eng., 4(2), 1818–1825. doi:10.1016/j.jece.2016.03.011.
  • Masi, S., Caniani, D., Grieco, E., Lioi, D. S., and Mancini, I. M. (2014). Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Manag., 34(3), 702–710. doi:10.1016/j.wasman.2013.12.013.
  • Meggyes, T. (2007a). Sustainable environmental protection. In T. Meggyes (Ed.), Forschungsbericht 280: Sustainable environmental protection ( Chapter 1, pp. 5–13). Berlin: Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Meggyes, T. (2007b). Landfill applications. In R. W. Sarsby (Ed.), Geosynthetics in civil engineering ( Chapter 8, pp. 163–180). Cambridge: Woodhead Publishing Ltd.
  • Mian, M. M., Zeng, X., Nasry, A. N. B, and Al-Hamadani, S. M. Z. F. (2017). Municipal solid waste management in China: a comparative analysis. J. Mater. Cycles Waste Manag., 19, 1127–1135. DOI:10.1007/s10163-016-0509-9.
  • Mishra, A. K., and Ravindra, V. (2015). On the utilization of fly ash and cement mixtures as a landfill liner material. Int. J. Geosynth. Ground Eng., 1, 17. DOI:10.1007/s40891-015-0019-1.
  • Mohamed, A. (2002). Hydro-mechanical evaluation of soil stabilized with cement-kiln dust in arid lands. Environ. Geol., 42(8), 910–921. doi:10.1007/s00254-002-0590-3.
  • Mohan, R. K., Herbich, J. B., Hossner, L. R., and Williams, F. S. (1997). Reclamation of solid waste landfills by capping with dredged material. J. Hazard. Mater., 53(1–3), 141–164. doi:10.1016/S0304-3894(96)01831-6.
  • Mollamahmutoğlu, M., and Yilmaz, Y. (2001). Potential use of fly ash and bentonite mixture as liner or cover at waste disposal areas. Environ. Geol., 40(11), 1316–1324. doi:10.1007/s002540100355.
  • Moo-Young, H. K., and Zimmie, T. F. (1996a). Geotechnical properties of paper mill sludges for use in landfill covers. J. Geotech. Eng., 122(9), 768–775. doi:10.1061/(ASCE)0733-9410(1996)122:9(768).
  • Moo-Young, H. K., and Zimmie, T. F. (1996b). Effects of freezing and thawing on the hydraulic conductivity of paper mill sludges used as landfill covers. Can. Geotech. J., 33(5), 783–792. doi:10.1139/t96-103.
  • Moo-Young, H. K., and Zimmie, T. F. (1997). Waste minimization and re-use of paper sludge in landfill covers: a case study. Waste Manag. Res., 15(6), 593–605. DOI:10.1177/0734242X9701500605.
  • Moraes, C. A. M, Fernandes, I. J., Calheiro, D., Kieling, A. G., Brehm, F. A., Rigon, M. R., Berwanger, J. A., Schneider, I. A. H., and Osorio, E. (2014). Review of the rice production cycle: By-products and the main applications focusing on rice husk combustion and ash recycling. Waste Manage. Res., 32(11), 1034–1048. doi:10.1177/0734242X14557379.
  • Moses, G., Oriola, F. O. P., and Afolayan, J. O. (2013). The impact of compactive effort on the long term hydraulic conductivity of compacted foundry sand treated with bagasse ash and permeated with municipal solid waste landfill leachate. Front. Geotech. Eng., 2(1), 7–15.
  • Moses, G., and Osinubi, K. J. (2015). Attenuative capacity of compacted bagasse ash treated foundry sand. Jordan J. Civil Eng., 9(3), 266–277. doi:10.14525/jjce.9.3.3070.
  • Mudd, G. M., Chakrabarti, S., and Kodikara, J. (2007). Evaluation of engineering properties for the use of leached brown coal ash in soil covers. J. Hazard. Mater., 139(3), 409–412. doi:10.1016/j.jhazmat.2006.02.056.
  • Muhunthan, B., Taha, R., and Said, J. (2004). Geotechnical engineering properties of incinerator ash mixes. J. Air Waste Manage. Assoc., 54(8), 985–991. doi:10.1080/10473289.2004.10470959.
  • Mukherjee, K., and Mishra, A. K. (2017). The impact of scrapped tyre chips on the mechanical properties of liner materials. Environ. Processes, 4(1), 219–233. doi:10.1007/s40710-017-0210-6.
  • Ng, K. T., and Lo, I. M. (2007). Mechanical behaviors of a synthetic paste of tire chips and paper sludge in MSW landfill daily cover applications. Can. Geotech. J., 44(8), 928–941. doi:10.1139/T07-041.
  • Ng, K. T., and Lo, I. M. (2010). Effects of design mix and porosity of waste-derived paste as landfill daily covers on lead retardation. Pract. Period. Hazard., Toxic, Radioact. Waste Manage., 14(3), 195–204. doi:10.1061/(ASCE)HZ.1944-8376.0000033.
  • Nhan, C. T., Graydon, J. W., and Kirk, D. W. (1996). Utilizing coal fly ash as a landfill barrier material. Waste Manag., 16(7), 587–595. doi:10.1016/S0956-053X(96)00108-0.
  • Nik Daud, N. N., Muhammed, A. S., and Kundiri, A. M. (2017). Hydraulic conductivity of compacted granite residual soil mixed with palm oil fuel ash in landfill application. Geotech. Geol. Eng., 35, 1967–1976. doi:10.1007/s10706-017-0220-1.
  • Oh, S., and Shin, W. S. (2017). Applicability of solidified/stabilized dye sludge char as a landfill cover material. KSCE J. Civil Eng., 21(7), 2573–2583. doi:10.1007/s12205-017-0064-5.
  • Okoli, R. E., and Balafoutas, G. (1998). Landfill sealing potentials of bottom ashes of sludge cakes. Soil Tillage Res., 46(3), 307–314. doi:10.1016/S0167-1987(98)00111-1.
  • Okoli, R. E., and Balafoutas, G. (1999). Bottom ash from sludge cake as a barrier material to pollutant migration in landfills. Waste Manage. Res., 17(4), 288–295. doi:10.1177/0734242X9901700405.
  • Oriola, F., and Moses, G. (2011). Compacted black cotton soil treated with cement kiln dust as hydraulic barrier material. Am. J. Sci. Ind. Res., 2(4), 521–530.
  • Osinubi, K., and Eberemu, A. (2009). Compatibility and attenuative properties of blast furnace slag treated laterite. J. Solid Waste Technol. Manage., 35(1), 7–16. doi:10.5276/JSWTM.2009.7.
  • Osinubi, K. J., and Bello, A. A. (2010). Evaluation of hydraulic conductivity of abandoned dumpsite soils for use in waste containment applications. J. Eng. Res., 15(4), 10–35.
  • Osinubi, K. J., and Eberemu, A. (2013). Hydraulic conductivity of compacted lateritic soil treated with bagasse ash. Int. J. Environ. Waste Manage., 11(1), 38–58. doi:10.1504/IJEWM.2013.050522.
  • Osinubi, K. J., Eberemu, A., and Amadi, A. A. (2012). Compatibility of compacted lateritic soil treated with bagasse ash and municipal solid waste leachate. Int. J. Environ. Waste Manage., 10(4), 365–376. doi:10.1504/IJEWM.2012.049841.
  • Osinubi, K. J., Eberemu, A. O., and Amadi, A. A. (2009). Compacted lateritic soil treated with blast furnace slag as hydraulic barriers in waste containment systems. Int. J. Risk Assess. Manag., 13(2), 171–189. doi:10.1504/IJRAM.2009.030328.
  • Osinubi, K. J., and Eberemu, A. (2010). Desiccation induced shrinkage of compacted lateritic soil treated with blast furnace slag. Geotech. Geol. Eng., 28(5), 537–547.
  • Osinubi, K. J., Moses, G., and Liman, A. S. (2015). The Influence of compactive effort on compacted lateritic soil treated with cement kiln dust as hydraulic barrier material. Geotech. Geol. Eng., 33(3), 523–535. doi:10.1007/s10706-014-9837-5.
  • Pal, S. K., and Ghosh, A. (2012). Hydraulic conductivity of fly Ash–montmorillonite clay mixtures. Indian Geotech. J., 43(1), 47–61. doi:10.1007/s40098-012-0033-3.
  • Palmer, B. G., Edil, T. B., and Benson, C. H. (2000). Liners for waste containment constructed with class F and C fly ashes. J. Hazard. Mater., 76, 193–216. doi:10.1016/S0304-3894(00)00199-0.
  • Panarotto, C. T., Cabral, A. R., and Lefebvre, G. (2005). Environmental, geotechnical, and hydraulic behaviour of a cellulose-rich by-product used as alternative cover material. J. Environ. Eng. Sci., 4(2), 123–138. DOI:10.1139/s04-062.
  • Panda, I., Jain, S., Das, S. K., and Jayabalan, R. (2017). Characterization of red mud as a structural fill and embankment material using bioremediation. Int. Biodeter. Biodegr., 199, 368–376. doi:10.1016/j.ibiod.2016.11.026.
  • Phanikumar, B. R., and Uma Shankar, M. (2016). Studies on hydraulic conductivity of fly ash-stabilised expansive clay liners. Geotech. Geol. Eng., 34, 449–462. DOI:10.1007/s10706-015-9956-7.
  • Phanikumar, B. R., and Uma Shankar, M. (2017). Heave studies on fly ash-stabilised expansive clay liners. Geotech. Geol. Eng., 35, 111–120. doi:10.1007/s10706-016-0088-5.
  • Prashant, J. P., Sivapullaiah, P. V., and Sridharan, A. (2001). Pozzolanic fly ash as a hydraulic barrier in landfills. Eng. Geol., 245, 245–252. doi:10.1016/S0013-7952(00)00105-8.
  • Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., … Zak, M. A. (2000). Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ. Sci. Technol., 34(8), 1576–1582. doi:10.1021/es9906002.
  • Puma, S., Marchese, F., Dominijanni, A., and Manassero, M. (2013). Reuse of MSWI bottom ash mixed with natural sodium bentonite as landfill cover material. Waste Manage. Res., 31(6), 577–584. doi:10.1177/0734242X13477722.
  • Rahardjo, H., Satyanaga, A., Harnas, F. R., and Leong, E. C. (2016). Use of dual capillary barrier as cover system for a sanitary landfill in Singapore. Indian Geotech. J., 46(3), 228–238. doi:10.1007/s40098-015-0173-3.
  • Reddy, K. R., Stark, T. D., and Marella, A. (2010). Beneficial use of shredded tires as drainage material in cover systems for abandoned landfills. Pract. Period. Hazard., Toxic, Radioact. Waste Manage., 14(1), 47–60. doi:10.1061/(ASCE)1090-025X(2010)14:1(47).
  • Regadío, M., de Soto, I. S., Rodríguez-Rastrero, M., Ruiz, A. I., Gismera, and Cuevas, M. J. (2013). Processes and impacts of acid discharges on a natural substratum under a landfill. Sci. Total Environ., 463–464, 1049–1059. doi:10.1016/j.scitotenv.2013.06.047.
  • Regadío, M., Ruiz, A. I., Rodríguez-Rastrero, M., and Cuevas, J. (2015). Containment and attenuating layers: An affordable strategy that preserves soil and water from landfill pollution. Waste Manage., 46, 408–419. doi:10.1016/j.wasman.2015.08.014.
  • Rhew, R. D., and Barlaz, M. A. (1995). Effect of lime-stabilized sludge as landfill cover on refuse decomposition. J. Environ. Eng., 121(7), 499–506. doi:10.1061/(ASCE)0733-9372(1995)121:7(499).
  • Roehl, K. E., and Czurda, K. (2007). Increasing the safety of tailings facilities. In T. Meggyes (Eds.), Forschungsbericht 280: Sustainable environmental protection ( Chapter 5, pp. 32–36). Berlin: Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Rubinos, D., Spagnoli, G., and Barral, M. T. (2015). Assessment of bauxite refining residue (red mud) as a liner for waste disposal facilities. Int. J. Min. Reclamat. Environ., 29(6), 433–452. DOI:10.1080/17480930.2013.830906.
  • Rubinos, D. A., and Barral, M. T. (2013). Fractionation and mobility of metals in bauxite red mud. Environ. Sci. Pollut. Res., 20(11), 7787–7802. doi:10.1007/s11356-013-1477-4.
  • Rubinos, D. A., and Barral, M. T. (2017). Sorptive removal of HgII by red mud (bauxite residue) in contaminated landfill leachate. J. Environ. Sci. Health A., 52(1), 84–98. doi: 10.1080/10934529.2016.1229938.
  • Rubinos, D. A., Spagnoli, G., and Barral, M. T. (2016). Chemical and environmental compatibility of red mud liners for hazardous waste containment. Int. J. Environ. Sci. Technol., 13, 773–792. doi:10.1007/s13762-015-0917-8.
  • Rubinos, D. A., Valcárcel, V., Spagnoli, G., and Barral, M. T. (2017). Microstructural characterization of red mud as affected by inorganic and organic chemicals permeation. JOM, 69(9), 1607–1612. doi:10.1007/s11837-017-2301-2.
  • Sales, A., and Lima, S. A. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag., 30, 1114–1122. doi:10.1016/j.wasman.2010.01.026.
  • TA Siedlungsabfall. (1993). Dritte Allgemeine Verwaltungsvorschrift zum Abfallgesetz – Technische Anleitung zur Verwertung, Behandlung und sonstigen Entsorgung von Siedlungsabfällen. In: Schmeken, W. (ed.) (p. 250). Cologne: TA Abfall, TA Siedlungsabfall, Kohlhammer.
  • Shankara, S., Naik, M., and Sivapullaiah, P. V. (2014). Permeability of sand-bentonite and sand-fly ash mixtures. Asian J. Water Environ. Pollut., 11(4), 19–26.
  • Siddique, R., Kaur, G., and Rajor, A. (2010). Waste foundry sand and its leachate characteristics. Resour., Conserv. Recycl., 54(12), 1027–1036. doi:10.1016/j.resconrec.2010.04.006.
  • Simon, F. G., and Müller, W. W. (2004). Standard and alternative landfill capping design in Germany. Environ. Sci. Policy, 7, 277–290. doi:10.1016/j.envsci.2004.04.002.
  • Sivapullaiah, P. V., and Baig, M. A. (2011). Gypsum treated fly ash as a liner for waste disposal facilities. Waste Manag., 31, 359–369. doi:10.1016/j.wasman.2010.07.017.
  • Sivapullaiah, P. V., and Lakshmikantha, H. (2004). Properties of Fly Ash as Hy-draulic Barrier. Soil Sedim. Contam., 13, 489–504.
  • Slim, G. I., Morales, M., Alrumaidhin, L., Bridgman, P., Gloor, J., Hoff, S. T., and Odem, W. I. (2016). Optimization of polymer-amended fly ash and paper pulp millings mixture for alternative landfill liner. Procedia Eng., 145, 312–318.
  • Srivastava, V., Ismail, S. A., Singh, P., and Singh, R. P. (2015). Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev. Environ. Sci. Biotechnol., 14(2), 317–337. doi:10.1007/s11157-014-9352-4.
  • Stief, K. (1986). Das Multibarrierenkonzept als Grundlage von Planung, Bau, Betrieb und Nachsorge von Deponien, Müll und Abfall, 18(1), 15–20.
  • Travar, I., Andreas, L., Kumpiene, J., and Lagerkvist, A. (2015). Development of drainage water quality from a landfill cover built with secondary construction materials. Waste Manag., 35, 148–158. doi:10.1016/j.wasman.2014.09.016.
  • Travar, I., Lidelöw, S., Andreas, L., Tham, G., and Lagerkvist, A. (2009). Assessing the environmental impact of ashes used in a landfill cover construction. Waste Manag., 29(4), 1336–1346. doi:10.1016/j.wasman.2008.09.009.
  • Ujaczki, É., Feigl, V., Molnár, M., Vaszita, E., Uzinger, N., Erdélyi, A., and Gruiz, K. (2016). The potential application of red mud and soil mixture as additive to the surface layer of a landfill cover system. J. Environ. Sci., 44, 189–196. DOI:10.1016/j.jes.2015.12.014.
  • Uma Shankar, M., and Phanikumar, B. R. (2012). Correlation studies on index properties of fly ash-stabilised expansive clay liners. Geomech. Geoengi. An Int. J., 7(4):283–291. doi:10.1080/17486025.2011.631036.
  • Uma Shankar, M., and Phanikumar, B. R. (2015). Leachate studies on fly ash-stabilised expansive clay liners. Geomech. Geoengi. An Int. J. DOI: 10.1080/17486025.2015.1040856.
  • USEPA. (1990). National Sewage Sludge Survey. Federal Register 40CFR Parts 503, Part III, No. 218.
  • USEPA. (1992). Method 1311: Toxicity Characteristic Leaching Procedure (Report). Washington, DC: U.S. Environmental Protection Agency. In: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.” Document no. SW-846.
  • USEPA. (2014). Municipal Solid Waste Landfills Economic Impact Analysis for the Proposed New Subpart to the New Source Performance Standards. U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, C439-02, Research Triangle Park, North Carolina.
  • USEPA. (2016). Advancing sustainable materials Management: 2014 Fact Sheet. Assessing trends in material generation, recycling, composting, combustion with energy recovery and landfilling in the United States. Washington, DC: United States Environmental Protection Agency. Office of Land and Emergency Management.
  • Vandecasteele, C., and van der Sloot, H. A. (2011). Sustainable management of waste and recycled materials in construction. Waste Manage., 31, 199–200. doi:10.1016/j.wasman.2010.11.001.
  • Varank, G., Demir, A., Top, S., Sekman, E., Akkaya, E., Yetilmezsoy, K., and Bilgili, M. S. (2011). Migration behavior of landfill leachate contaminants through alternative composite liners. Sci. Total Environ., 409, 3183–3196. doi:10.1016/j.scitotenv.2011.04.044.
  • Vaverková, M. D., Adamcová, D., Radziemska, M., Voběrková, S., Mazur, Z., and Zloch, J. (2017). Assessment and evaluation of heavy metals renoval from landfill leachate by Pleurotus ostreatus. Waste Biomass Valor. DOI:10.1007/s12649-017-0015-x.
  • Wagner, J. F., and Schnatmeyer, C. (2002). Test field study of different cover sealing systems for industrial dumps and polluted sites. Appl. Clay Sci., 21, 99–116. doi:10.1016/S0169-1317(01)00096-5.
  • Wong, J. T. F., Chen, Z., Chen, X., Ng, C. W. W., and Wong, M. H. (2017). Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. J. Soils Sediments, 17(3), 590–598. doi:10.1007/s11368-016-1401-x.
  • Wong, J. T. F., Chen, Z., Ng, C. W. W., and Wong, M. H. (2016). Gas permeability of biochar-amended clay: potential alternative landfill final cover material. Environ Sci. Pollut. Res., 23(8), 7126–7131. doi:10.1007/s11356-015-4871-2.
  • Wu, H., Wen, Q., Hu, L., Gong, M., and Tang, Z. (2017). Feasibility study on the application of coal gangue as landfill liner material. Waste Manag., DOI:10.1016/j.wasman.2017.01.016.
  • Yang, J., Zhang, S., Shi, Y., Li, C., Yu, W., Guan, R., … Hu, J. (2017). Direct reuse of two deep-dewatered sludge cakes without a solidifying agent as landfill cover: geotechnical properties and heavy metal leaching characteristics. RSC Advances, 7(7), 3823–3830. doi:10.1039/C6RA26480H.
  • Yao, J., Qiu, Z., Kong, Q., Chen, L., Zhu, H., Long, Y., and Shen, D. (2017). Migration of Cu, Zn and Cr through municipal solid waste incinerator bottom ash layer in the simulated landfill. Ecol. Eng., 102, 577–582. doi:10.1016/j.ecoleng.2017.02.063.
  • Yeheyis, M. B., Shang, J. Q., and Yanful, E. K. (2010). Feasibility of using coal fly ash for mine waste containment. J. Environ. Eng., 136(7), 682–690. doi:10.1061/(ASCE)EE.1943-7870.0000211.
  • Yin, C. Y., Kadir, S. A. S. A., Lim, Y. P., Syed-Ariffin, S. N., and Zamzuri, Z. (2008). An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass wastein a boiler. Fuel Process. Technol., 89(7), 693–696. doi:10.1016/j.fuproc.2007.12.012.
  • Younus, M. M., and Sreedeep, S. (2012). Evaluation of bentonite-fly ash mix for its application in landfill liners. J. Test. Eval., 40(3), 357–362. doi:10.1520/JTE104161.
  • Yuan, N., Wang, C., Wendling, L. A., and Pei, Y. (2017). Ecotoxicological assessment of dewatered drinking water treatment residue for environmental recycling. Environ. Technol., 38(18), 2241–2252. doi:10.1080/09593330.2016.1255665.
  • Zhang, H., Yang, B., Zhang, G., and Zhang, X. (2016). Sewage sludge as barrier material for heavy metals in waste landfill. Arch. Environ. Prot., 42(2), 52–58.
  • Zule, J., Černec, F, and Likon, M. (2007). Chemical properties and biodegradability of waste paper mill sludges to be used for landfill covering. Waste Manag. Res. 2007 Dec, 25(6), 538–546. doi:10.1177/0734242X07079188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.