4,496
Views
226
CrossRef citations to date
0
Altmetric
Original Articles

Alginate-based composites for environmental applications: a critical review

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 318-356 | Published online: 20 Dec 2018

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071
  • Akhtar, M. F., Hanif, M., Ranjha, N. M. (2016). Methods of synthesis of hydrogels: A review. Saudi Pharmaceutical Journal, 24(5), 554–559.
  • Albarelli, J. Q., Santos, D. T., Murphy, S., & Oelgemöller, M. (2009). Use of Ca-alginate as a novel support for TiO2 immobilization in methylene blue decolorisation. Water Science and Technology, 60(4), 1081–1087.
  • Algothmi, W. M., Bandaru, N. M., Yu, Y., Shapter, J. G., & Ellis, A. V. (2013). Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material. Journal of Colloid and Interface Science, 397, 32–38. doi:10.1016/j.jcis.2013.01.051
  • Ali, I. (2012). New generation adsorbents for water treatment. Chemical reviews, 112, 5073–5091.
  • Ali, I., Al-Othman, Z. A., & Al-Warthan, A. (2016a). Molecular uptake of congo red dye from water on iron composite nano particles. Journal of Molecular Liquids, 224, 171–176.
  • Ali, I., Al-Othman, Z. A., & Al-Warthan, A. (2016b). Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalination and Water TreatmentI, 57, 10409–10421.
  • Ali, I., Al-Othman, Z. A., & Sanagi, M. M. (2015). Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. Journal of Molecular Liquids, 211, 457–465.
  • Ali, I., & Gupta, V. (2006). Advances in water treatment by adsorption technology. Nature protocols, 1, 2661–2667.
  • Allaboun, H., Fares, M. M., & Abu Al-Rub, F. A. (2016). Removal of uranium and associated contaminants from aqueous solutions using functional carbon nanotubes-sodium alginate conjugates. Minerals, 6(1), 9. doi:10.3390/min6010009
  • An, T., Zhou, L., Li, G., Fu, J., & Sheng, G. (2008). Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment. Recent Patents on Engineering, 2(1), 28–35. doi:10.2174/187221208783478543
  • Annadurai, G., Juang, R.-S., & Lee, D.-J. (2002). Factorial design analysis for adsorption of dye on activated carbon beads incorporated with calcium alginate. Advances in Environmental Research, 6(2), 191–198. doi:10.1016/S1093-0191(01)00050-8
  • Aravindhan, R., Fathima, N. N., Rao, J. R., & Nair, B. U. (2007). Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299(1-3), 232–238. doi:10.1016/j.colsurfa.2006.11.045
  • Arica, M. Y., Bayramoglu, G., Yilmaz, M., Bektaş, S., & Genç, O. (2004). Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. Journal of Hazardous Materials, 109(1-3), 191–199.
  • Arıca, M. Y., Kaçar, Y., & Genç, Ö. (2001). Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: Preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology, 80(2), 121–129. doi:10.1016/S0960-8524(01)00084-0
  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97(1-3), 219–243.
  • Bai, J., Sun, H. M., Yin, X. J., Yin, X. Q., Wang, S. S., & Creamer, A. E. (2016). Oxygen-content-controllable graphene oxide from electron-beam-irradiated graphite: Synthesis, characterization, and removal of aqueous lead [Pb(II)]. ACS Applied Materials & Interfaces, 8, 25289–25296. doi:10.1021/acsami.6b08059
  • Bajpai, J., Shrivastava, R., & Bajpai, A. K. (2004). Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 236(1-3), 81–90. doi:10.1016/j.colsurfa.2004.01.021
  • Bakr, A.-S., A., Moustafa, Y. M., Khalil, M. M., Yehia, & Motawea, E. A. (2015). Magnetic nanocomposite beads: Synthesis and uptake of Cu(II) ions from aqueous solutions. Canadian Journal of Chemistry, 93(3), 289–296. doi:10.1139/cjc-2014-0282
  • Basu, H., Singhal, R., Pimple, M., & Reddy, A. (2015). Arsenic removal from groundwater by goethite impregnated calcium alginate beads. Water, Air, & Soil Pollution, 226, 22.
  • Bayramoglu, G., Denizli, A., Bektas, S., & Yakup Arica, M. (2002). Entrapment of lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution: Preparation and biosorption kinetics analysis. Microchemical Journal, 72(1), 63–76. doi:10.1016/S0026-265X(01)00151-5
  • Bayramoğlu, G., Tuzun, I., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 81(1), 35–43. doi:10.1016/j.minpro.2006.06.002
  • Bayramoğlu, G., & Yakup Arıca, M. (2009). Construction a hybrid biosorbent using Scenedesmus quadricauda and ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): Kinetics and equilibrium studies. Bioresource Technology, 100(1), 186–193. doi:10.1016/j.biortech.2008.05.050
  • Bée, A., Talbot, D., Abramson, S., & Dupuis, V. (2011). Magnetic alginate beads for Pb(II) ions removal from wastewater. Journal of Colloid and Interface Science, 362(2), 486–492.
  • Belhouchat, N., Zaghouane-Boudiaf, H., & Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Applied Clay Science, 135, 9–15. doi:10.1016/j.clay.2016.08.031
  • Benhouria, A., Islam, M. A., Zaghouane-Boudiaf, H., Boutahala, M., & Hameed, B. (2015). Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chemical Engineering Journal, 270, 621–630. doi:10.1016/j.cej.2015.02.030
  • Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712. doi:10.1016/j.ecoenv.2017.11.034
  • Cai, C.-X., Xu, J., Deng, N.-F., Dong, X.-W., Tang, H., Liang, Y., … Li, Y.-Z. (2016). A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization. Scientific Reports, 6, 36546.
  • Cai, T., Chen, L., Ren, Q., Cai, S., & Zhang, J. (2011). The biodegradation pathway of triethylamine and its biodegradation by immobilized Arthrobacter protophormiae cells. Journal of Hazardous Materials, 186(1), 59–66. doi:10.1016/j.jhazmat.2010.10.007
  • Cavallaro, G., Gianguzza, A., Lazzara, G., Milioto, S., & Piazzese, D. (2013). Alginate gel beads filled with halloysite nanotubes. Applied Clay Science, 72, 132–137. doi:10.1016/j.clay.2012.12.001
  • Chan, L. W., Jin, Y., & Heng, P. W. S. (2002). Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. International Journal of Pharmaceutics, 242(1–2), 255–258. doi:10.1016/S0378-5173(02)00169-2
  • Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I.-C., & Kim, K. S. (2010). Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 4(7), 3979–3986. doi:10.1021/nn1008897
  • Chen, H., Gao, B., & Li, H. (2014). Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. Journal of Environmental Chemical Engineering, 2(1), 310–315. doi:10.1016/j.jece.2013.12.021
  • Chen, H., Gao, B., & Li, H. (2015). Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Journal of Hazardous Materials, 282, 201–207.
  • Chen, J.-P., & Lin, Y.-S. (2007). Decolorization of azo dye by immobilized pseudomonas luteola entrapped in alginate–silicate sol–gel beads. Process Biochemistry, 42(6), 934–942. doi:10.1016/j.procbio.2007.03.001
  • Chiew, C. S. C., Yeoh, H. K., Pasbakhsh, P., Krishnaiah, K., Poh, P. E., Tey, B. T., & Chan, E. S. (2016). Halloysite/alginate nanocomposite beads: Kinetics, equilibrium and mechanism for lead adsorption. Applied Clay Science, 119, 301–310. doi:10.1016/j.clay.2015.10.032
  • Ching, S. H., Bansal, N., & Bhandari, B. (2017). Alginate gel particles—A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 57(6), 1133–1152. doi:10.1080/10408398.2014.965773
  • Choi, J.-W., Yang, K.-S., Kim, D.-J., & Lee, C. E. (2009). Adsorption of zinc and toluene by alginate complex impregnated with zeolite and activated carbon. Current Applied Physics, 9(3), 694–697. doi:10.1016/j.cap.2008.06.008
  • Cohen, Y. (2001). Biofiltration-the treatment of fluids by microorganisms immobilized into the filter bedding material: A review. Bioresource Technology, 77(3), 257–274. doi:10.1016/S0960-8524(00)00074-2
  • Covarrubias, S. A., De-Bashan, L. E., Moreno, M., & Bashan, Y. (2012). Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Applied Microbiology and Biotechnology, 93(6), 2669–2680. doi:10.1007/s00253-011-3585-8
  • Daâssi, D., Rodríguez-Couto, S., Nasri, M., & Mechichi, T. (2014). Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration & Biodegradation, 90, 71–78. doi:10.1016/j.ibiod.2014.02.006
  • De-Bashan, L. E., Moreno, M., Hernandez, J.-P., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research, 36(12), 2941–2948. doi:10.1016/S0043-1354(01)00522-X
  • Devi, G. K., Kumar, P. S., & Kumar, K. S. (2016). Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment: Prediction of isotherm and kinetic parameters. Desalination and Water Treatment, 57, 27686–27699.
  • Ding, Z. H., Hu, X., Morales, V. L., & Gao, B. (2014). Filtration and transport of heavy metals in graphene oxide enabled sand columns. Chemical Engineering Journal, 257, 248–252. doi:10.1016/j.cej.2014.07.034
  • Ding, Z. H., Hu, X., Wan, Y. S., Wang, S. S., & Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239–245. doi:10.1016/j.jiec.2015.10.007
  • Do, X. H., & Lee, B. K. (2013). Removal of Pb2+ using a biochar-alginate capsule in aqueous solution and capsule regeneration. Journal of Environmental Management, 131, 375–382. doi:10.1016/j.jenvman.2013.09.045
  • Elwakeel, K. Z., Daher, A., Abd El-Fatah, A., Abd El Monem, H., & Khalil, M. M. (2017). Biosorption of lanthanum from aqueous solutions using magnetic alginate beads. Journal of Dispersion Science and Technology, 38(1), 145–151. doi:10.1080/01932691.2016.1146617
  • Enayatzamir, K., Alikhani, H., Yakhchali, B., Tabandeh, F., & Rodríguez-Couto, S. (2010). Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environmental Science and Pollution Research, 17(1), 145–153. doi:10.1007/s11356-009-0109-5
  • Escudero, C., Fiol, N., Villaescusa, I., & Bollinger, J.-C. (2009). Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. Journal of Hazardous Materials, 164(2-3), 533–541. doi:10.1016/j.jhazmat.2008.08.042
  • Fan, J., Shi, Z., Lian, M., Li, H., & Yin, J. (2013). Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. Journal of Materials Chemistry A, 1(25), 7433–7443. doi:10.1039/c3ta10639j
  • Fang, J., Gao, B., Mosa, A., & Zhan, L. (2017). Chemical activation of hickory and peanut hull hydrochars for removal of lead and methylene blue from aqueous solutions. Chemical Speciation and Bioavailability, 29(1), 197–204. doi:10.1080/09542299.2017.1403294
  • Fang, J., Gao, B., Zimmerman, A. R., Ro, K. S., & Chen, J. J. (2016). Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium. RSC Advances, 6(30), 24906–24911. doi:10.1039/C6RA01644H
  • Fang, J., Zhan, L., Ok, Y. S., & Gao, B. (2018). Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15–21. doi:10.1016/j.jiec.2017.08.026
  • Fei, Y., Li, Y., Han, S., & Ma, J. (2016). Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. Journal of Colloid and Interface Science, 484, 196–204. doi:10.1016/j.jcis.2016.08.068
  • Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. doi:10.1016/j.biortech.2013.12.102
  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.
  • Gautam, D. P., Rahman, S., Bezbaruah, A. N., & Borhan, M. S. (2016). Evaluation of calcium alginate entrapped nano zinc oxide to reduce gaseous emissions from liquid dairy manure. Applied Engineering in Agriculture, 32, 89–102.
  • Gautam, D. P., Rahman, S., Fortuna, A.-M., Borhan, M. S., Saini-Eidukat, B., & Bezbaruah, A. N. (2017). Characterization of zinc oxide nanoparticle (NZNO) alginate beads in reducing gaseous emission from swine manure. Environmental Technology, 38(9), 1061–1074. doi:10.1080/09593330.2016.1217056
  • Gok, C., & Aytas, S. (2009). Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. Journal of Hazardous Materials, 168(1), 369–375. doi:10.1016/j.jhazmat.2009.02.063
  • Gong, J.-L., Wang, B., Zeng, G.-M., Yang, C.-P., Niu, C.-G., Niu, Q.-Y., … Liang, Y. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials, 164(2-3), 1517–1522. doi:10.1016/j.jhazmat.2008.09.072
  • Googerdchian, F., Moheb, A., & Emadi, R. (2012). Lead sorption properties of nanohydroxyapatite–alginate composite adsorbents. Chemical Engineering Journal, 200, 471–479. doi:10.1016/j.cej.2012.06.084
  • Gopalakannan, V., & Viswanathan, N. (2015). Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal. International Journal of Biological Macromolecules, 72, 862–867. doi:10.1016/j.ijbiomac.2014.09.024
  • Gotoh, T., Matsushima, K., & Kikuchi, K.-I. (2004a). Adsorption of Cu and Mn on covalently cross-linked alginate gel beads. Chemosphere, 55(1), 57–64.
  • Gotoh, T., Matsushima, K., & Kikuchi, K.-I. (2004b). Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere, 55(1), 135–140.
  • Gupta, V. K., & Ali, I. (2012). Environmental water: Advances in treatment, remediation and recycling: Newnes.
  • Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L. & Suhas. (2009). Low-cost adsorbents: Growing approach to wastewater treatment: A review. Critical Reviews in Environmental Science and Technology, 39, 783–842.
  • Gupta, V. K., Nayak, A., Agarwal, S., & Tyagi, I. (2014). Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions. Journal of Colloid and Interface Science, 417, 420–430.
  • Gupta, V. K., & Saleh, T. A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview. Environmental Science and Pollution Research, 20, 2828–2843.
  • Gupta, V. K., Kumar, R., Nayak, A., Saleh, T. A., & Barakat, M. A. (2013). Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Advances in Colloid and Interface Science, 193-194, 24–34. doi:10.1016/j.cis.2013.03.003
  • Gupta, V. K. & Suhas. (2009). Application of low-cost adsorbents for dye removal: A review. Journal of Environmental Management, 90, 2313–2342.
  • Hassan, A., Abdel-Mohsen, A., & Elhadidy, H. (2014). Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. International Journal of Biological Macromolecules, 68, 125–130. doi:10.1016/j.ijbiomac.2014.04.006
  • Hassan, A., Abdel-Mohsen, A., & Fouda, M. M. (2014). Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydrate Polymers, 102, 192–198. doi:10.1016/j.carbpol.2013.10.104
  • Hassani, A., Soltani, R. D. C., Karaca, S., & Khataee, A. (2015). Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: Isotherm, kinetic and experimental design approaches. Journal of Industrial and Engineering Chemistry, 21, 1197–1207. doi:10.1016/j.jiec.2014.05.034
  • He, J., Dai, J., Xie, A., Tian, S., Chang, Z., Yan, Y., & Huo, P. (2016). Preparation of macroscopic spherical porous carbons@ carboxymethylcellulose sodium gel beads and application for removal of tetracycline. RSC Advances, 6(87), 84536–84546. doi:10.1039/C6RA14877H
  • Hong, H.-J., Jeong, H. S., Kim, B.-G., Hong, J., Park, I.-S., Ryu, T., … Ryu, J. (2016). Highly stable and magnetically separable alginate/Fe3O4 composite for the removal of strontium (Sr) from seawater. Chemosphere, 165, 231–238. doi:10.1016/j.chemosphere.2016.09.034
  • Hong, H.-J., Kim, B.-G., Hong, J., Ryu, J., Ryu, T., Chung, K.-S., … Park, I.-S. (2017). Enhanced Sr adsorption performance of mno2-alginate beads in seawater and evaluation of its mechanism. Chemical Engineering Journal, 319, 163–169. doi:10.1016/j.cej.2017.02.132
  • Idris, A., Ismail, N. S. M., Hassan, N., Misran, E., & Ngomsik, A.-F. (2012). Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. Journal of Industrial and Engineering Chemistry, 18(5), 1582–1589. doi:10.1016/j.jiec.2012.02.018
  • Inal, M., & Erduran, N. (2015). Removal of various anionic dyes using sodium alginate/poly(N-vinyl-2-pyrrolidone) blend hydrogel beads. Polymer Bulletin, 72, 1735–1752. doi:10.1007/s00289-015-1367-7
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50–56. doi:10.1016/j.biortech.2012.01.072
  • Inyang, M., Gao, B., Zimmerman, A., Zhang, M., & Chen, H. (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal, 236, 39–46. doi:10.1016/j.cej.2013.09.074
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., … Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. doi:10.1080/10643389.2015.1096880
  • Jeon, C., & Cha, J.-H. (2015). Removal of nickel ions from industrial wastewater using immobilized sericite beads. Journal of Industrial and Engineering Chemistry, 24, 107–112. doi:10.1016/j.jiec.2014.09.016
  • Jeon, Y. S., Lei, J., & Kim, J.-H. (2008). Dye adsorption characteristics of alginate/polyaspartate hydrogels. Journal of Industrial and Engineering Chemistry, 14(6), 726–731. doi:10.1016/j.jiec.2008.07.007
  • Jiao, C., Xiong, J., Tao, J., Xu, S., Zhang, D., Lin, H., & Chen, Y. (2016). Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. International Journal of Biological Macromolecules, 83, 133–141. doi:10.1016/j.ijbiomac.2015.11.061
  • Jiao, L., Qi, P., Liu, Y., Wang, B., & Shan, L. (2015). Fe3o4 nanoparticles embedded sodium alginate/PVP/calcium gel composite for removal of Cd2+. Journal of Nanomaterials, 16, 257. doi:10.1155/2015/940985
  • Jung, K.-W., Jeong, T.-U., Choi, J.-W., Ahn, K.-H., & Lee, S.-H. (2017). Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Bioresource Technology, 244, 23–32. doi:10.1016/j.biortech.2017.07.133
  • Jung, W., Jeon, B.-H., Cho, D.-W., Roh, H.-S., Cho, Y., Kim, S.-J., & Lee, D. S. (2015). Sorptive removal of heavy metals with nano-sized carbon immobilized alginate beads. Journal of Industrial and Engineering Chemistry, 26, 364–369. doi:10.1016/j.jiec.2014.12.010
  • Junter, G.-A., Jouenne, T. (2004). Immobilized viable microbial cells: From the process to the proteome em leader or the cart before the horse. Biotechnology Advances, 22(8), 633–658.
  • Kaçar, Y., Arpa, Ç., Tan, S., Denizli, A., Genç, Ö., & Arıca, M. Y. (2002). Biosorption of Hg(II) and Cd(II) from aqueous solutions: Comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochemistry, 37(6), 601–610. doi:10.1016/S0032-9592(01)00248-5
  • Karkeh-Abadi, F., Saber-Samandari, S., & Saber-Samandari, S. (2016). The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions. Journal of Hazardous Materials, 312, 224–233. doi:10.1016/j.jhazmat.2016.03.074
  • Karthik, R., & Meenakshi, S. (2015). Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. International Journal of Biological Macromolecules, 72, 711–717. doi:10.1016/j.ijbiomac.2014.09.023
  • Khotimchenko, M., Kovalev, V., Khozhaenko, E., & Khotimchenko, R. (2015). Removal of yttrium (iii) ions from water solutions by alginate compounds. International Journal of Environmental Science and Technology, 12(10), 3107–3116. doi:10.1007/s13762-014-0737-2
  • Kim, H., Hong, H.-J., Jung, J., Kim, S.-H., & Yang, J.-W. (2010). Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (NZVI) immobilized in alginate bead. Journal of Hazardous Materials, 176(1-3), 1038–1043.
  • Kim, T. Y., Jin, H. J., Park, S. S., Kim, S. J., & Cho, S. Y. (2008). Adsorption equilibrium of copper ion and phenol by powdered activated carbon, alginate bead and alginate-activated carbon bead. Journal of Industrial and Engineering Chemistry, 14(6), 714–719. doi:10.1016/j.jiec.2008.07.004
  • Konwar, A., Gogoi, A., & Chowdhury, D. (2015). Magnetic alginate-Fe3O4 hydrogel fiber capable of ciprofloxacin hydrochloride adsorption/separation in aqueous solution. RSC Advances, 5(99), 81573–81582. doi:10.1039/C5RA16404D
  • Kümmerer, K. (2009). Antibiotics in the aquatic environment: A review. Part I. Chemosphere, 75(4), 417–434. doi:10.1016/j.chemosphere.2008.11.086
  • Lai, Y.-L., Thirumavalavan, M., & Lee, J.-F. (2010). Effective adsorption of heavy metal ions (Cu2+, Pb2+, Zn2+) from aqueous solution by immobilization of adsorbents on Ca-alginate beads. Toxicological and Environ Chemistry, 92(4), 697–705. doi:10.1080/02772240903057382
  • Lazaridis, N. K., & Charalambous, C. (2005). Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate–goethite beads. Water Research, 39(18), 4385–4396. doi:10.1016/j.watres.2005.09.013
  • Lee, K. Y., Rowley, J. A., Eiselt, P., Moy, E. M., Bouhadir, K. H., & Mooney, D. J. (2000). Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules, 33(11), 4291–4294. doi:10.1021/ma9921347
  • Li, Y., Du, Q., Liu, T., Sun, J., Wang, Y., Wu, S., … Xia, L. (2013). Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydrate Polymers, 95(1), 501–507. doi:10.1016/j.carbpol.2013.01.094
  • Li, Y., Liu, F., Xia, B., Du, Q., Zhang, P., Wang, D., … Xia, Y. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. Journal of Hazardous Materials, 177(1–3), 876–880. doi:10.1016/j.jhazmat.2009.12.114
  • Li, Y., Sui, K., Liu, R., Zhao, X., Zhang, Y., Liang, H., & Xia, Y. (2012). Removal of methyl orange from aqueous solution by calcium alginate/multi-walled carbon nanotubes composite fibers. Energy Procedia, 16, 863–868. doi:10.1016/j.egypro.2012.01.138
  • Li, Z. M., Yao, Y., Wei, G. T., Jiang, W. Y., Wang, Y. Z., & Zhang, L. Y. (2016). Adsorption and heat-energy-aid desorption of cationic dye on a new thermo-sensitive adsorbent: Methyl cellulose/calcium alginate beads. Polymer Engineering & Science, 56(12), 1382–1389. doi:10.1002/pen.24373
  • Lim, A. P., & Aris, A. Z. (2014). A review on economically adsorbents on heavy metals removal in water and wastewater. Reviews in Environmental Science and Bio/Technology, 13(2), 163–181. doi:10.1007/s11157-013-9330-2
  • Lim, S. F., & Chen, J. P. (2007). Synthesis of an innovative calcium-alginate magnetic sorbent for removal of multiple contaminants. Applied Surface Science, 253(13), 5772–5775. doi:10.1016/j.apsusc.2006.12.049
  • Lin, S., Huang, R., Cheng, Y., Liu, J., Lau, B. L. T., & Wiesner, M. R. (2013). Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Research, 47(12), 3959–3965. doi:10.1016/j.watres.2012.09.005
  • Liu, H., Guo, L., Liao, S., & Wang, G. (2012). Reutilization of immobilized fungus Rhizopus sp. Lg04 to reduce toxic chromate. Journal of Applied Microbiology, 112(4), 651–659. doi:10.1111/j.1365-2672.2012.05257.x
  • Liu, L., Wan, Y., Xie, Y., Zhai, R., Zhang, B., & Liu, J. (2012). The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chemical Engineering Journal, 187, 210–216. doi:10.1016/j.cej.2012.01.136
  • Liu, T. Z., Gao, B., Fang, J. N., Wang, B., & Cao, X. D. (2016). Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal. RSC Advances, 6(29), 24314–24319. doi:10.1039/C6RA01895E
  • Lv, X., Jiang, G., Xue, X., Wu, D., Sheng, T., Sun, C., & Xu, X. (2013). Fe0-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium(VI) removal. Journal of Hazardous Materials, 262, 748–758. doi:10.1016/j.jhazmat.2013.09.036
  • Lv, X., Zhang, Y., Fu, W., Cao, J., Zhang, J., Ma, H., & Jiang, G. (2017). Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal. Journal of Colloid and Interface Science, 506, 633–643. doi:10.1016/j.jcis.2017.07.024
  • Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63.
  • Lyu, H. H., Gao, B., He, F., Ding, C., Tang, J. C., & Crittenden, J. C. (2017). Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry & Engineering, 5, 9568–9585. doi:10.1021/acssuschemeng.7b02170
  • Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Tang, J., & Crittenden, J. C. (2018). Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chemical Engineering Journal, 335, 110–119. doi:10.1016/j.cej.2017.10.130
  • Mahmoodi, N. M. (2013). Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterization and binary system dye removal. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 322–330. doi:10.1016/j.jtice.2012.11.014
  • Mahmoodi, N. M., Hayati, B., Arami, M., & Bahrami, H. (2011). Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/titania nanoparticle). Desalination, 275(1-3), 93–101. doi:10.1016/j.desal.2011.02.034
  • Maitra, J., & Shukla, V. K. (2014). Cross-linking in hydrogels: A review. American Journal of Polymer Science, 4, 25–31.
  • Mane, S., Ponrathnam, S., & Chavan, N. (2015). Effect of chemical cross-linking on properties of polymer microbeads: A review. Can. Chem. Trans, 3, 473–485.
  • Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C.-H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350–359. doi:10.1016/j.biortech.2015.10.047
  • Martins, S. C. S., Martins, C. M., Fiúza, L. M. C. G., & Santaella, S. T. (2013). Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12(28), 4412–4418.
  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. doi:10.1016/j.watres.2012.11.027
  • Min, J. H., & Hering, J. G. (1998). Arsenate sorption by Fe(III)-doped alginate gels. Water Research, 32(5), 1544–1552. doi:10.1016/S0043-1354(97)00349-7
  • Mohammadi, A., Daemi, H., & Barikani, M. (2014). Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. International Journal of Biological Macromolecules, 69, 447–455. doi:10.1016/j.ijbiomac.2014.05.042
  • Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E., & Agarwal, S. (2011). Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. Journal of Colloid and Interface Science, 362, 457–462.
  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent: A critical review. Bioresource Technology, 160, 191–202. doi:10.1016/j.biortech.2014.01.120
  • Munagapati, V. S., & Kim, D. S. (2017). Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Ecotoxicology and Environmental Safety, 141, 226–234. doi:10.1016/j.ecoenv.2017.03.036
  • Ngah, W. S. W., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chemical Engineering Journal, 143(1-3), 62–72. doi:10.1016/j.cej.2007.12.006
  • Ngomsik, A.-F., Bee, A., Siaugue, J.-M., Cabuil, V., & Cote, G. (2006). Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Research, 40(9), 1848–1856. doi:10.1016/j.watres.2006.02.036
  • Njimou, J. R., Măicăneanu, A., Indolean, C., Nanseu-Njiki, C. P., & Ngameni, E. (2016). Removal of Cd(II) from synthetic wastewater by alginate-ayous wood sawdust (Triplochiton scleroxylon) composite material. Environmental Technology, 37(11), 1369–1381. doi:10.1080/09593330.2015.1116609
  • Olad, A., & Farshi Azhar, F. (2014). A study on the adsorption of chromium (VI) from aqueous solutions on the alginate-montmorillonite/polyaniline nanocomposite. Desalination and Water Treatment, 52(13–15), 2548–2559. doi:10.1080/19443994.2013.794711
  • Pandi, K., & Viswanathan, N. (2015). Synthesis of alginate beads filled with nanohydroxyapatite: An efficient approach for fluoride sorption. Journal of Applied Polymer Science, 132(19), 41937.
  • Papageorgiou, S. K., Katsaros, F., Kouvelos, E., & Kanellopoulos, N. (2009). Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. Journal of Hazardous Materials, 162(2-3), 1347–1354. doi:10.1016/j.jhazmat.2008.06.022
  • Papageorgiou, S. K., Katsaros, F. K., Kouvelos, E. P., Nolan, J. W., Le Deit, H., & Kanellopoulos, N. K. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 137(3), 1765–1772. doi:10.1016/j.jhazmat.2006.05.017
  • Paques, J. P., Van Der Linden, E., Van Rijn, C. J. M., & Sagis, L. M. C. (2014). Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science, 209, 163–171. doi:10.1016/j.cis.2014.03.009
  • Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., & Ramakrishna, S. V. (1999). Biosorption of chromium vi by free and immobilized Rhizopus arrhizus. Environmental Pollution, 104(3), 421–427. doi:10.1016/S0269-7491(98)00174-2
  • Qi, Y., Jiang, M., Cui, Y.-L., Zhao, L., & Zhou, X. (2015). Synthesis of quercetin loaded nanoparticles based on alginate for Pb(II) adsorption in aqueous solution. Nanoscale Research Letters, 10, 408.
  • Qiusheng, Z., Xiaoyan, L., Jin, Q., Jing, W., & Xuegang, L. (2015). Porous zirconium alginate beads adsorbent for fluoride adsorption from aqueous solutions. RSC Advances, 5(3), 2100–2112. doi:10.1039/C4RA12036A
  • Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931–3946.
  • Rangsayatorn, N., Pokethitiyook, P., Upatham, E. S., & Lanza, G. R. (2004). Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environment International, 30(1), 57–63. doi:10.1016/S0160-4120(03)00146-6
  • Ren, H., Gao, Z., Wu, D., Jiang, J., Sun, Y., & Luo, C. (2016). Efficient Pb(II) removal using sodium alginate–carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate Polymers, 137, 402–409. doi:10.1016/j.carbpol.2015.11.002
  • Rezaei, H., Haghshenasfard, M., & Moheb, A. (2017). Optimization of dye adsorption using fe3o4 nanoparticles encapsulated with alginate beads by Taguchi method. Adsorption Science & Technology, 35, 55–71. doi:10.1177/0263617416667508
  • Rhee, S.-K., Lee, G., & Lee, S.-T. (1996). Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Applied Microbiology and Biotechnology, 44, 816–822. doi:10.1007/BF00178624
  • Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S., et al. (2016). Removal of hazardous dyes-br 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chemical Engineering Journal, 284, 687–697.
  • Robinson, T., Mcmullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255. doi:10.1016/S0960-8524(00)00080-8
  • Rocher, V., Bee, A., Siaugue, J.-M., & Cabuil, V. (2010). Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. Journal of Hazardous Materials, 178(1-3), 434–439. doi:10.1016/j.jhazmat.2010.01.100
  • Rocher, V., Siaugue, J.-M., Cabuil, V., & Bee, A. (2008). Removal of organic dyes by magnetic alginate beads. Water Research, 42(4-5), 1290–1298.
  • Roh, H., Yu, M.-R., Yakkala, K., Koduru, J. R., Yang, J.-K., & Chang, Y.-Y. (2015). Removal studies of Cd (II) and explosive compounds using buffalo weed biochar-alginate beads. Journal of Industrial and Engineering Chemistry, 26, 226–233. doi:10.1016/j.jiec.2014.11.034
  • Rosales, E., Iglesias, O., Pazos, M., & Sanromán, M. A. (2012). Decolourisation of dyes under electro-fenton process using Fe alginate gel beads. Journal of Hazardous Materials, 213, 369–377. doi:10.1016/j.jhazmat.2012.02.005
  • Russo, R., Malinconico, M., & Santagata, G. (2007). Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules, 8(10), 3193–3197.
  • Salisu, A., Sanagi, M. M., Abu Naim, A., Wan Ibrahim, W. A., & Abd Karim, K. J. (2016). Removal of lead ions from aqueous solutions using sodium alginate-graft-poly (methyl methacrylate) beads. Desalination and Water Treatment, 57(33), 15353–15361. doi:10.1080/19443994.2015.1071685
  • Salisu, A., Sanagi, M. M., Abu Naim, A., Abd Karim, K. J., Wan Ibrahim, W. A., & Abdulganiyu, U. (2016). Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polymer Bulletin, 73(2), 519–537. doi:10.1007/s00289-015-1504-3
  • Samuel, J., Pulimi, M., Paul, M. L., Maurya, A., Chandrasekaran, N., & Mukherjee, A. (2013). Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Bioresource Technology, 128, 423–430. doi:10.1016/j.biortech.2012.10.116
  • Shen, J., Hu, Y., Shi, M., Li, N., Ma, H., & Ye, M. (2010). One step synthesis of graphene oxide − magnetic nanoparticle composite. The Journal of Physical Chemistry C, 114(3), 1498–1503. doi:10.1021/jp909756r
  • Siwek, H., Bartkowiak, A., Włodarczyk, M., & Sobecka, K. (2016). Removal of phosphate from aqueous solution using alginate/iron (III) chloride capsules: A laboratory study. Water, Air, & Soil Pollution, 227, 427.
  • Soltani, R. D. C., Khorramabadi, G. S., Khataee, A. R., & Jorfi, S. (2014). Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 973–980. doi:10.1016/j.jtice.2013.09.014
  • Sui, K., Li, Y., Liu, R., Zhang, Y., Zhao, X., Liang, H., & Xia, Y. (2012). Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydrate Polymers, 90(1), 399–406. doi:10.1016/j.carbpol.2012.05.057
  • Sujana, M. G., Mishra, A., & Acharya, B. C. (2013). Hydrous ferric oxide doped alginate beads for fluoride removal: Adsorption kinetics and equilibrium studies. Applied Surface Science, 270, 767–776. doi:10.1016/j.apsusc.2013.01.157
  • Tesh, S. J., & Scott, T. B. (2014). Nano-composites for water remediation: A review. Advanced Materials (Deerfield Beach, Fla.), 26(35), 6056–6068.
  • Thakur, S., Pandey, S., & Arotiba, O. A. (2016). Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydrate Polymers, 153, 34–46. doi:10.1016/j.carbpol.2016.06.104
  • Theron, J., Walker, J., & Cloete, T. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34(1), 43–69. doi:10.1080/10408410701710442
  • Tian, Y., Gao, B., Morales, V. L., Wu, L., Wang, Y., Muñoz-Carpena, R., … Yang, L. (2012). Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chemical Engineering Journal, 210, 557–563. doi:10.1016/j.cej.2012.09.015
  • Uyar, G., Kaygusuz, H., & Erim, F. B. (2016). Methylene blue removal by alginate–clay quasi-cryogel beads. Reactive and Functional Polymers, 106, 1–7. doi:10.1016/j.reactfunctpolym.2016.07.001
  • Vijaya, Y., Popuri, S. R., Boddu, V. M., & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72(2), 261–271. doi:10.1016/j.carbpol.2007.08.010
  • Vijayalakshmi, K., Gomathi, T., Latha, S., Hajeeth, T., & Sudha, P. (2016). Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. International Journal of Biological Macromolecules, 82, 440–452. doi:10.1016/j.ijbiomac.2015.09.070
  • Vu, H. C., Dwivedi, A. D., Le, T. T., Seo, S.-H., Kim, E.-J., & Chang, Y.-S. (2017). Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chemical Engineering Journal, 307, 220–229. doi:10.1016/j.cej.2016.08.058
  • Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446–1456. doi:10.1016/j.carbpol.2010.11.004
  • Wan, S., Wu, J., Zhou, S., Wang, R., Gao, B., & He, F. (2018). Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism. Science of the Total Environment, 616, 1298–1306. doi:10.1016/j.scitotenv.2017.10.188
  • Wan, S. L., He, F., Wu, J. Y., Wan, W. B., Gu, Y. W., & Gao, B. (2016). Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. Journal of Hazardous Materials, 314, 32–40. doi:10.1016/j.jhazmat.2016.04.014
  • Wan, S., Wu, J., He, F., Zhou, S., Wang, R., Gao, B., & Chen, J. (2017). Phosphate removal by lead-exhausted bioadsorbents simultaneously achieving lead stabilization. Chemosphere, 168, 748–755. doi:10.1016/j.chemosphere.2016.10.142
  • Wang, B., Gao, B., & Fang, J. (2017). Recent advances in engineered biochar productions and applications. Critical Reviews in Environmental Science and Technology, 47(22), 2158–2207. doi:10.1080/10643389.2017.1418580
  • Wang, B., Gao, B., & Wan, Y. (2018a). Comparative study of calcium alginate, ball-milled biochar, and their composites on methylene blue adsorption from aqueous solution. Environmental Science and Pollution Research. doi:10.1007/s11356-018-1497-1
  • Wang, B., Gao, B., & Wan, Y. S. (2018b). Entrapment of ball-milled biochar in ca-alginate beads for the removal of aqueous Cd(II). Journal of Industrial and Engineering Chemistry, 61, 161–168. doi:10.1016/j.jiec.2017.12.013
  • Wang, B., Gao, B., Zimmerman, A., & Lee, X. (2018). Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue. Chemical Engineering Research and Design, 133, 235–242. doi:10.1016/j.cherd.2018.03.026
  • Wang, B., Gao, B., Zimmerman, A. R., Zheng, Y., & Lyu, H. (2018). Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties. Journal of Environmental Management, 209, 105–111. doi:10.1016/j.jenvman.2017.12.041
  • Wang, F., Lu, X., & Li, X.-Y. (2016). Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. Journal of Hazardous Materials, 308, 75–83. doi:10.1016/j.jhazmat.2016.01.021
  • Wang, J.-P., Yang, H.-C., & Hsieh, C.-T. (2010). Adsorption of phenol and basic dye on carbon nanotubes/carbon fabric composites from aqueous solution. Separation Science and Technology, 46(2), 340–348. doi:10.1080/01496395.2010.508066
  • Wang, Q., Wang, B., Lee, X., Lehmann, J., & Gao, B. (2018). Sorption and desorption of pb(ii) to biochar as affected by oxidation and ph. Science of the Total Environment, 634, 188–194.
  • Wang, Y.-Y., Yao, W.-B., Wang, Q.-W., Yang, Z.-H., Liang, L.-F., & Chai, L.-Y. (2016). Synthesis of phosphate-embedded calcium alginate beads for Pb(II) and Cd(II) sorption and immobilization in aqueous solutions. Transactions of Nonferrous Metals Society of China, 26(8), 2230–2237. doi:10.1016/S1003-6326(16)64340-6
  • Wang, Y., Wang, W., & Wang, A. (2013). Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chemical Engineering Journal, 228, 132–139. doi:10.1016/j.cej.2013.04.090
  • Wang, Y., Zhang, X., Wang, Q., Zhang, B., & Liu, J. (2014). Continuous fixed bed adsorption of Cu (II) by halloysite nanotube-alginate hybrid beads: An experimental and modelling study. Water Science and Technology, 70(2), 192–199. doi:10.2166/wst.2014.148
  • Wu, D., Zhao, J., Zhang, L., Wu, Q., & Yang, Y. (2010). Lanthanum adsorption using iron oxide loaded calcium alginate beads. Hydrometallurgy, 101(1-2), 76–83. doi:10.1016/j.hydromet.2009.12.002
  • Wu, S., Zhao, X., Li, Y., Zhao, C., Du, Q., Sun, J., … Xia, L. (2013). Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chemical Engineering Journal, 230, 389–395. doi:10.1016/j.cej.2013.06.072
  • Xiangliang, P., Jianlong, W., & Daoyong, Z. (2005). Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry, 40(8), 2799–2803. doi:10.1016/j.procbio.2004.12.007
  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., & Zimmerman, A. R. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 200, 673–680. doi:10.1016/j.cej.2012.06.116
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184.
  • Yakup Arıca, M., Arpa, Ç., Ergene, A., Bayramoğlu, G., & Genç, Ö. (2003). Ca-alginate as a support for Pb(II) and Zn(II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers, 52(2), 167–174. doi:10.1016/S0144-8617(02)00307-7
  • Yang, J.-S., Xie, Y.-J., & He, W. (2011). Research progress on chemical modification of alginate: A review. Carbohydrate Polymers, 84(1), 33–39. doi:10.1016/j.carbpol.2010.11.048
  • Ye, X., Wu, Z., Li, W., Liu, H., Li, Q., Qing, B., … Ge, F. (2009). Rubidium and cesium ion adsorption by an ammonium molybdophosphate–calcium alginate composite adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 342(1-3), 76–83. doi:10.1016/j.colsurfa.2009.04.011
  • Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2, 204–226. doi:10.1002/cben.201400025
  • Zhang, M., & Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/alooh nanocomposite. Chemical Engineering Journal, 226, 286–292. doi:10.1016/j.cej.2013.04.077
  • Zhang, M., Gao, B., Cao, X. D., & Yang, L. Y. (2013). Synthesis of a multifunctional graphene-carbon nanotube aerogel and its strong adsorption of lead from aqueous solution. RSC Advances, 3(43), 21099–21105. doi:10.1039/c3ra44340j
  • Zhang, M., Gao, B., Li, Y., Zhang, X. W., & Hardin, I. R. (2013). Graphene-coated pyrogenic carbon as an anode material for lithium battery. Chemical Engineering Journal, 229, 399–403. doi:10.1016/j.cej.2013.06.025
  • Zhang, M., Gao, B., Yao, Y., Xue, Y. W., & Inyang, M. (2012). Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment, 435, 567–572. doi:10.1016/j.scitotenv.2012.07.038
  • Zhao, F., Qin, X., & Feng, S. (2016). Preparation of microgel/sodium alginate composite granular hydrogels and their Cu2+ adsorption properties. RSC Advances, 6(102), 100511–100518. doi:10.1039/C6RA21546G
  • Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. D. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology, 152, 538–542. doi:10.1016/j.biortech.2013.11.021
  • Zhou, Y. M., Gao, B., Zimmerman, A. R., & Cao, X. D. (2014). Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite. Chemosphere, 117, 801–805. doi:10.1016/j.chemosphere.2014.10.057
  • Zhou, Y. M., Gao, B., Zimmerman, A. R., Fang, J., Sun, Y. N., & Cao, X. D. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231, 512–518. doi:10.1016/j.cej.2013.07.036
  • Zhu, H., Chen, T., Liu, J., & Li, D. (2018). Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Advances, 8(5), 2616–2621. doi:10.1039/C7RA11964J
  • Zhuang, Y., Yu, F., Chen, H., Zheng, J., Ma, J., & Chen, J. (2016). Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. Journal of Materials Chemistry A, 4(28), 10885–10892.
  • Zhuang, Y., Yu, F., Chen, J., & Ma, J. (2016). Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: Comparison of single-network and double-network hydrogels. Journal of Environmental Chemical Engineering, 4(1), 147–156. doi:10.1016/j.jece.2015.11.014
  • Zhuang, Y., Yu, F., Ma, J., & Chen, J. (2017). Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. Journal of Colloid and Interface Science, 507, 250–259. doi:10.1016/j.jcis.2017.07.033
  • Zouboulis, A. I., & Katsoyiannis, I. A. (2002). Arsenic removal using iron oxide loaded alginate beads. Industrial & Engineering Chemistry Research, 41, 6149–6155. doi:10.1021/ie0203835

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.