2,149
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Towards practical application of gasification: a critical review from syngas and biochar perspectives

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1165-1213 | Received 26 Jul 2017, Accepted 30 Aug 2018, Published online: 11 Dec 2018

References

  • Abbasian, J., & Slimane, R. B. (1998). A regenerable copper-based sorbent for H2S removal from coal gases. Industrial & Engineering Chemistry Research, 37(7), 2775–2782.
  • Abioye, A. M., & Ani, F. N. (2015). Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews, 52, 1282–1293.
  • Adeyemi, I., & Janajreh, I. (2015). Modeling of the entrained flow gasification: Kinetics-based ASPEN Plus model. Renewable Energy, 82, 77–84.
  • Ahrenfeldt, J., Thomsen, T. P., Henriksen, U., & Clausen, L. R. (2013). Biomass gasification cogeneration–A review of state of the art technology and near future perspectives. Applied Thermal Engineering, 50(2), 1407–1417.
  • Alijani, A., & Irankhah, A. (2013). Medium-temperature shift catalysts for hydrogen purification in a single-stage reactor. Chemical Engineering & Technology, 36(2), 209–219.
  • Anca-Couce, A., Mehrabian, R., Scharler, R., & Obernberger, I. (2014). Kinetic scheme of biomass pyrolysis considering secondary charring reactions. Energy Conversion and Management, 87, 687–696.
  • Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593–597.
  • Anis, S., & Zainal, Z. (2011). Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renewable and Sustainable Energy Reviews, 15(5), 2355–2377.
  • Aranda, G., Grootjes, A., Van der Meijden, C., Van der Drift, A., Gupta, D., Sonde, R., … Mitra, C. (2016). Conversion of high-ash coal under steam and CO2 gasification conditions. Fuel Processing Technology, 141, 16–30.
  • Aravind, P., & de Jong, W. (2012). Evaluation of high temperature gas cleaning options for biomass gasification product gas for solid oxide fuel cells. Progress in Energy and Combustion Science, 38(6), 737–764.
  • Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste Management (New York, N.Y.), 32(4), 625–639.
  • Asadullah, M., Adi, A. M., Suhada, N., Malek, N. H., Saringat, M. I., & Azdarpour, A. (2014). Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Conversion and Management, 88, 1086–1093.
  • Asthana, S., Samanta, C., Bhaumik, A., Banerjee, B., Voolapalli, R. K., & Saha, B. (2016). Direct synthesis of dimethyl ether from syngas over Cu-based catalysts: Enhanced selectivity in the presence of MgO. Journal of Catalysis, 334, 89–101.
  • Asthana, S., Samanta, C., Voolapalli, R. K., & Saha, B. (2017). Direct conversion of syngas to DME: Synthesis of new Cu-based hybrid catalysts using Fehling’s solution, elimination of the calcination step. Journal of Materials Chemistry A, 5(6), 2649–2663.
  • Aziz, M., Prawisudha, P., Prabowo, B., & Budiman, B. A. (2015). Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems. Applied Energy, 139, 188–195.
  • Babu, B., & Sheth, P. N. (2006). Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor. Energy Conversion and Management, 47(15–16), 2602–2611.
  • Balat, H., & Kırtay, E. (2010). Hydrogen from biomass—Present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426.
  • Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Conversion and Management, 50(12), 3158–3168.
  • Barisano, D., Freda, C., Nanna, F., Fanelli, E., & Villone, A. (2012). Biomass gasification and in-bed contaminants removal: Performance of iron enriched Olivine and bauxite in a process of steam/O2 gasification. Bioresource Technology, 118, 187–194.
  • Battersby, S., Duke, M. C., Liu, S., Rudolph, V., & da Costa, J. C. D. (2008). Metal doped silica membrane reactor: Operational effects of reaction and permeation for the water gas shift reaction. Journal of Membrane Science, 316(1–2), 46–52.
  • Beenackers, A. (1999). Biomass gasification in moving beds, a review of European technologies. Renewable Energy, 16(1–4), 1180–1186.
  • Belgiorno, V., De Feo, G., Della Rocca, C., & Napoli, R. (2003). Energy from gasification of solid wastes. Waste Management (New York, N.Y.), 23(1), 1–15.
  • Bhandari, P. N., Kumar, A., Bellmer, D. D., & Huhnke, R. L. (2014). Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas. Renewable Energy, 66, 346–353.
  • Bhattacharya, S. C., Shwe Hla, S., & Pham, H.-L. (2001). A study on a multi-stage hybrid gasifier-engine system. Biomass and Bioenergy, 21(6), 445–460.
  • Botero, M. L., Chen, D., González-Calera, S., Jefferson, D., & Kraft, M. (2016). HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon, 96, 459–473.
  • Brar, J., Singh, K., Wang, J., & Kumar, S. (2012). Cogasification of coal and biomass: A review. International Journal of Forestry Research, 2012, 1.
  • Brewer, C. E., Unger, R., Schmidt-Rohr, K., & Brown, R. C. (2011). Criteria to select biochars for field studies based on biochar chemical properties. BioEnergy Research, 4(4), 312–323.
  • Broer, K. M., & Brown, R. C. (2015). Effect of equivalence ratio on partitioning of nitrogen during biomass gasification. Energy & Fuels, 30(1), 407–413.
  • Brown, R. C. (2007). Hybrid thermochemical/biological processing. Applied Biochemistry and Biotechnology, 137, 947–956.
  • Brunetti, A., Barbieri, G., & Drioli, E. (2009). Pd-based membrane reactor for syngas upgrading. Energy & Fuels, 23(10), 5073–5076.
  • Brunetti, A., Barbieri, G., Drioli, E., Lee, K.-H., Sea, B., & Lee, D.-W. (2007). WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. Chemical Engineering and Processing: Process Intensification, 46(2), 119–126.
  • Brunetti, A., Caravella, A., Drioli, E., & Barbieri, G. (2012). Process intensification by membrane reactors: High-temperature water gas shift reaction as single stage for syngas upgrading. Chemical Engineering & Technology, 35(7), 1238–1248.
  • Brunetti, A., Caravella, A., Fernandez, E., Tanaka, D. P., Gallucci, F., Drioli, E., … Barbieri, G. (2015). Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane. International Journal of Hydrogen Energy, 40(34), 10883–10893.
  • Bu, X., Ying, Y., Zhang, C., & Peng, W. (2008). Research improvement in Zn-based sorbent for hot gas desulfurization. Powder Technology, 180(1–2), 253–258.
  • Buragohain, B., Mahanta, P., & Moholkar, V. S. (2010). Biomass gasification for decentralized power generation: The Indian perspective. Renewable and Sustainable Energy Reviews, 14(1), 73–92.
  • Burch, R., & Southward, B. W. (1999). Highly selective catalysts for conversion of ammonia to nitrogen in gasified biomass. Chemical Communications (16), 1475–1476.
  • Campoy, M., Gómez-Barea, A., Ollero, P., & Nilsson, S. (2014). Gasification of wastes in a pilot fluidized bed gasifier. Fuel Processing Technology, 121, 63–69.
  • Cetin, E., Gupta, R., & Moghtaderi, B. (2005). Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity. Fuel, 84(10), 1328–1334.
  • Ceylan, S., & Topçu, Y. (2014). Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresource Technology, 156, 182–188.
  • Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15.
  • Chan, F. L., & Tanksale, A. (2014). Review of recent developments in Ni-based catalysts for biomass gasification. Renewable and Sustainable Energy Reviews, 38, 428–438.
  • Chein, R., Lin, Y., Chen, Y., Chyou, Y., & Chung, J. (2014). Study on water-gas shift reaction performance using Pt-based catalysts at high temperatures. International Journal of Hydrogen Energy, 39(33), 18854–18862.
  • Chen, C., Jin, Y.-Q., Yan, J.-H., & Chi, Y. (2013). Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 103, 58–63.
  • Chen, D., Zhou, J., & Zhang, Q. (2014). Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology, 169, 313–319.
  • Chen, G., Yao, J., Yang, H., Yan, B., & Chen, H. (2015). Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production. Bioresource Technology, 179, 323–330.
  • Chen, S., & Yang, R. (1997). Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O. Energy & Fuels, 11(2), 421–427.
  • Chen, Y., Luo, Y-h., Wu, W-G., & Su, Y. (2009). Experimental investigation on tar formation and destruction in a lab-scale two-stage reactor. Energy & Fuels, 23(9), 4659–4667.
  • Chhiti, Y., & Kemiha, M. (2013). Thermal conversion of biomass, pyrolysis and gasification. International Journal of Engineering and Science, 2(3), 75–85.
  • Chmielniak, T., & Sciazko, M. (2003). Co-gasification of biomass and coal for methanol synthesis. Applied Energy, 74(3–4), 393–403.
  • Cho, D.-W., Kwon, G., Ok, Y. S., Kwon, E. E., & Song, H. (2017a). Reduction of bromate by cobalt-impregnated biochar fabricated via pyrolysis of lignin using CO2 as a reaction medium. ACS Applied Materials & Interfaces, 9(15), 13142–13150.
  • Cho, D.-W., Kwon, G., Yoon, K., Tsang, Y. F., Ok, Y. S., Kwon, E. E., & Song, H. (2017b). Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO 2 as reaction medium. Energy Conversion and Management, 145, 1–9.
  • Ciferno, J. P., & Marano, J. J. (2002). Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production. US Department of Energy. National Energy Technology Laboratory.
  • Coll, R., Salvado, J., Farriol, X., & Montane, D. (2001). Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation. Fuel Processing Technology, 74(1), 19–31.
  • Cotula, L., Finnegan, L., & Macqueen, D. (2011). Biomass energy: Another driver of land acquisitions? Technical report, International Institute for Environment and Development (IIED).
  • Craven, J., Swithenbank, J., Sharifi, V., Peralta-Solorio, D., Kelsall, G., & Sage, P. (2014). Development of a novel solids feed system for high pressure gasification. Fuel Processing Technology, 119, 32–40.
  • Dai, L., He, C., Wang, Y., Liu, Y., Yu, Z., Zhou, Y., … Ruan, R. (2017). Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: Hydrochar properties and its pyrolysis behaviors. Energy Conversion and Management, 146, 1–7.
  • Das, B., & Datta, A. (2016). Modeling of hydrodynamics in a bubbling fluidized-bed gasifier and evaluation of the inter-phase gas exchange rate under different operating conditions. Particuology, 25, 151–158.
  • de Andrés, J. M., Roche, E., Narros, A., & Rodríguez, M. E. (2016). Characterisation of tar from sewage sludge gasification. Influence of gasifying conditions: Temperature, throughput, steam and use of primary catalysts. Fuel, 180, 116–126.
  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248.
  • Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140.
  • Di Blasi, C., & Branca, C. (2013). Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel, 104, 847–860.
  • Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094–11111.
  • Dogru, M., Howarth, C., Akay, G., Keskinler, B., & Malik, A. (2002). Gasification of hazelnut shells in a downdraft gasifier. Energy, 27(5), 415–427.
  • Dong, J., Chi, Y., Zou, D., Fu, C., Huang, Q., & Ni, M. (2014). Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study. Applied Energy, 114, 400–408.
  • Drzyzga, O., Revelles, O., Durante-Rodríguez, G., Díaz, E., García, J. L., & Prieto, A. (2015). New challenges for syngas fermentation: Towards production of biopolymers. Journal of Chemical Technology & Biotechnology, 90(10), 1735–1751.
  • Ducousso, M., Weiss-Hortala, E., Nzihou, A., & Castaldi, M. J. (2015). Reactivity enhancement of gasification biochars for catalytic applications. Fuel, 159, 491–499.
  • Elleuch, A., Halouani, K., & Li, Y. (2015). Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel. Journal of Power Sources, 281, 350–361.
  • Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111, 185–190.
  • Erkiaga, A., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2014). Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. Chemical Engineering Journal, 237, 259–267.
  • Fagbemi, L., Khezami, L., & Capart, R. (2001). Pyrolysis products from different biomasses: Application to the thermal cracking of tar. Applied Energy, 69(4), 293–306.
  • Fernandez-Lopez, M., Pedroche, J., Valverde, J., & Sanchez-Silva, L. (2017). Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®. Energy Conversion and Management, 140, 211–217.
  • Ferreira, A. G., Maia, C. B., Cortez, M. F., & Valle, R. M. (2008). Technical feasibility assessment of a solar chimney for food drying. Solar Energy, 82(3), 198–205.
  • Field, J. L., Keske, C. M., Birch, G. L., DeFoort, M. W., & Cotrufo, M. F. (2013). Distributed biochar and bioenergy coproduction: A regionally specific case study of environmental benefits and economic impacts. Gcb Bioenergy, 5(2), 177–191.
  • Figueiredo, J., Pereira, M., Freitas, M., & Orfao, J. (1999). Modification of the surface chemistry of activated carbons. Carbon, 37(9), 1379–1389.
  • Fouilland, T., Grace, J. R., & Ellis, N. (2010). Recent advances in fluidized bed technology in biomass processes. Biofuels, 1(3), 409–433.
  • Fujita, S-I., Watanabe, H., Katagiri, A., Yoshida, H., & Arai, M. (2014). Nitrogen and oxygen-doped metal-free carbon catalysts for chemoselective transfer hydrogenation of nitrobenzene, styrene, and 3-nitrostyrene with hydrazine. Journal of Molecular Catalysis A: Chemical, 393, 257–262.
  • Gadkari, S., Fidalgo, B., & Gu, S. (2017). Numerical investigation of microwave-assisted pyrolysis of lignin. Fuel Processing Technology, 156, 473–484.
  • Gai, C., Chen, M., Liu, T., Peng, N., & Liu, Z. (2016). Gasification characteristics of hydrochar and pyrochar derived from sewage sludge. Energy, 113, 957–965.
  • Gallucci, F., Fernandez, E., Corengia, P., & van Sint Annaland, M. (2013). Recent advances on membranes and membrane reactors for hydrogen production. Chemical Engineering Science, 92, 40–66.
  • Gasper-Galvin, L. D., Atimtay, A. T., & Gupta, R. P. (1998). Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Industrial & Engineering Chemistry Research, 37(10), 4157–4166.
  • Gómez-Barea, A., Ollero, P., & Leckner, B. (2013). Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 103, 42–52.
  • Gong, J., & You, F. (2015). Sustainable design and synthesis of energy systems. Current Opinion in Chemical Engineering, 10, 77–86.
  • Guangul, F. M., Sulaiman, S. A., & Ramli, A. (2012). Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air. Bioresource Technology, 126, 224–232.
  • Guangul, F. M., Sulaiman, S. A., & Ramli, A. (2014). Study of the effects of operating factors on the resulting producer gas of oil palm fronds gasification with a single throat downdraft gasifier. Renewable Energy, 72, 271–283.
  • Gujar, A. C., Baik, J., Garceau, N., Muradov, N., & Ali, T. (2014). Oxygen-blown gasification of pine charcoal in a top-lit downdraft moving-hearth gasifier. Fuel, 118, 27–32.
  • Gül, S., Akgün, F., Aydar, E., & Ünlü, N. (2018). Pressurized gasification of lignite in a pilot scale bubbling fluidized bed reactor with air, oxygen, steam and CO2 agents. Applied Thermal Engineering, 130, 203–210.
  • Gupta, M., Smith, M. L., & Spivey, J. J. (2011). Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catalysis, 1(6), 641–656.
  • Haddad, M., Cimpoia, R., & Guiot, S. R. (2014). Performance of Carboxydothermus hydrogenoformans in a gas-lift reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy, 39(6), 2543–2548.
  • Han, J., & Kim, H. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renewable and Sustainable Energy Reviews, 12(2), 397–416.
  • Hansen, V., Müller-Stöver, D., Ahrenfeldt, J., Holm, J. K., Henriksen, U. B., & Hauggaard-Nielsen, H. (2015). Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass and Bioenergy, 72, 300–308.
  • Haryanto, A., Fernando, S., & Adhikari, S. (2007). Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification. Catalysis Today, 129(3–4), 269–274.
  • Haryanto, A., Fernando, S. D., Pordesimo, L. O., & Adhikari, S. (2009). Upgrading of syngas derived from biomass gasification: A thermodynamic analysis. Biomass and Bioenergy, 33(5), 882–889.
  • Hasler, P., & Nussbaumer, T. (1999). Gas cleaning for IC engine applications from fixed bed biomass gasification. Biomass and Bioenergy, 16(6), 385–395.
  • Haynes, W. M. (2014). CRC handbook of chemistry and physics. Boca Raton, FL: CRC Press.
  • Henstra, A. M., Sipma, J., Rinzema, A., & Stams, A. J. (2007). Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology, 18(3), 200–206.
  • Hepola, J., & Simell, P. (1997). Sulphur poisoning of nickel-based hot gas cleaning catalysts in synthetic gasification gas: I. Effect of different process parameters. Applied Catalysis B: Environmental, 14(3–4), 287–303.
  • Hernando, H., Jiménez-Sánchez, S., Fermoso, J., Pizarro, P., Coronado, J., & Serrano, D. (2016). Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catalysis Science & Technology, 6(8), 2829–2843.
  • Hognon, C., Dupont, C., Grateau, M., & Delrue, F. (2014). Comparison of steam gasification reactivity of algal and lignocellulosic biomass: Influence of inorganic elements. Bioresource Technology, 164, 347–353.
  • Hosseinpour, S., Aghbashlo, M., Tabatabaei, M., Younesi, H., Mehrpooya, M., & Ramakrishna, S. (2017). Multi-objective exergy-based optimization of a continuous photobioreactor applied to produce hydrogen using a novel combination of soft computing techniques. International Journal of Hydrogen Energy, 42(12), 8518–8529.
  • Hu, J., Yu, F., & Lu, Y. (2012). Application of Fischer–Tropsch synthesis in biomass to liquid conversion. Catalysts, 2(2), 303–326.
  • Huang, B.-S., Chen, H.-Y., Kuo, J.-H., Chang, C.-H., & Wey, M.-Y. (2012). Catalytic upgrading of syngas from fluidized bed air gasification of sawdust. Bioresource Technology, 110, 670–675.
  • Huang, C., Wu, X., Huang, Y., Lai, C., Li, X., & Yong, Q. (2016). Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content. Bioresource Technology, 219, 583–588.
  • Huang, Z., Zhang, J., Zhao, Y., Zhang, H., Yue, G., Suda, T., & Narukawa, M. (2010). Kinetic studies of char gasification by steam and CO 2 in the presence of H 2 and CO. Fuel Processing Technology, 91(8), 843–847.
  • Husmann, M., Hochenauer, C., Meng, X., Jong, WD., & Kienberger, T. (2014). Evaluation of sorbents for high temperature in situ desulfurization of biomass-derived syngas. Energy & Fuels, 28(4), 2523–2534.
  • Iliuta, I., Leclerc, A., & Larachi, F. (2010). Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor-new reactor concept. Bioresource Technology, 101(9), 3194–3208.
  • Im-Orb, K., Simasatitkul, L., & Arpornwichanop, A. (2016). Analysis of synthesis gas production with a flexible H 2/CO ratio from rice straw gasification. Fuel, 164, 361–373.
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., … Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433.
  • James R, A. M., Yuan, W., & Boyette, M. D. (2016). The effect of biomass physical properties on top-lit updraft gasification of woodchips. Energies, 9(4), 283.
  • Jeong, H. J., Seo, D. K., & Hwang, J. (2014). CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model. Applied Energy, 123, 29–36.
  • Jiang, L., Hu, S., Wang, Y., Su, S., Sun, L., Xu, B., … Xiang, J. (2015). Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. International Journal of Hydrogen Energy, 40(45), 15460–15469.
  • Jin, H., Wang, X., Gu, Z., & Polin, J. (2013). Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. Journal of Power Sources, 236, 285–292.
  • Kaewluan, S., & Pipatmanomai, S. (2011). Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed. Fuel Processing Technology, 92(3), 671–677.
  • Karmakar, M. K., Chandra, P., & Chatterjee, P. K. (2015). A review on the fuel gas cleaning technologies in gasification process. Journal of Environmental Chemical Engineering, 3(2), 689–702.
  • Kathiraser, Y., Ashok, J., & Kawi, S. (2016). Synthesis and evaluation of highly dispersed SBA-15 supported Ni–Fe bimetallic catalysts for steam reforming of biomass derived tar reaction. Catalysis Science & Technology, 6(12), 4327–4336.
  • Kim, J. H., Ok, Y. S., Choi, G.-H., & Park, B.-J. (2015). Residual perfluorochemicals in the biochar from sewage sludge. Chemosphere, 134, 435–437.
  • Kim, K. H., Kim, J.-Y., Cho, T.-S., & Choi, J. W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology, 118, 158–162.
  • Kim, M., Lee, Y., Park, J., Ryu, C., & Ohm, T.-I. (2016). Partial oxidation of sewage sludge briquettes in a updraft fixed bed. Waste Management (New York, N.Y.), 49, 204–211.
  • Klimantos, P., Koukouzas, N., Katsiadakis, A., & Kakaras, E. (2009). Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment. Energy, 34(5), 708–714.
  • Krishnamoorthy, V., & Pisupati, S. V. (2015). A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers. Energies, 8(9), 10430–10463.
  • Krishnamoorthy, V., & Pisupati, S. V. (2016). Fate of sulfur during entrained-flow gasification of Pittsburgh No. 8 Coal: Influence of particle size, sulfur forms, and temperature. Energy & Fuels, 30(4), 3241–3250.
  • Kumar, A., Demirel, Y., Jones, D. D., & Hanna, M. A. (2010). Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Bioresource Technology, 101(10), 3696–3701.
  • Kumar, A., Jones, D. D., & Hanna, M. A. (2009). Thermochemical biomass gasification: A review of the current status of the technology. Energies, 2(3), 556–581.
  • Kumar, K. V., Bharath, M., Raghavan, V., Prasad, B., Chakravarthy, S., & Sundararajan, T. (2017a). Gasification of high-ash Indian coal in bubbling fluidized bed using air and steam–An experimental study. Applied Thermal Engineering, 116, 372–381.
  • Kumar, U., Maroufi, S., Rajarao, R., Mayyas, M., Mansuri, I., Joshi, R. K., & Sahajwalla, V. (2017b). Cleaner production of iron by using waste macadamia biomass as a carbon resource. Journal of Cleaner Production, 158, 218–224.
  • Lahijani, P., Zainal, Z. A., Mohamed, A. R., & Mohammadi, M. (2013). Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process. Bioresource Technology, 138, 124–130.
  • Lee, J., Lee, T., Ok, Y. S., Oh, J.-I., & Kwon, E. E. (2017a). Using CO2 to mitigate evolution of harmful chemical compounds during thermal degradation of printed circuit boards. Journal of CO2 Utilization, 20, 66–72.
  • Lee, J., Yang, X., Cho, S.-H., Kim, J.-K., Lee, S. S., Tsang, D. C., … Kwon, E. E. (2017b). Pyrolysis process of agricultural waste using CO 2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 185, 214–222.
  • Lee, J. C., Lee, H. H., Joo, Y. J., Lee, C. H., & Oh, M. (2014). Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier. Energy, 64, 58–68.
  • Lee, T., Lee, J., Ok, Y. S., Oh, J.-I., Lee, S.-R., Rinklebe, J., & Kwon, E. E. (2017c). Utilizing CO2 as an effective carbon scavenger to suppress the generation of harmful chemicals from the thermal degradation of polyvinyl chloride. Journal of Cleaner Production, 162, 1465–1471.
  • Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., … Hyun, S. (2013a). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresource Technology, 148, 196–201.
  • Lee, Y., Eum, P.-R.-B., Ryu, C., Park, Y.-K., Jung, J.-H., & Hyun, S. (2013b). Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 130, 345–350.
  • Li, C.-Z. (2007). Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal. Fuel, 86(12–13), 1664–1683.
  • Li, C.-Z., Sathe, C., Kershaw, J., & Pang, Y. (2000). Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal. Fuel, 79(3–4), 427–438.
  • Li, D., Briens, C., & Berruti, F. (2015). Improved lignin pyrolysis for phenolics production in a bubbling bed reactor-effect of bed materials. Bioresource Technology, 189, 7–14.
  • Liu, H., Kaneko, M., Kato, S., & Kojima, T. (2003). Gasification of seven coals in carbon dioxide at elevated temperatures and high heating rates: Unification approach of reactivity. Journal of Chemical Engineering of Japan, 36(7), 751–758.
  • Liu, M.-C., Kong, L.-B., Zhang, P., Luo, Y.-C., & Kang, L. (2012a). Porous wood carbon monolith for high-performance supercapacitors. Electrochimica Acta, 60, 443–448.
  • Liu, P., Liu, W.-J., Jiang, H., Chen, J.-J., Li, W.-W., & Yu, H.-Q. (2012b). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240.
  • Liu, Q.-S., Zheng, T., Li, N., Wang, P., & Abulikemu, G. (2010). Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 256(10), 3309–3315.
  • Liu, Y., Aziz, M., Kansha, Y., & Tsutsumi, A. (2013). A novel exergy recuperative drying module and its application for energy-saving drying with superheated steam. Chemical Engineering Science, 100, 392–401.
  • Loha, C., Gu, S., De Wilde, J., Mahanta, P., & Chatterjee, P. K. (2014). Advances in mathematical modeling of fluidized bed gasification. Renewable and Sustainable Energy Reviews, 40, 688–715.
  • Lu, Y., Jin, H., Guo, L., Zhang, X., Cao, C., & Guo, X. (2008). Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor. International Journal of Hydrogen Energy, 33(21), 6066–6075.
  • Luo, H., Bao, L., Kong, L., & Sun, Y. (2017). Low temperature microwave-assisted pyrolysis of wood sawdust for phenolic rich compounds: Kinetics and dielectric properties analysis. Bioresource Technology, 238, 109–115.
  • Luque, R., Menendez, J. A., Arenillas, A., & Cot, J. (2012). Microwave-assisted pyrolysis of biomass feedstocks: The way forward? Energy & Environmental Science, 5(2), 5481–5488.
  • Lythcke-Jørgensen, C., Clausen, L. R., Algren, L., Hansen, A. B., Münster, M., Gadsbøll, R. Ø., & Haglind, F. (2017). Optimization of a flexible multi-generation system based on wood chip gasification and methanol production. Applied Energy, 192, 337–359.
  • Mandl, C., Obernberger, I., & Scharler, I. (2011). Characterisation of fuel bound nitrogen in the gasification process and the staged combustion of producer gas from the updraft gasification of softwood pellets. Biomass and Bioenergy, 35(11), 4595–4604.
  • Mani, S., Kastner, J. R., & Juneja, A. (2013). Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Processing Technology, 114, 118–125.
  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15), 7939–7954.
  • Manyà, J. J., Ruiz, J., & Arauzo, J. (2007). Some peculiarities of conventional pyrolysis of several agricultural residues in a packed bed reactor. Industrial & Engineering Chemistry Research, 46(26), 9061–9070.
  • Maroño, M., Sánchez, J., Ruiz, E., & Cabanillas, A. (2008). Study of the suitability of a Pt-based catalyst for the upgrading of a biomass gasification syngas stream via the WGS reaction. Catalysis Letters, 126(3–4), 396–406.
  • Martin, K. J., & Nerenberg, R. (2012). The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments. Bioresource Technology, 122, 83–94.
  • Martin, M. E., Richter, H., Saha, S., & Angenent, L. T. (2016). Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnology and Bioengineering, 113(3), 531–539.
  • Mastellone, M. L., & Arena, U. (2008). Olivine as a tar removal catalyst during fluidized bed gasification of plastic waste. AIChE Journal, 54(6), 1656–1667.
  • Maya, D. M. Y., Sarmiento, A. L. E., de Sales, C. A. V. B., Oliveira, E. E. S. L., & Andrade, R. (2016). Gasification of municipal solid waste for power generation in Brazil, a review of available technologies and their environmental benefits. Journal of Chemistry and Chemical Engineering, 10, 249–255.
  • Mayerhofer, M., Mitsakis, P., Meng, X., de Jong, W., Spliethoff, H., & Gaderer, M. (2012). Influence of pressure, temperature and steam on tar and gas in allothermal fluidized bed gasification. Fuel, 99, 204–209.
  • McKendry, P. (2002). Energy production from biomass (part 3): Gasification technologies. Bioresource Technology, 83(1), 55–63.
  • Melligan, F., Auccaise, R., Novotny, E., Leahy, J., Hayes, M., & Kwapinski, W. (2011). Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresource Technology, 102(3), 3466–3470.
  • Meng, X., De Jong, W., Pal, R., & Verkooijen, A. H. (2010). In bed and downstream hot gas desulphurization during solid fuel gasification: A review. Fuel Processing Technology, 91(8), 964–981.
  • Milne, T. A., Evans, R. J., & Abatzaglou, N. (1998). Biomass gasifier “Tars”: Their nature, formation, and conversion. Golden, CO: National Renewable Energy Laboratory.
  • Mohammadi, M., Najafpour, G. D., Younesi, H., Lahijani, P., Uzir, M. H., & Mohamed, A. R. (2011). Bioconversion of synthesis gas to second generation biofuels: A review. Renewable and Sustainable Energy Reviews, 15(9), 4255–4273.
  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource Technology, 160, 191–202.
  • Moneti, M., Di Carlo, A., Bocci, E., Foscolo, P., Villarini, M., & Carlini, M. (2016). Influence of the main gasifier parameters on a real system for hydrogen production from biomass. International Journal of Hydrogen Energy, 41(28), 11965–11973.
  • Munasinghe, P. C., & Khanal, S. K. (2010). Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresource Technology, 101(13), 5013–5022.
  • Muroyama, A. P., & Loutzenhiser, P. G. (2016). Kinetic analyses of gasification and combustion reactions of carbonaceous feedstocks for a hybrid solar/autothermal gasification process to continuously produce synthesis gas. Energy & Fuels, 30(5), 4292–4299.
  • Murthy, M. R. (2009). A review of new technologies, models and experimental investigations of solar driers. Renewable and Sustainable Energy Reviews, 13(4), 835–844.
  • Mushtaq, F., Mat, R., & Ani, F. N. (2016). Fuel production from microwave assisted pyrolysis of coal with carbon surfaces. Energy Conversion and Management, 110, 142–153.
  • Nestler, F., Burhenne, L., Amtenbrink, M. J., & Aicher, T. (2016). Catalytic decomposition of biomass tars: The impact of wood char surface characteristics on the catalytic performance for naphthalene removal. Fuel Processing Technology, 145, 31–41.
  • Newalkar, G., Iisa, K., D’Amico, A. D., Sievers, C., & Agrawal, P. (2014). Effect of temperature, pressure, and residence time on pyrolysis of pine in an entrained flow reactor. Energy & Fuels, 28(8), 5144–5157.
  • Nilsson, S., Gómez-Barea, A., & Ollero, P. (2013). Gasification of char from dried sewage sludge in fluidized bed: Reaction rate in mixtures of CO2 and H2O. Fuel, 105, 764–768.
  • Norton, G. A., & Brown, R. C. (2005). Wet chemical method for determining levels of ammonia in syngas from a biomass gasifier. Energy & Fuels, 19(2), 618–624.
  • Nzihou, A., & Stanmore, B. (2013). The fate of heavy metals during combustion and gasification of contaminated biomass-A brief review. Journal of Hazardous Materials, 256–257, 56–66.
  • Oh, J.-I., Lee, J., Lee, T., Ok, Y. S., Lee, S.-R., & Kwon, E. E. (2017). Strategic CO2 utilization for shifting carbon distribution from pyrolytic oil to syngas in pyrolysis of food waste. Journal of CO2 Utilization, 20, 150–155.
  • Öhrman, O. G., Molinder, R., Weiland, F., & Johansson, A. C. (2014). Analysis of trace compounds generated by pressurized oxygen blown entrained flow biomass gasification. Environmental Progress & Sustainable Energy, 33(3), 699–705.
  • Oleszczuk, P., Jośko, I., & Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials, 260, 375–382.
  • Ollero, P., Serrera, A., Arjona, R., & Alcantarilla, S. (2003). The CO2 gasification kinetics of olive residue. Biomass and Bioenergy, 24(2), 151–161.
  • Ong, Z., Cheng, Y., Maneerung, T., Yao, Z., Tong, Y. W., Wang, C. H., & Dai, Y. (2015). Co-gasification of woody biomass and sewage sludge in a fixed-bed downdraft gasifier. AIChE Journal, 61(8), 2508–2521.
  • Pansare, S. S., & Goodwin, J. G. (2008). Ammonia decomposition on tungsten-based catalysts in the absence and presence of syngas. Industrial & Engineering Chemistry Research, 47(12), 4063–4070.
  • Pansare, S. S., Torres, W., & Goodwin, J. G. (2007). Ammonia decomposition on tungsten carbide. Catalysis Communications, 8(4), 649–654.
  • Papari, S., & Hawboldt, K. (2015). A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renewable and Sustainable Energy Reviews, 52, 1580–1595.
  • Park, J., Lee, Y., Ryu, C., & Park, Y.-K. (2014). Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresource Technology, 155, 63–70.
  • Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield–a review. Renewable Energy, 66, 570–579.
  • Patel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1499.
  • Patil, K., Bhoi, P., Huhnke, R., & Bellmer, D. (2011). Biomass downdraft gasifier with internal cyclonic combustion chamber: Design, construction, and experimental results. Bioresource Technology, 102(10), 6286–6290.
  • Patra, T. K., & Sheth, P. N. (2015). Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 50, 583–593.
  • Pfeifer, C., Koppatz, S., & Hofbauer, H. (2011). Steam gasification of various feedstocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials. Biomass Conversion and Biorefinery, 1(1), 39–53.
  • Pfeifer, C., Rauch, R., & Hofbauer, H. (2004). In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Industrial & Engineering Chemistry Research, 43(7), 1634–1640.
  • Pinto, F., André, R. N., Carolino, C., & Miranda, M. (2014). Hot treatment and upgrading of syngas obtained by co-gasification of coal and wastes. Fuel Processing Technology, 126, 19–29.
  • Plácido, J., & Capareda, S. (2015). Production of silicon compounds and fulvic acids from cotton wastes biochar using chemical depolymerization. Industrial Crops and Products, 67, 270–280.
  • Placido, J., Capareda, S., & Karthikeyan, R. (2016). Production of humic substances from cotton stalks biochar by fungal treatment with Ceriporiopsis subvermispora. Sustainable Energy Technologies and Assessments, 13, 31–37.
  • Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468–1485.
  • Prins, M. J., Ptasinski, K. J., & Janssen, F. J. (2007). From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy, 32(7), 1248–1259.
  • Prins, M. J., Ptasinski, K. J., & Janssen, F. J. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458–3470.
  • Priyadarsan, S., Annamalai, K., Sweeten, J., Mukhtar, S., & Holtzapple, M. (2004). Fixed-bed gasification of feedlot manure and poultry litter biomass. Transactions of American Society of Agricultural and Biological Engineers, 47(5), 1689–1696.
  • Promes, E., Woudstra, T., Schoenmakers, L., Oldenbroek, V., Thattai, A. T., & Aravind, P. (2015). Thermodynamic evaluation and experimental validation of 253MW integrated coal gasification combined cycle power plant in Buggenum, Netherlands. Applied Energy, 155, 181–194.
  • Puig-Arnavat, M., Bruno, J. C., & Coronas, A. (2010). Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews, 14(9), 2841–2851.
  • Qi, F., Kuppusamy, S., Naidu, R., Bolan, N. S., Ok, Y. S., Lamb, D., … Wang, H. (2017). Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 47(10), 795–876.
  • Quyn, D. M., Wu, H., & Li, C.-Z. (2002). Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel, 81(2), 143–149.
  • Rabou, L. P., Zwart, R. W., Vreugdenhil, B. J., & Bos, L. (2009). Tar in biomass producer gas, the Energy research Centre of the Netherlands (ECN) experience: An enduring challenge. Energy & Fuels, 23(12), 6189–6198.
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., … Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148(27), 276–291.
  • Rapagnà, S., Gallucci, K., Di Marcello, M., Matt, M., Nacken, M., Heidenreich, S., & Foscolo, P. U. (2010). Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier. Bioresource Technology, 101(18), 7123–7130.
  • Rezaei, H., Lim, C. J., Lau, A., Bi, X., & Sokhansanj, S. (2016). Development of empirical drying correlations for ground wood chip and ground wood pellet particles. Drying Technology, 35(12), 1423–1432.
  • Rezaei, S., Jarligo, M. O. D., Wu, L., & Kuznicki, S. M. (2015). Breakthrough performances of metal-exchanged nanotitanate ETS-2 adsorbents for room temperature desulfurization. Chemical Engineering Science, 123, 444–449.
  • Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44(2), 827–833.
  • Roche, E., de Andrés, J. M., Narros, A., & Rodríguez, M. E. (2014). Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition. Fuel, 115, 54–61.
  • Roller, D., Bläsing, M., Dreger, I., Yazdanbakhsh, F., Sawada, J. A., Kuznicki, S. M., & Müller, M. (2016). Removal of hydrogen sulfide by metal-doped nanotitanate under gasification-like conditions. Industrial & Engineering Chemistry Research, 55(14), 3871–3878.
  • Rollinson, A. N. (2016). Gasification reactor engineering approach to understanding the formation of biochar properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 472(2192), 20150841.
  • Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104–115.
  • Ruiz, J., Juárez, M., Morales, M., Muñoz, P., & Mendívil, M. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18, 174–183.
  • Ryu, C., Yang, Y. B., Khor, A., Yates, N. E., Sharifi, V. N., & Swithenbank, J. (2006). Effect of fuel properties on biomass combustion: Part I. Experiments-fuel type, equivalence ratio and particle size. Fuel, 85(7–8), 1039–1046.
  • Saber, A. H., Göktepe, B., Umeki, K., Lundström, T. S., & Gebart, R. (2016). Active fuel particles dispersion by synthetic jet in an entrained flow gasifier of biomass: Cold flow. Powder Technology, 302, 275–282.
  • Sanchez-Silva, L., López-González, D., Villaseñor, J., Sánchez, P., & Valverde, J. (2012). Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, 163–172.
  • Seredych, M., Hulicova-Jurcakova, D., Lu, G. Q., & Bandosz, T. J. (2008). Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 46(11), 1475–1488.
  • Shabangu, S., Woolf, D., Fisher, E. M., Angenent, L. T., & Lehmann, J. (2014). Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel, 117, 742–748.
  • Shabbir, I., & Mirzaeian, M. (2016). Feasibility analysis of different cogeneration systems for a paper mill to improve its energy efficiency. International Journal of Hydrogen Energy, 41(37), 16535–16548.
  • Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., … Haszeldine, S. (2012). Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49–58.
  • Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Shamiri, A. (2010). A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143–151.
  • Sharma, A., Pareek, V., & Zhang, D. (2015). Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews, 50, 1081–1096.
  • Shen, Y., Brown, R. C., & Wen, Z. (2017). Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Applied Energy, 187, 585–594.
  • Shen, Y., Chen, M., Sun, T., & Jia, J. (2015a). Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar. Fuel, 159, 570–579.
  • Shen, Y., Zhao, P., Shao, Q., Takahashi, F., & Yoshikawa, K. (2015b). In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Applied Energy, 160, 808–819.
  • Sheth, P. N., & Babu, B. (2009). Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technology, 100(12), 3127–3133.
  • Simell, P., Ståhlberg, P., Kurkela, E., Albrecht, J., Deutsch, S., & Sjöström, K. (2000). Provisional protocol for the sampling and anlaysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass and Bioenergy, 18(1), 19–38.
  • Simmons, B. A. (2011). Chemical and biochemical catalysis for next generation biofuels. London, UK: Royal Society of Chemistry.
  • Simone, M., Nicolella, C., & Tognotti, L. (2013). Numerical and experimental investigation of downdraft gasification of woody residues. Bioresource Technology, 133, 92–101.
  • Smith, M. L., Kumar, N., & Spivey, J. J. (2012). CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. The Journal of Physical Chemistry C, 116(14), 7931–7939.
  • Spivey, J. J., & Egbebi, A. (2007). Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chemical Society Reviews, 36(9), 1514–1528.
  • Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G., & Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869–882.
  • Stark, A. K., Altantzis, C., Bates, R. B., & Ghoniem, A. F. (2016). Towards an advanced reactor network modeling framework for fluidized bed biomass gasification: Incorporating information from detailed CFD simulations. Chemical Engineering Journal, 303, 409–424.
  • Stemmler, M., Tamburro, A., & Müller, M. (2013). Laboratory investigations on chemical hot gas cleaning of inorganic trace elements for the “UNIQUE” process. Fuel, 108, 31–36.
  • Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A.-M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48.
  • Sun, J., Wang, W., Liu, Z., Ma, Q., Zhao, C., & Ma, C. (2012). Kinetic study of the pyrolysis of waste printed circuit boards subject to conventional and microwave heating. Energies, 5(9), 3295–3306.
  • Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., … Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578.
  • Surisetty, V. R., Kozinski, J., & Dalai, A. K. (2012). Biomass, availability in Canada, and gasification: An overview. Biomass Conversion and Biorefinery, 2(1), 73–85.
  • Svoboda, K., Pohořelý, M., Hartman, M., & Martinec, J. (2009). Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Processing Technology, 90(5), 629–635.
  • Sweeney, D. J. (2012). Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. Salt Lake City, UT: The University of Utah.
  • Świerczyński, D., Libs, S., Courson, C., & Kiennemann, A. (2007). Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Applied Catalysis B: Environmental, 74(3–4), 211–222.
  • Taba, L. E., Irfan, M. F., Daud, W. A. M. W., & Chakrabarti, M. H. (2012). The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renewable and Sustainable Energy Reviews, 16(8), 5584–5596.
  • Tanner, J., Kabir, K. B., Müller, M., & Bhattacharya, S. (2015). Low temperature entrained flow pyrolysis and gasification of a Victorian brown coal. Fuel, 154, 107–113.
  • Tay, H.-L., Kajitani, S., Zhang, S., & Li, C.-Z. (2013). Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal. Fuel, 103, 22–28.
  • Thattai, A. T., Oldenbroek, V., Schoenmakers, L., Woudstra, T., & Aravind, P. (2016). Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253 MWe integrated gasification combined cycle power plant in Buggenum, The Netherlands. Applied Energy, 168, 381–393.
  • Thomsen, T. P., Sárossy, Z., Gøbel, B., Stoholm, P., Ahrenfeldt, J., Frandsen, F. J., & Henriksen, U. B. (2017). Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization. Waste Management, 66, 123–133.
  • Tinaut, F. V., Melgar, A., Perez, J. F., & Horrillo, A. (2008). Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Processing Technology, 89(11), 1076–1089.
  • Torres, W., Pansare, S. S., & Goodwin, J. G. (2007). Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catalysis Reviews, 49(4), 407–456.
  • Tremel, A., Haselsteiner, T., Kunze, C., & Spliethoff, H. (2012a). Experimental investigation of high temperature and high pressure coal gasification. Applied Energy, 92, 279–285.
  • Tremel, A., Haselsteiner, T., Nakonz, M., & Spliethoff, H. (2012b). Coal and char properties in high temperature entrained flow gasification. Energy, 45(1), 176–182.
  • Tunå, P., & Brandin, J. (2013). Selective catalytic oxidation of ammonia by nitrogen oxides in a model synthesis gas. Fuel, 105, 331–337.
  • Udomsirichakorn, J., & Salam, P. A. (2014). Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification. Renewable and Sustainable Energy Reviews, 30, 565–579.
  • Van der Drift, A., Boerrigter, H., Coda, B., Cieplik, M., Hemmes, K., Van Ree, R., & Veringa, H. (2004). Entrained flow gasification of biomass. Petten, Netherlands: Energy Centre of Netherlands.
  • Vera, D., Jurado, F., Carpio, J., & Kamel, S. (2018). Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry. Energy, 144, 41–53.
  • Vriesman, P., Heginuz, E., & Sjöström, K. (2000). Biomass gasification in a laboratory-scale AFBG: Influence of the location of the feeding point on the fuel-N conversion. Fuel, 79(11), 1371–1378.
  • Wang, B., Li, X., Xu, S., Paterson, N., Dugwell, D., & Kandiyoti, R. (2005). Performance of Chinese coals under conditions simulating entrained-flow gasification. Energy & Fuels, 19(5), 2006–2013.
  • Wang, G., Zhang, J., Shao, J., Liu, Z., Wang, H., Li, X., … Zhang, G. (2016). Experimental and modeling studies on CO 2 gasification of biomass chars. Energy, 114, 143–154.
  • Wang, S., Wang, H., Yin, Q., Zhu, L., & Yin, S. (2014). Methanation of bio-syngas over a biochar supported catalyst. New Journal of Chemistry, 38(9), 4471–4477.
  • Wang, W., Padban, N., Ye, Z., Andersson, A., & Bjerle, I. (1999). Kinetics of ammonia decomposition in hot gas cleaning. Industrial & Engineering Chemistry Research, 38(11), 4175–4182.
  • Wang, Z., Mai, K., Kumar, N., Elder, T., Groom, L. H., & Spivey, J. J. (2017). Effect of Steam During Fischer–Tropsch Synthesis Using Biomass-Derived Syngas. Catalysis Letters, 147(1), 62–70.
  • Wei, L., & Kawamoto, K. (2013). Upgrading of simulated syngas by using a nanoporous silica membrane reactor. Chemical Engineering & Technology, 36(4), 650–656.
  • Wei, L., Xu, S., Zhang, L., Zhang, H., Liu, C., Zhu, H., & Liu, S. (2006). Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Processing Technology, 87(10), 863–871.
  • Werle, S. (2015a). Gasification of a dried sewage sludge in a laboratory scale fixed bed reactor. Energies, 8(8), 8562–8572.
  • Werle, S. (2015b). Sewage sludge-to-energy management in Eastern Europe: A Polish perspective. Ecological Chemistry and Engineering S, 22(3), 459–469.
  • Wiedner, K., Rumpel, C., Steiner, C., Pozzi, A., Maas, R., & Glaser, B. (2013). Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass and Bioenergy, 59, 264–278.
  • Wolfesberger, U., Aigner, I., & Hofbauer, H. (2009). Tar content and composition in producer gas of fluidized bed gasification of wood—Influence of temperature and pressure. Environmental Progress & Sustainable Energy, 28(3), 372–379.
  • Xiong, X., Iris, K., Cao, L., Tsang, D. C., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254–270.
  • Xiu, S., Shahbazi, A., & Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86–101.
  • Xu, D., & Lewis, R. S. (2012). Syngas fermentation to biofuels: Effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass and Bioenergy, 45, 303–310.
  • Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40–46.
  • Yan, H-M., Heidenreich, C., & Zhang, D-K. (1998). Mathematical modelling of a bubbling fluidised-bed coal gasifier and the significance of ‘net flow’. Fuel, 77(9–10), 1067–1079.
  • Yan, W.-C., Shen, Y., You, S., Sim, S. H., Luo, Z.-H., Tong, Y. W., & Wang, C.-H. (2018). Model-based downdraft biomass gasifier operation and design for synthetic gas production. Journal of Cleaner Production, 178, 476–493.
  • Yang, L., & Ge, X. (2016a). Biogas and Syngas Upgrading. Advances in Bioenergy, 1, 125–188.
  • Yang, L., & Ge, X. (2016b). Chapter Three-Biogas and Syngas Upgrading. Advances in Bioenergy, 1, 125–188.
  • Yao, D., Hu, Q., Wang, D., Yang, H., Wu, C., Wang, X., & Chen, H. (2016). Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresource Technology, 216, 159–164.
  • Yao, X., Yu, Q., Xie, H., Duan, W., Han, Z., Liu, S., & Qin, Q. (2017). Syngas production through biomass/CO2 gasification using granulated blast furnace slag as heat carrier. Journal of Renewable and Sustainable Energy, 9(5), 053101.
  • Yao, Z., You, S., Ge, T., & Wang, C.-H. (2018). Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Applied Energy, 209, 43–55.
  • Yargicoglu, E. N., Sadasivam, B. Y., Reddy, K. R., & Spokas, K. (2015). Physical and chemical characterization of waste wood derived biochars. Waste Management (New York, N.Y.), 36, 256–268.
  • Yazdanbakhsh, F., Alizadehgiashi, M., Bläsing, M., Müller, M., Sawada, J. A., & Kuznicki, S. M. (2016). Cu-Cr-O functionalized ETS-2 nanoparticles for hot gas desulfurization. Journal of Nanoscience and Nanotechnology, 16(1), 878–884.
  • Yazdanbakhsh, F., Bläsing, M., Sawada, J. A., Rezaei, S., Müller, M., Baumann, S., & Kuznicki, S. M. (2014). Copper exchanged nanotitanate for high temperature H2S adsorption. Industrial & Engineering Chemistry Research, 53(29), 11734–11739.
  • You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input–output analysis. AIChE Journal, 58(4), 1157–1180.
  • You, S., Ok, Y. S., Chen, S. S., Tsang, D. C., Kwon, E. E., Lee, J., & Wang, C.-H. (2017a). A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 246, 242–253.
  • You, S., Tong, H., Armin-Hoiland, J., Tong, Y. W., & Wang, C.-H. (2017b). Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia. Applied Energy, 208, 495–510.
  • You, S., Wang, W., Dai, Y., Tong, Y. W., & Wang, C.-H. (2016). Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification-and incineration-based waste treatment schemes. Bioresource Technology, 218, 595–605.
  • Yuan, X., He, T., Cao, H., & Yuan, Q. (2017a). Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods. Renewable Energy, 107, 489–496.
  • Yuan, Y., Bolan, N., Prévoteau, A., Vithanage, M., Biswas, J. K., Ok, Y. S., & Wang, H. (2017b). Applications of biochar in redox-mediated reactions. Bioresource Technology, 246, 271–281.
  • Zeng, X., Shao, R., Wang, F., Dong, P., Yu, J., & Xu, G. (2016). Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process. Bioresource Technology, 206, 93–98.
  • Zhang, H., Zhang, Y., Zhu, Z., & Lu, Q. (2016). Circulating fluidized bed gasification of low rank coal: Influence of O2/C molar ratio on gasification performance and sulphur transformation. Journal of Thermal Science, 25(4), 363–371.
  • Zhang, L., Mi, M., Li, B., & Dong, Y. (2013). Modification of activated carbon by means of microwave heating and its effects on the pore texture and surface chemistry. Research Journal of Applied Sciences, Engineering and Technology, 5(5), 1836–1840.
  • Zhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D. C., & Hou, D. (2018). Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production, 174, 977–987.
  • Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013a). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9.
  • Zhao, Y., Haddad, M., Cimpoia, R., Liu, Z., & Guiot, S. R. (2013b). Performance of a Carboxydothermus hydrogenoformans-immobilizing membrane reactor for syngas upgrading into hydrogen. International Journal of Hydrogen Energy, 38(5), 2167–2175.
  • Zhao, Y., Sun, S., Tian, H., Qian, J., Su, F., & Ling, F. (2009). Characteristics of rice husk gasification in an entrained flow reactor. Bioresource Technology, 100(23), 6040–6044.
  • Zwart, R. W., Boerrigter, H., & van der Drift, A. (2006). The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer − Tropsch products. Energy & Fuels, 20(5), 2192–2197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.