2,659
Views
455
CrossRef citations to date
0
Altmetric
Review Article

Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: A review

, , &
Pages 806-857 | Received 23 Jan 2018, Accepted 07 Jun 2018, Published online: 05 Nov 2018

References

  • Abazari, R., Mahjoub, A. R., & Sanati, S. (2016). Magnetically recoverable Fe3O4-ZnO/AOT nanocomposites: Synthesis of a core–shell structure via a novel and mild route for photocatalytic degradation of toxic dyes. Journal of Molecular Liquids, 223, 1133–1142.
  • Abdal-hay, A., Hamdy Makhlouf, A. S., & Khalil, K. A. (2015). Novel, Facile, Single-step technique of polymer/TiO2 nanofiber composites membrane for photodegradation of methylene blue. ACS Applied Materials & Interfaces, 7, 13329–13341.
  • Achouri, F., Corbel, S., Aboulaich, A., Balan, L., Ghrabi, A., Said, M. B., & Schneider, R. (2014). Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. Journal of Physics and Chemistry of Solids, 75, 1081–1087.
  • Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Advances, 4, 37003–37026.
  • Al-Hamdi, A. M., Rinner, U., & Sillanpää, M. (2017). Tin dioxide as a photocatalyst for water treatment: A review. Process Safety and Environmental Protection, 107, 190–205.
  • Ang, W. L., Mohammad, A. W., Hilal, N., & Leo, C. P. (2015). A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination, 363, 2–18.
  • Atalay, S., & Ersöz, G. (2016). Novel catalysts in advanced oxidation of organic pollutants. Springer Briefs in Molecular Science, Green chemistry for sustainability. New York: Springer.
  • Bagade, A., Ganbavle, V., & Rajpure, K. (2014). Physicochemical properties of spray-deposited CoFe2O4 thin films. Journal of Materials Engineering and Performance, 23, 2787–2794.
  • Bagheri, S., & Julkapli, N. M. (2016). Magnetite hybrid photocatalysis: Advance environmental remediation. Reviews in Inorganic Chemistry, 36, 135–151.
  • Banerjee, S., Pillai, S. C., Falaras, P., O’shea, K. E., Byrne, J. A., & Dionysiou, D. D. (2014). New insights into the mechanism of visible light photocatalysis. The journal of Physical Chemistry Letters, 5, 2543–2554.
  • Bekbolet, M., & Sen-Kavurmaci, S. (2015). The effect of photocatalytic oxidation on molecular size distribution profiles of humic acid. Photochemical & Photobiological Sciences, 14, 576–582.
  • Bengtson, A., Morgan, D., & Becker, U. (2013). Spin state of iron in Fe3O4 magnetite and h-Fe3O4. Physical Review B, 87, 155141.
  • Bhatkhande, D. S., Pangarkar, V. G., & Beenackers, A. A. (2002). Photocatalytic degradation for environmental applications–a review. Journal of Chemical Technology and Biotechnology, 77, 102–116.
  • Blaney, L. (2007). Magnetite (Fe3O4): Properties, synthesis, and applications. Lehigh Preserve, 15, 5.
  • Borgohain, C., Senapati, K. K., Sarma, K., & Phukan, P. (2012). A facile synthesis of nanocrystalline CoFe2O4 embedded one-dimensional ZnO hetero-structure and its use in photocatalysis. Journal of Molecular Catalysis A: Chemical, 363, 495–500.
  • Bouju, H., Nastold, P., Beck, B., Hollender, J., Corvini, P. F.-X., & Wintgens, T. (2016). Elucidation of biotransformation of diclofenac and 4′ hydroxydiclofenac during biological wastewater treatment. Journal of Hazardous Materials, 301, 443–452.
  • Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., & Wang, S. (2017). A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 310, 537–559.
  • Bozetine, H., Wang, Q., Barras, A., Li, M., Hadjersi, T., Szunerits, S., & Boukherroub, R. (2016). Green chemistry approach for the synthesis of ZnO–carbon dots nanocomposites with good photocatalytic properties under visible light. Journal of Colloid and Interface Science, 465, 286–294.
  • Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603–643.
  • Byrne, J. A., Dunlop, P. S. M., Hamilton, J. W. J., Fernández-Ibáñez, P., Polo-López, I., Sharma, P. K., & Vennard, A. S. M. (2015). A review of heterogeneous photocatalysis for water and surface disinfection. Molecules, 20, 5574–5615.
  • Cai, A., Sun, Y., Du, L., & Wang, X. (2015). Hierarchical Ag2O-ZnO-Fe3O4 composites with enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 644, 334–340.
  • Cao, Z., Wang, Y., Li, Z., & Yu, N. (2016). Hydrothermal synthesis of ZnO structures formed by high-aspect-ratio nanowires for acetone detection. Nanoscale Research Letters, 11, 347–352.
  • Casbeer, E., Sharma, V. K., & Li, X.-Z. (2012). Synthesis and photocatalytic activity of ferrites under visible light: A review. Separation and Purification Technology, 87, 1–14.
  • Chang, X., Wang, T., & Gong, J. (2016). CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 9, 2177–2196.
  • Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6, 186–205.
  • Chen, C., Ma, W., & Zhao, J. (2010). Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 39, 4206–4219.
  • Chen, Z., Zhang, N., & Xu, Y.-J. (2013). Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion, CrystEngComm, 15, 3022–3030.
  • Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical Engineering Journal, 284, 582–598.
  • Chidambaram, S., Pari, B., Kasi, N., & Muthusamy, S. (2016). ZnO/Ag heterostructures embedded in Fe3O4 nanoparticles for magnetically recoverable photocatalysis. Journal of Alloys and Compounds, 665, 404–410.
  • Christoforidis, K. C., Montini, T., Bontempi, E., Zafeiratos, S., Jaén, J. J. D., & Fornasiero, P. (2016). Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites, Applied Catalysis B: Environmental, 187, 171–180.
  • Colla, V., Branca, T. A., Rosito, F., Lucca, C., Vivas, B. P., & Delmiro, V. M. (2016). Sustainable reverse osmosis application for wastewater treatment in the steel industry. Journal of Cleaner Production, 130, 103–115.
  • Cullity, B. D., & Graham, C. D. (2011). Introduction to magnetic materials. New York: John Wiley & Sons.
  • Dai, W., Xu, H., Yu, J., Hu, X., Luo, X., Tu, X., & Yang, L. (2015). Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Applied Surface Science, 356, 173–180.
  • Davari, N., Farhadian, M., Nazar, A. R. S., & Homayoonfal, M. (2017). Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison. Journal of Environmental Chemical Engineering, 5, 5707–5720.
  • Doerffler, W., & Hauffe, K. (1964). Heterogeneous photocatalysis II. The mechanism of the carbon monoxide oxidation at dark and illuminated zinc oxide surfaces. Journal of Catalysis, 3, 171–178.
  • Dong, C., Wu, K.-L., Li, M.-R., Liu, L., & Wei, X.-W. (2014). Synthesis of Ag3PO4–ZnO nanorod composites with high visible-light photocatalytic activity. Catalysis Communications, 46, 32–35.
  • Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., & He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146.
  • Elliott, R. (2007). The story of magnetism. Physica A: Statistical Mechanics and its Applications, 384, 44–52.
  • Espitia, P. J. P., Soares, N. D. F. F., Coimbra, J. S. D. R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology, 5, 1447–1464.
  • Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29.
  • Fagan, R., McCormack, D. E., Dionysiou, D. D., & Pillai, S. C. (2016). A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing, 42, 2–14.
  • Falak, P., Hassanzadeh-Tabrizi, S. A., & Saffar-Teluri, A. (2017). Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity. Journal of Magnetism and Magnetic Materials, 441, 98–104.
  • Faraji, M., & Mohaghegh, N. (2016). Ag/TiO2-nanotube plates coated with reduced graphene oxide as photocatalysts. Surface and Coatings Technology, 288, 144–150.
  • Feng, X., & Lou, X. (2015). The effect of surfactants-bound magnetite (Fe3O4) on the photocatalytic properties of the heterogeneous magnetic zinc oxides nanoparticles. Separation and Purification Technology, 147, 266–275.
  • Feng, X., Guo, H., Patel, K., Zhou, H., & Lou, X. (2014). High performance, recoverable Fe3O4 ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chemical Engineering Journal, 244, 327–334.
  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.
  • Garcia-Gutierrez, R., Horta-Fraijo, P., Ramos-Carrazco, A., & Berman-Mendoza, D. (2016). Luminescent properties of ZnO microstructures grown on Au/Si substrate. Journal of Ovonic Research, 12, 239–244.
  • Ge, Y., Xiang, Y., He, Y., Ji, M., & Song, G. (2016). Preparation of Zn-TiO2/RH/Fe3O4 composite material and its photocatalytic degradation for the dyes in wastewater. Desalination and Water Treatment, 57, 9837–9844.
  • Ghasemi, S., Hashemian, S., Alamolhoda, A., Gocheva, I., & Setayesh, S. R. (2017). Plasmon enhanced photocatalytic activity of Au@TiO2-graphene nanocomposite under visible light for degradation of pollutants. Materials Research Bulletin, 87, 40–47.
  • Ghazanfari, M. R., Kashefi, M., Shams, S. F., & Jaafari, M. R. (2016) Perspective of Fe3O4 nanoparticles role in biomedical applications, Biochemistry research international, 2016, 1–32.
  • Ghosh, A., Nayak, A. K., & Pal, A. (2017). Nano-particle-mediated wastewater treatment: A review. Current Pollution Reports, 3, 17–30.
  • Gómez-Pastora, J., Dominguez, S., Bringas, E., Rivero, M. J., Ortiz, I., & Dionysiou, D. D. (2017). Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical Engineering Journal, 310, 407–427.
  • Guo, Q., Zhang, Q., Wang, H., Liu, Z., & Zhao, Z. (2016). Core-shell structured ZnO@Cu-Zn-Al layered double hydroxides with enhanced photocatalytic efficiency for CO2 reduction. Catalysis Communications, 77, 118–122.
  • Han, C., Yang, M.-Q., Weng, B., & Xu, Y.-J. (2014). Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon, Physical Chemistry Chemical Physics, 16, 16891–16903.
  • Han, C., Zhang, N., & Xu, Y.-J. (2016). Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis, Nano Today, 11, 351–372.
  • Habibi-Yangjeh, A., & Shekofteh-Gohari, M. (2016). Fe3O4/ZnO/Ag3VO4/AgI nanocomposites: Quaternary magnetic photocatalysts with excellent activity in degradation of water pollutants under visible light. Separation and Purification Technology, 166, 63–72.
  • Habibi-Yangjeh, A., & Shekofteh-Gohari, M. (2017). Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: Enhanced visible-light photocatalytic performance through p-n heterojunctions. Separation and Purification Technology, 184, 334–346.
  • Hernández, A., Maya, L., Sánchez-Mora, E., & Sánchez, E. M. (2007). Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3. Journal of Sol-Gel Science and Technology, 42, 71–78.
  • Hoffmann, R. C., Sanctis, S., Erdem, E., Weber, S., & Schneider, J. J. (2016). Zinc diketonates as single source precursors for ZnO nanoparticles: Microwave-assisted synthesis, electrophoretic deposition and field-effect transistor device properties. Journal of Materials Chemistry C, 4, 7345–7352.
  • Hong, R., Zhang, S., Di, G., Li, H., Zheng, Y., Ding, J., & Wei, D. (2008). Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Materials Research Bulletin, 43, 2457–2468.
  • Hsu, N.-F., Chang, M., & Hsu, K.-T. (2014). Rapid synthesis of ZnO dandelion-like nanostructures and their applications in humidity sensing and photocatalysis. Materials Science in Semiconductor Processing, 21, 200–205.
  • Huang, H., Lu, H., Huang, H., Wang, L., Zhang, J., & Leung, D. Y. (2016). Recent development of VUV-based processes for air pollutant degradation. Frontiers in Environmental Science, 4, 17–30.
  • Huang, Y. F., Zhang, M., Zhao, L. B., Feng, J. M., Wu, D. Y., Ren, B., & Tian, Z. Q. (2014). Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angewandte Chemie International Edition, 53, 2353–2357.
  • Ihsanullah, Al-Khaldi, F. A., Abu-Sharkh, B., Abulkibash, A. M., Qureshi, M. I., Laoui, T., & Atieh, M. A. (2016). Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 57, 7232–7244.
  • Jia, Z., Kang, J., Zhang, W., Wang, W., Yang, C., Sun, H., Habibi, D., & L. Zhang, (2017). Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment, Applied Catalysis B: Environmental, 204, 537–547.
  • Jiang, J., Ai, L.-H., Li, L.-C., & Liu, H. (2009). Facile fabrication and characterization of NiFe2O4/ZnO hybrid nanoparticles. Journal of Alloys and Compounds, 484, 69–72.
  • Karunakaran, C., & Vinayagamoorthy, P. (2017a). Superparamagnetic core/shell Fe2O3/ZnO nanosheets as photocatalyst cum bactericide. Catalysis Today, 284, 114–120.
  • Karunakaran, C., & Vinayagamoorthy, P. (2017b). Perforated ZnFe2O4/ZnO hybrid nanosheets: Enhanced charge-carrier lifetime, photocatalysis, and bacteria inactivation. Applied Physics A, 123, 472–480.
  • Karunakaran, C., Vinayagamoorthy, P., & Jayabharathi, J. (2014). Nonquenching of charge carriers by Fe3O4 core in Fe3O4/ZnO nanosheet photocatalyst. Langmuir, 30, 15031–15039.
  • Karunakaran, C., Vinayagamoorthy, P., & Jayabharathi, J. (2016). Enhanced photocatalytic activity of magnetically separable bactericidal CuFe2O4-embedded Ag-deposited ZnO nanosheets. RSC Advances, 6, 1782–1791.
  • Kimura, K., Tanaka, K., & Watanabe, Y. (2014). Microfiltration of different surface waters with/without coagulation: Clear correlations between membrane fouling and hydrophilic biopolymers. Water Research, 49, 434–443.
  • Klauson, D., Gromyko, I., Dedova, T., Pronina, N., Krichevskaya, M., … Utt, K. (2015). Study on photocatalytic activity of ZnO nanoneedles, nanorods, pyramids and hierarchical structures obtained by spray pyrolysis method. Materials Science in Semiconductor Processing, 31, 315–324.
  • Kolhatkar, A. G., Jamison, A. C., Litvinov, D., Willson, R. C., & Lee, T. R. (2013). Tuning the magnetic properties of nanoparticles, International journal of molecular sciences, 14, 15977–16009.
  • Kumar, P., Khatri, T., Bawa, H., & Kaur, J. (2017). ZnO-Fe2O3 heterojunction for photocatalytic degradation of victoria blue dye. AIP Conference Proceedings, AIP Publishing, 020065.
  • Kumar, S. G., & Rao, K. K. (2015). Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Advances, 5, 3306–3351.
  • Kumar, S. G., & Rao, K. K. (2017). Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Applied Surface Science, 391, 124–148.
  • Lachheb, H., Ajala, F., Hamrouni, A., Houas, A., Parrino, F., & Palmisano, L. (2017). Electron transfer in ZnO–Fe2O3 aqueous slurry systems and its effects on visible light photocatalytic activity. Catalysis Science & Technology, 7, 4041–4047.
  • Lalley, J., Han, C., Li, X., Dionysiou, D. D., & Nadagouda, M. N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284, 1386–1396.
  • Lam, S.-M., Sin, J.-C., Abdullah, A. Z., & Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination and Water Treatment, 41, 131–169.
  • Lee, K. M., & Abdullah, A. H. (2015). Synthesis and characterization of zinc oxide/maghemite nanocomposites: Influence of heat treatment on photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid. Materials Science in Semiconductor Processing, 30, 298–306.
  • Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 88, 428–448.
  • Lei, Y., Huo, J., & Liao, H. (2017). Microstructure and photocatalytic properties of polyimide/heterostructured NiO–Fe2O3–ZnO nanocomposite films via an ion-exchange technique. RSC Advances, 7, 40621–40631.
  • Leong, K. H., Gan, B. L., Ibrahim, S., & Saravanan, P. (2014). Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Applied Surface Science, 319, 128–135.
  • Li, D., & Haneda, H. (2003). Photocatalysis of sprayed nitrogen-containing Fe2O3–ZnO and WO3–ZnO composite powders in gas-phase acetaldehyde decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 160, 203–212.
  • Li, J., Fang, W., Yu, C., Zhou, W., & Xie, Y. (2015). Ag-based semiconductor photocatalysts in environmental purification. Applied Surface Science, 358, 46–56.
  • Li, J., Liu, Z., & Zhu, Z. (2014). Magnetically separable ZnFe2O4, Fe2O3/ZnFe2O4 and ZnO/ZnFe2O4 hollow nanospheres with enhanced visible photocatalytic properties. RSC Advances, 4, 51302–51308.
  • Li, N., Zhang, J., Tian, Y., Zhao, J., Zhang, J., & Zuo, W. (2017). Precisely controlled fabrication of magnetic 3D γ-Fe2O3@ZnO core-shell photocatalyst with enhanced activity: Ciprofloxacin degradation and mechanism insight. Chemical Engineering Journal, 308, 377–385.
  • Li, W., Gao, S., Li, L., Jiao, S., Yu, Q., Li, H., Wang, J., Yu, Q., Zhang, Y., & Wang, D. (2016). A facile solution synthesis of ZnO nanoplates on Al substrate at room temperature. Materials Letters, 185, 161–164.
  • Liu, S., Han, C.,. Tang, Z.-R and Xu, Y.-J. (2016). Heterostructured semiconductor nanowire arrays for artificial photosynthesis, Materials Horizons, 3, 270–282.
  • Liu, S.-Q. (2012). Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environmental chemistry letters, 10, 209–216.
  • Liu, Y., Yu, L., Hu, Y., Guo, C., Zhang, F., & Lou, X. W. D. (2012). A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale, 4, 183–187.
  • Lofrano, G., Libralato, G., Adinolfi, R., Siciliano, A., Iannece, P., Guida, M., Giugni, M., Ghirardini, A. V., & Carotenuto, M. (2016). Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects. Ecotoxicology and environmental safety, 123, 65–71.
  • Lu, Z., Zhao, X., Zhu, Z., Song, M., Gao, N., Wang, Y., Ma, Z., Shi, W., Yan, Y., & Dong, H. (2016). A novel hollow capsule-like recyclable functional ZnO/C/Fe3O4 endowed with three-dimensional oriented recognition ability for selectively photodegrading danofloxacin mesylate. Catalysis Science & Technology, 6, 6513–6524.
  • Luo, B., Xu, D., Li, D., Wu, G., Wu, M., Shi, W., & Chen, M. (2015). Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Applied Materials & Interfaces, 7, 17061–17069.
  • Luo, J., Yan, Z., Liu, R., Xu, J., & Wang, X. (2017). Synthesis and excellent visible light photocatalysis performance of magnetic reduced graphene oxide/ZnO/ZnFe2O4 composites. RSC Advances, 7, 23246–23254.
  • Luo, W., & Zafeiratos, S. (2017). A Brief Review of the Synthesis and Catalytic Applications of Graphene‐Coated Oxides, ChemCatChem, 9, 2432–2442.
  • Mamba, G., & Mishra, A. (2016). Advances in magnetically separable photocatalysts: Smart, recyclable materials for water pollution mitigation. Catalysts, 6, 79–113.
  • Medford, A. J., & Hatzell, M. C. (2017). Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catalysis, 7, 2624–2643.
  • Mehraj, O., Pirzada, B. M., Mir, N. A., Khan, M. Z., & Sabir, S. (2016). A highly efficient visible-light-driven novel p-n junction Fe2O3/BiOI photocatalyst: Surface decoration of BiOI nanosheets with Fe2O3 nanoparticles, Applied Surface Science, 387, 642–651.
  • Mehrjouei, M., Müller, S., & Möller, D. (2015). A review on photocatalytic ozonation used for the treatment of water and wastewater. Chemical Engineering Journal, 263, 209–219.
  • Mirzaie, R. A., Kamrani, F., Firooz, A. A., & Khodadadi, A. A. (2012). Effect of α-Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures. Materials Chemistry and Physics, 133, 311–316.
  • Mishra, M., & Chun, D.-M. (2015). α-Fe2O3 as a photocatalytic material: A review, Applied Catalysis A: General, 498, 126–141.
  • Mohammed, H., Hamza, A., Adamu, I., Ejila, A., Waziri, S., & Mustapha, S. (2013). BOD5 removal from tannery wastewater over ZnO-ZnFe2O4 composite photocatalyst supported on activated carbon. Journal of Chemical Engineering and Materials Science, 4, 80–86.
  • Molinari, R., Lavorato, C., & Argurio, P. (2017). Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catalysis Today, 281, 144–164.
  • Mousavi, M., Habibi-Yangjeh, A., & Rahim Pouran, S. R. (2017). Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. Journal of Materials Science: Materials in Electronics, 29, 1–29. doi: 10.1007/s10854–017–8166–x.
  • Mun, L. K., Abdullah, A. H., Hussein, M. Z., & Zainal, Z. (2014). Synthesis and photocatalysis of ZnO/γ-Fe2O3 nanocomposite in degrading herbicide 2, 4-dichlorophenoxyacetic acid. Sains Malaysiana, 43, 437–441.
  • Nabiyouni, G., Ghanbari, D., Ghasemi, J., & Yousofnejad, A. (2015). Microwave-assisted synthesis of MgFe2O4-ZnO nanocomposite and its photo-catalyst investigation in methyl orange degradation. Journal of Nanostructures, 5, 289–295.
  • Nabiyouni, G., Ghanbari, D., Karimzadeh, S., & Samani Ghalehtaki, B. (2014). Sono-chemical synthesis Fe3O4-Mg(OH)2 nanocomposite and its photo-catalyst investigation in methyl orange degradation. Journal of Nanostructures, 4, 467–474.
  • Nguyen, V. C., Nguyen, N. L. G., & Pho, Q. H. (2015). Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive blue 198. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, 035001.
  • Nikazar, M., Alizadeh, M., Lalavi, R., & Rostami, M. H. (2014). The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol. Journal of Environmental Health Science and Engineering, 12, 21–26.
  • Oehmen, A., Vergel, D., Fradinho, J., Reis, M. A., Crespo, J. G., & Velizarov, S. (2014). Mercury removal from water streams through the ion exchange membrane bioreactor concept. Journal of Hazardous Materials, 264, 65–70.
  • Ong, W. J., Tan, L. L., Chai, S. P., Yong, S. T., & Mohamed, A. R. (2014). Facet‐dependent photocatalytic properties of TiO2‐based composites for energy conversion and environmental remediation. ChemSusChem, 7, 690–719.
  • Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44, 2577–2641.
  • Padmanaban, V., Nandagopal, M. G., Priyadharshini, G. M., Maheswari, N., Sree, G. J., & Selvaraju, N. (2016). Advanced approach for degradation of recalcitrant by nanophotocatalysis using nanocomposites and their future perspectives. International Journal of Environmental Science and Technology, 13, 1591–1606.
  • Pan, C., & Zhu, Y. (2015). A review of BiPO4, a highly efficient oxyacid-type photocatalyst, used for environmental applications. Catalysis Science & Technology, 5, 3071–3083.
  • Pang, Y. L., Lim, S., Ong, H. C., & Chong, W. T. (2016). Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceramics International, 42, 9–34.
  • Pathak, T., Vasoya, N., Natarajan, T. S., Modi, K. B., & Tayade, R. J. (2013). Photocatalytic degradation of aqueous nitrobenzene solution using nanocrystalline Mg-Mn ferrites Materials. Science Forum, Trans Tech Publication, 764, 116–129.
  • Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S., Hamilton, J. W., Byrne, J. A., & O'shea, K. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349.
  • Pelicano, C. M., Lockman, Z., & Balela, M. D. L. (2014). Zinc oxide nanostructures formed by wet oxidation of Zn foil. Advanced Materials Research, Trans Tech Publ, 1043, 22–26.
  • Periyat, P., & Ullattil, S. (2015). Sol–gel derived nanocrystalline ZnO photoanode film for dye sensitized solar cells. Materials Science in Semiconductor Processing, 31, 139–146.
  • Phuruangrat, A., Maisang, W., Phonkhokkong, T., Thongtem, S., & Thongtem, T. (2017). Superparamagnetic and ferromagnetic behavior of ZnFe2O4 nanoparticles synthesized by microwave-assisted hydrothermal method. Russian Journal of Physical Chemistry A, 91, 951–956.
  • Pulkka, S., Martikainen, M., Bhatnagar, A., & Sillanpää, M. (2014). Electrochemical methods for the removal of anionic contaminants from water: A review. Separation and Purification Technology, 132, 252–271.
  • Qamar, M. T., Aslam, M., Ismail, I. M., Salah, N., & Hameed, A. (2016). The assessment of the photocatalytic activity of magnetically retrievable ZnO coated γ-Fe2O3 in sunlight exposure. Chemical Engineering Journal, 283, 656–667.
  • Rabbani, M., Heidari-Golafzani, M., & Rahimi, R. (2016). Synthesis of TCPP/ZnFe2O4@ZnO nanohollow sphere composite for degradation of methylene blue and 4-nitrophenol under visible light. Materials Chemistry and Physics, 179, 35–41.
  • Rahmayeni, S., Zulhadjri, Z., Jamarun, N., Emriadi, e. & Arief, S. (2016). Synthesis of ZnO-NiFe2O4 magnetic nanocomposites by simple solvothermal method for photocatalytic dye degradation under solar light. Oriental Journal of Chemistry, 32, 1411–1419.
  • Ramalingam, B., Khan, M. M. R., Mondal, B., Mandal, A. B., & Das, S. K. (2015). Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants. ACS Sustainable Chemistry & Engineering, 3, 2291–2302.
  • Rameshbabu, R., Kumar, N., Karthigeyan, A., & Neppolian, B. (2016). Visible light photocatalytic activities of ZnFe2O4/ZnO nanoparticles for the degradation of organic pollutants. Materials Chemistry and Physics, 181, 106–115.
  • Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K.-H., Akter, T., & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International, 91, 94–103.
  • Rueda-Márquez, J., Sillanpää, M., Pocostales, P., Acevedo, A., & Manzano, M. (2015). Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: Photolysis and catalytic wet oxidation. Water Research, 71, 85–96.
  • Saffari, J., Mir, N., Ghanbari, D., Khandan-Barani, K., Hassanabadi, A., & Hosseini-Tabatabaei, M. R. (2015). Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes. Journal of Materials Science: Materials in Electronics, 26, 9591–9599.
  • Sakthivel, S., Geissen, S.-U., Bahnemann, D., Murugesan, V., & Vogelpohl, A. (2002). Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. Journal of Photochemistry and Photobiology A: Chemistry, 148, 283–293.
  • Sakurai, S., Namai, A., Hashimoto, K., & Ohkoshi, S.-i. (2009) First observation of phase transformation of all four Fe2O3 phases (γ→ ε→ β→ α-phase), Journal of the American Chemical Society, 131, 18299–18303.
  • Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., & Moshfegh, A. Z. (2016). Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 605, 2–19.
  • Saravanan, R., Sacari, E., Gracia, F., Khan, M. M., Mosquera, E., & Gupta, V. K. (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids, 221, 1029–1033.
  • Sarkar, D., Khan, G. G., Singh, A. K., & Mandal, K. (2012). Enhanced electrical, optical, and magnetic properties in multifunctional ZnO/α-Fe2O3 semiconductor nanoheterostructures by heterojunction engineering. The Journal of Physical Chemistry C, 116, 23540–23546.
  • Sathishkumar, P., Pugazhenthiran, N., Mangalaraja, R. V., Asiri, A. M., & Anandan, S. (2013). ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of Direct Blue 71 in aqueous environments. Journal of Hazardous Materials, 252, 171–179.
  • Sekizawa, K., Nonaka, T., Arai, T., & Morikawa, T. (2014). Structural improvement of CaFe2O4 by metal doping toward enhanced cathodic photocurrent. ACS Applied Materials & Interfaces, 6, 10969–10973.
  • Senthamizhan, A., Balusamy, B., Aytac, Z., & Uyar, T. (2016). Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts. CrystEngComm, 18, 6341–6351.
  • Shao, R., Sun, L., Tang, L., & Chen, Z. (2013). Preparation and characterization of magnetic core–shell ZnFe2O4@ZnO nanoparticles and their application for the photodegradation of methylene blue. Chemical Engineering Journal, 217, 185–191.
  • Shaogui, Y., Xie, Q., Xinyong, L., Yazi, L., Shuo, C., & Guohua, C. (2004). Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation. Physical Chemistry Chemical Physics, 6, 659–664.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2015a). Facile preparation of Fe3O4@AgBr-ZnO nanocomposites as novel magnetically separable visible-light-driven photocatalysts. Ceramics International, 41, 1467–1476.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2015b). Novel magnetically separable Fe3O4@ZnO/AgCl nanocomposites with highly enhanced photocatalytic activities under visible-light irradiation. Separation and Purification Technology, 147, 194–202.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2015c). Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation. Solid State Sciences, 48, 177–185.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2016a). Ultrasonic-assisted preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites as magnetically separable visible-light-driven photocatalysts with excellent activity. Journal of Colloid and Interface Science, 461, 144–153.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2016b). Fabrication of novel magnetically separable visible-light-driven photocatalysts through photosensitization of Fe3O4/ZnO with CuWO4. Journal of Industrial and Engineering Chemistry, 44, 174–184.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2016c). Novel magnetically separable ZnO/AgBr/Fe3O4/Ag3VO4 nanocomposites with tandem n–n heterojunctions as highly efficient visible-light-driven photocatalysts. RSC Advances, 6, 2402–2413.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2016d). Photosensitization of Fe3O4/ZnO by AgBr and Ag3PO4 to fabricate novel magnetically recoverable nanocomposites with significantly enhanced photocatalytic activity under visible-light irradiation. Ceramics International, 42, 15224–15234.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2017a). Fe3O4/ZnO/CoWO4 nanocomposites: Novel magnetically separable visible-light-driven photocatalysts with enhanced activity in degradation of different dye pollutants. Ceramics International, 43, 3063–3071.
  • Shekofteh-Gohari, M., & Habibi-Yangjeh, A. (2017b). Combination of CoWO4 and Ag3VO4 with Fe3O4/ZnO nanocomposites: Magnetic photocatalysts with enhanced activity through p-n-n heterojunctions under visible light. Solid State Sciences, 74, 24–36.
  • Shen, J., Lu, Y., Liu, J.-K., & Yang, X.-H. (2016). Design and preparation of easily recycled Ag2WO4@ZnO@Fe3O4 ternary nanocomposites and their highly efficient degradation of antibiotics. Journal of Materials Science, 51, 7793–7802.
  • Shifu, C., Wei, Z., Wei, L., Huaye, Z., & Xiaoling, Y. (2009). Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-ZnO. Chemical Engineering Journal, 155, 466–473.
  • Shokrollahi, H. (2017). A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials, 426, 74–81.
  • Shooshtari, N. M., & Ghazi, M. M. (2017). An investigation of the photocatalytic activity of nano α-Fe2O3/ZnO on the photodegradation of cefixime trihydrate. Chemical Engineering Journal, 315, 527–536.
  • Singh, S., Barick, K., & Bahadur, D. (2013). Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. Journal of Materials Chemistry A, 1, 3325–3333.
  • Stevenson, S. M., Shores, M. P., & Ferreira, E. M. (2015). Photooxidizing chromium catalysts for promoting radical cation cycloadditions. Angewandte Chemie International Edition, 54, 6506–6510.
  • Su, C. (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. Journal of Hazardous Materials, 322, 48–84.
  • Su, N. R., Lv, P., Li, M., Zhang, X., Li, M., & Niu, J. (2014). Fabrication of MgFe2O4–ZnO heterojunction photocatalysts for application of organic pollutants. Materials Letters, 122, 201–204.
  • Sui, J., Li, J., Li, Z., & Cai, W. (2012). Synthesis and characterization of one-dimensional magnetic photocatalytic CNTs/Fe3O4–ZnO nanohybrids. Materials Chemistry and Physics, 134, 229–234.
  • Suresh, S., & Karthikeyan, S. (2016). Optical, magnetic and photocatalytic properties of magnetically separable Fe3O4-doped ZnO and pristine ZnO nanospheres. Journal of the Iranian Chemical Society, 13, 2049–2057.
  • Tamirat, A. G., Rick, J., Dubale, A. A., Su, W.-N., & Hwang, B.-J. (2016). Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horizons, 1, 243–267.
  • Tan, T. K., Khiew, P. S., Chiu, W. S., Radiman, S., Abd-Shukor, R., Huang, N. M., & Lim, H. N. (2014). The photodegradation of organic compounds by ZnO nanopowder Advanced Materials Research, Trans Tech Publications, 895, 547–557.
  • Taufik, A., & Saleh, R. (2017). Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal. Journal of Colloid and Interface Science, 491, 27–36.
  • Taufik, A., Tju, H., & Saleh, R. (2016). Comparison of catalytic activities for sonocatalytic, photocatalytic and sonophotocatalytic degradation of methylene blue in the presence of magnetic Fe3O4/CuO/ZnO nanocomposites. Journal of Physics: Conference Series, IOP Publishing, 012004.
  • Thangavel, S., Thangavel, S., Raghavan, N., Krishnamoorthy, K., & Venugopal, G. (2016). Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures. Journal of Alloys and Compounds, 665, 107–112.
  • Tju, H., Prakoso, S., Taufik, A., & Saleh, R. (2017b). Synthesis and characterization of noble metal nanocomposites: Ag/Fe3O4/ZnO and Ag/Fe3O4/CuO/ZnO for better photocatalytic activity under visible light irradiation. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 188, 012032.
  • Tju, H., Taufik, A., & Saleh, R. (2017a). Photocatalytic, sonocatalytic, and photosonocatalytic of Fe3O4/CuO/ZnO nanocomposites with addition of 2 different types of carbon. AIP Conference Proceedings, AIP Publishing, 1788, 030131.
  • Villasenor, J., Duran, N., & Mansilla, H. (2002). Photocatalyzed mineralization of kraft black liquor on ZnO/Fe2O3 coupled semiconductor. Environmental Technology, 23, 955–959.
  • Wang, C., Tan, X., Yan, J., Chai, B., Li, J., & Chen, S. (2017). Electrospinning direct synthesis of magnetic ZnFe2O4/ZnO multi-porous nanotubes with enhanced photocatalytic activity. Applied Surface Science, 396, 780–790.
  • Wang, C., Zhang, X., & Liu, Y. (2015a). Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. Applied Surface Science, 358, 28–45.
  • Wang, J., Yang, J., Li, X., Wang, D., Wei, B., Song, H., Li, X., & Fu, S. (2016). Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 75, 66–71.
  • Wang, M., Han, J., Xiong, H., Guo, R., & Yin, Y. (2015c). Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts. ACS Applied Materials & Interfaces, 7, 6909–6918.
  • Wang, W., Yu, L., Yang, H., Hong, K., Qiao, Z., & Wang, H. (2015b). Growth mechanism of ZnO nanorod/Fe3O4 nanoparticle composites and their photocatalytic properties. Physica E: Low-dimensional Systems and Nanostructures, 74, 71–73.
  • Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72–123.
  • Wilson, A., Mishra, S., Gupta, R., & Ghosh, K. (2012). Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres. Journal of Magnetism and Magnetic Materials, 324, 2597–2601.
  • Winatapura, D. S., Dewi, S. H., & Adi, W. A. (2016). Synthesis, characterization, and photocatalytic activity of Fe3O4@ZnO nanocomposite. International Journal of Technology, 7, 408–416.
  • Wu, L., Fang, S., Ge, L., Han, C., Qiu, P., & Xin, Y. (2015b). Facile synthesis of Ag@CeO2 core-shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance. Journal of Hazardous Materials, 300, 93–103.
  • Wu, S., Shen, X., Zhu, G., Zhou, H., Ji, Z., Chen, K., & Yuan, A. (2016b). Synthesis of ternary Ag/ZnO/ZnFe2O4 porous and hollow nanostructures with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 184, 328–336.
  • Wu, W., Zhang, S., Xiao, X., Zhou, J., Ren, F., Sun, L., & Jiang, C. (2012). Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe2O3/ZnO core–shell heterostructures. ACS Applied Materials & Interfaces, 4, 3602–3609.
  • Wu, Y., He, T., Xu, W., & Li, Y. (2016c). Preparation and photocatalytic activity of magnetically separable Fe3O4@ZnO nanospheres. Journal of Materials Science: Materials in Electronics, 27, 12155–12159.
  • Wu, Z., Cravotto, G., Adrians, M., Ondruschka, B., & Li, W. (2015a). Critical factors in sonochemical degradation of fumaric acid. Ultrasonics Sonochemistry, 27, 148–152.
  • Wu, Z., Qi, J., Li, F., Zhu, X., Wang, Z., Zhang, G., & Zhang, Y. (2016a). The coupling influence of UV illumination and strain on the surface potential distribution of a single ZnO micro/nano wire. Nano Research, 9, 2572–2580.
  • Xia, J., Wang, A., Liu, X., & Su, Z. (2011). Preparation and characterization of bifunctional, Fe3O4/ZnO nanocomposites and their use as photocatalysts. Applied Surface Science, 257, 9724–9732.
  • Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 56, 10–28.
  • Xie, J., Zhang, L., Li, M., Hao, Y., Lian, Y., Li, Z., & Wei, Y. (2015b). α-Fe2O3 modified ZnO flower-like microstructures with enhanced photocatalytic performance for pentachlorophenol degradation. Ceramics International, 41, 9420–9425.
  • Xie, J., Zhou, Z., Lian, Y., Hao, Y., Li, P., & Wei, Y. (2015a). Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceramics International, 41, 2622–2625.
  • Xu, M., Li, Q., & Fan, H. (2014). Monodisperse nanostructured Fe3O4/ZnO microrods using for waste water treatment. Advanced Powder Technology, 25, 1715–1720.
  • Xu, S., Fu, L., Pham, T. S. H., Yu, A., Han, F., & Chen, L. (2015a). Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceramics International, 41, 4007–4013.
  • Xu, S.-H., Tan, D.-D., Bi, D.-F., Shi, P.-H., Lu, W., Shangguan, W.-F., & Ma, C.-Y. (2013). Effect of magnetic carrier NiFe2O4 nanoparticles on physicochemical and catalytic properties of magnetically separable photocatalyst TiO2/NiFe2O4. Chemical Research in Chinese Universities 29, 121–125.
  • Xu, X., Liu, G., & Azad, A. K. (2015b). Visible light photocatalysis by in situ growth of plasmonic Ag nanoparticles upon AgTaO3. International Journal of Hydrogen Energy, 40, 3672–3678.
  • Yan, W., Fan, H., & Yang, C. (2011). Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core-shell structure. Materials Letters, 65, 1595–1597.
  • Yang, S., Wang, Y., Wang, L., Zhang, G., Vazinishayan, A., & Duongthipthewa, A. (2016). Growth and characterization of ultra-long ZnO nanocombs. AIP Advances, 6, 065209.
  • Yao, Y., Qin, J., Cai, Y., Wei, F., Lu, F., & Wang, S. (2014). Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation. Environmental Science and Pollution Research, 21, 7296–7306.
  • Ye, L., Yan, C., Jiang, Y., Yang, Q., Lu, C., & Guan, W. (2015). Preparation of hollow cone-like ZnO/CoFe2O4 heterostructures and their photocatalytic properties. IET Micro & Nano Letters, 10, 202–205.
  • Yee, T. S. (2015). Evaluative study of glycerol photocatalytic degradation over CuFe2O4 and La-CuFe2O4 photocatalysts. Universiti Malaysia Pahang.
  • Yin, Q., Qiao, R., Zhu, L., Li, Z., Li, M., & Wu, W. (2014). α-Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: Synthesis and enhanced visible-light photocatalysis. Materials Letters, 135, 135–138.
  • You, J., Xiang, Y., Ge, Y., He, Y., & Song, G. (2017). Synthesis of ternary rGO-ZnO-Fe3O4 nanocomposites and their application for visible light photocatalytic degradation of dyes. Clean Technologies and Environmental Policy, 19, 2161–2169.
  • Zamiri, R., Salehizadeh, S., Ahangar, H. A., Shabani, M., Rebelo, A., Kumar, J. S., … Ferreira, J. (2017). Optical and magnetic properties of ZnO/ZnFe2O4 nanocomposite. Materials Chemistry and Physics, 192, 330–338.
  • Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., & Isa, M. H. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1–36.
  • Zhang, G., Xu, W., Li, Z., Hu, W., & Wang, Y. (2009). Preparation and characterization of multi-functional CoFe2O4-ZnO nanocomposites. Journal of Magnetism and Magnetic Materials, 321, 1424–1427.
  • Zhang, N., Xie, S., Weng, B., & Xu, Y.-J. (2016a). Vertically aligned ZnO–Au@ CdS core–shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application, Journal of Materials Chemistry A, 4, 18804–18814.
  • Zhang, N., Yang, M.-Q., Liu, S., Sun, Y., & Xu, Y.-J. (2015). Waltzing with the versatile platform of graphene to synthesize composite photocatalysts, Chemical reviews, 115, 10307–10377.
  • Zhang, X., Liu, Y., Lee, S.-T., Yang, S., & Kang, Z. (2014). Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy & Environmental Science, 7, 1409–1419.
  • Zhang, X., Wu, J., Meng, G., Guo, X., Liu, C., & Liu, Z. (2016b). One-step synthesis of novel PANI–Fe3O4@ZnO core–shell microspheres: An efficient photocatalyst under visible light irradiation. Applied Surface Science, 366, 486–493.
  • Zhu, H.-Y., Jiang, R., Fu, Y.-Q., Li, R.-R., Yao, J., & Jiang, S.-T. (2016). Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation. Applied Surface Science, 369, 1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.