1,893
Views
97
CrossRef citations to date
0
Altmetric
Reviews

Bioavailability of selenium in soil-plant system and a regulatory approach

, , , , , , , , , , & ORCID Icon show all
Pages 443-517 | Published online: 27 Dec 2018

Reference

  • Abdu, N., Agbenin, J. O., & Buerkert, A. (2012). Fractionation and mobility of cadmium and zinc in urban vegetable gardens of Kano, Northern Nigeria. Environmental Monitoring and Assessment, 184(4), 2057–2066. doi:10.1007/s10661-011-2099-2
  • Adams, M. L., Lombi, E., Zhao, F.-J., & McGrath, S. P. (2002). Evidence of low selenium concentrations in UK bread-making wheat grain. Journal of the Science of Food and Agriculture, 82(10), 1160–1165. doi:10.1002/jsfa.1167
  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavaibility, and risks of metals. New York: Springer.
  • Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C. W., & Ok, Y. S. (2017). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 17(3), 717–730. doi:10.1007/s11368-015-1339-4
  • Ajwa, H. A., Bañuelos, G. S., & Mayland, H. F. (1998). Selenium uptake by plants from soils amended with inorganic and organic materials. Journal of Environment Quality, 27(5), 1218–1227. doi:10.2134/jeq1998.00472425002700050029x
  • Akiho, H., Ito, S., & Matsuda, H. (2010). Effect of oxidizing agents on selenate formation in a wet FGD. Fuel, 89(9), 2490–2495. doi:10.1016/j.fuel.2010.01.039
  • Akiho, H., Yamamoto, T., Tochihara, Y., Noda, N., Noguchi, S., & Ito, S. (2012). Speciation and oxidation reaction analysis of selenium in aqueous solution using X-ray absorption spectroscopy for management of trace element in FGD liquor. Fuel, 102, 156–161. doi:10.1016/j.fuel.2012.06.076
  • Alemi, M. H., Goldhamer, D. A., Grismer, M. E., & Nielsen, D. R. (1988). Elution of selenium from contaminated evaporation pond sediments. Journal of Environment Quality, 17(4), 613–618. doi:10.2134/jeq1988.00472425001700040016x
  • Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology, 34(20), 4259–4265. doi:10.1021/es001069+
  • Alfthan, G., Eurola, M., Ekholm, P., Venalainen, E. R., Root, T., Korkalainen, K., … Aro, A. (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements in Medicine and Biology, 31, 142–147. doi:10.1016/j.jtemb.2014.04.009
  • Ali, F., Peng, Q., Wang, D., Cui, Z. W., Huang, J., Fu, D. D., & Liang, D. L. (2017). Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 24(9), 8315–8325. doi:10.1007/s11356-017-8512-9
  • Altansuvd, J., Nakamaru, Y. M., Kasajima, S., Ito, H., & Yoshida, H. (2014). Effect of long-term phosphorus fertilization on soil Se and transfer of soil Se to crops in northern Japan. Chemosphere, 107, 7–12. doi:10.1016/j.chemosphere.2014.02.056
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., … Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621–645. doi:10.1016/j.earscirev.2017.06.005
  • Arbestain, M. C. (1998). Effect of straw amendment and plant growth on selenium transfer in a laboratory soil-plant system. Canadian Journal of Soil Science, 78(1), 187–195. doi:10.4141/S96-050
  • Arbestain, M. C., & Aros, A. R. (2001). Modeling selenium transfers in straw-amended soils. Soil Science, 166(8), 539–547. doi:10.1097/00010694-200108000-00005
  • Bañuelos, G. (2000). Factors influencing field phytoremediation of selenium-laden soils. In N. Terry, G. Bañuelos (Eds.), Phytoremediation of contaminated soils and water (pp. 41–59). Boca Raton, FL: CRC Press LLC.
  • Bañuelos, G. S. (2002). Irrigation of broccoli and canola with boron- and selenium-laden effluent. Journal of Environmental Quality, 31(6), 1802–1808.
  • Bañuelos, G. S., Ajwa, H. A., Mackey, B., Wu, L., Cook, C., Akohoue, S., & Zambruzuski, S. (1997). Evaluation of different plant species used for phytoremediation of high soil selenium. Journal of Environment Quality, 26(3), 639–646. doi:10.2134/jeq1997.00472425002600030008x
  • Bañuelos, G. S., Arroyo, I., Pickering, I. J., Yang, S. I., & Freeman, J. L. (2015). Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chemistry, 166, 603–608. doi:10.1016/j.foodchem.2014.06.071
  • Bañuelos, G. S., Arroyo, I. S., Dangi, S. R., & Zambrano, M. C. (2016). Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata. Frontiers in Plant Science, 7, 1251.
  • Bañuelos, G. S., & Lin, Z. Q. (2007). Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environmental Pollution, 150(3), 306–312. doi:10.1016/j.envpol.2007.02.009
  • Bañuelos, G. S., Mead, R., Wu, L., Beuselinck, P., & Akohoue, S. (1992). Differential selenium accumulation among forage plant species from soils amended with selenium-enriched plant tissue. Journal of Soil and Water Conservation, 47, 338–342.
  • Bañuelos, G. S., & Meek, D. W. (1989). Selenium accumulation in selected vegetables. Journal of Plant Nutrition, 12, 1255–1272. doi:10.1080/01904168909364034
  • Bar-Yosef, B. (1987). Selenium desorption from Ca-Kaolinite. Communications in Soil Science and Plant Analysis, 18, 771–779.
  • Bassil, J., Naveau, A., Bueno, M., Razack, M., & Kazpard, V. (2018). Leaching behavior of selenium from the karst infillings of the hydrogeological experimental site of poitiers. Chemical Geology, 483, 141–150. doi:10.1016/j.chemgeo.2018.02.032
  • Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T., & Jolley, D. F. (2011). Speciation of dissolved inorganic arsenic by diffusive gradients in thin films: Selective binding of As-III by 3-Mercaptopropyl-functionalized silica gel. Analytical Chemistry, 83(21), 8293–8299. doi:10.1021/ac202119t
  • Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T., Zhao, H. J., & Jolley, D. F. (2012). Investigating arsenic speciation and mobilization in sediments with DGT and DET: a mesocosm evaluation of oxic-anoxic transitions. Environmental Science & Technology, 46(7), 3981–3989. doi:10.1021/es204484k
  • Bisbjerg, B. (1972). Risø report no. 200: studies on selenium in plants and soils. Copenhagen: Danish Atomic Energy Commission Research Establishment Risø.
  • Bitterli, C., Bañuelos, G. S., & Schulin, R. (2010). Use of transfer factors to characterize uptake of selenium by plants. Journal of Geochemical Exploration, 107(2), 206–216. doi:10.1016/j.gexplo.2010.09.009
  • Blazina, T., Sun, Y. B., Voegelin, A., Lenz, M., Berg, M., & Winkel, L. H. E. (2014). Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nature Communications, 5, 4717.
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., … Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166.
  • Bolan, N., Mahimairaja, S., Kunhikrishnan, A., Seshadri, B., & Thangarajan, R. (2015). Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation. Environmental Science and Pollution Research, 22(12), 8866–8875. doi:10.1007/s11356-013-1827-2
  • Boldrin, P. F., Faquin, V., Ramos, S. J., Boldrin, K. V. F., Avila, F. W., & Guilherme, L. R. G. (2013). Soil and foliar application of selenium in rice biofortification. Journal of Food Composition and Analysis, 31(2), 238–244. doi:10.1016/j.jfca.2013.06.002
  • Borowska, K., & Koper, J. (2006). The effect of manure on the selenium content in soil and potato tubers. Polish Journal of Environmental Studies, 15, 17–19.
  • Borowska, K., & Koper, J. (2011). Dynamics of changes of selenium content in soil and red clover (Trifolium pratense L.) affected by long-term organic fertilization on the background of selected soil oxidoreductases. Polish Journal of Environmental Studies, 20, 1403–1410.
  • Borowska, K., Koper, J., & Milanowski, M. (2012). Seasonal changes of selenium and selected oxidoreductases in soil under different fertilization and crop rotation. Ecological Chemistry and Engineering S, 19, 719–730.
  • Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., … Zhao, F. J. (2010). Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil, 332(1–2), 5–18. doi:10.1007/s11104-009-0234-4
  • Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., … Tucker, M. (2006). Biofortification of UK food crops with selenium. The Proceedings of the Nutrition Society, 65(2), 169–181.
  • Bruggeman, C., Maes, A., & Vancluysen, J. (2007). The interaction of dissolved Boom Clay and Gorleben humic substances with selenium oxyanions (selenite and selenate). Applied Geochemistry, 22(7), 1371–1379. doi:10.1016/j.apgeochem.2007.03.027
  • Cannière, P. D., Maes, A., Williams, S., Bruggeman, C., Beauwens, T., Maes, N., & Cowper, M. (2010). Behaviour of selenium in Boom Clay. Work performed under contract: SCK•CEN ref: CO 90 01 1467.01 1467 RP.W&D.037 – NIROND ref: CCHO2004/00/00 DS251-A44/2.1. External Report of the Belgian Nuclear Research Centre, SCK•CEN-ER-120. Available at: http://publications.sckcen.be/dspace/
  • Carter, D. L., Robbins, C. W., & Brown, M. J. (1972). Effects of phosphorus fertilization on the selenium concentration in alfalfa. Soil Science Society of America Journal, 36(4), 624–628. doi:10.2136/sssaj1972.03615995003600040035x
  • Cartes, P., Gianfreda, L., & Mora, M. L. (2005). Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant and Soil, 276(1–2), 359–367. doi:10.1007/s11104-005-5691-9
  • Cartes, P., Gianfreda, L., Paredes, C., & Mora, M. L. (2011). Selenium uptake and its antioxidant role in ryegrass cultivars as affected by selenite seed pelletization. Journal of Soil Science and Plant Nutrition, 11(4), 1–14. doi:10.4067/S0718-95162011000400001
  • Carvalho, K. M., Gallardo-Williams, M. T., Benson, R. F., & Martin, D. F. (2003). Effects of selenium supplementation on four agricultural crops. Journal of Agricultural and Food Chemistry, 51(3), 704–709. doi:10.1021/jf0258555
  • Catrouillet, C., Davranche, M., Dia, A., Coz, B. L., Demangeat, E., & Gruau, G. (2016). Does As(III) interact with Fe(II), Fe(III) and organic matter through ternary complexes? Journal of Colloid and Interface Science, 470, 153–161.
  • Chander, K., & Joergensen, R. G. (2007). Microbial biomass and activity indices after organic substrate addition to a selenium-contaminated soil. Biology and Fertility of Soils, 44(1), 241–244. doi:10.1007/s00374-007-0212-z
  • Chao, T. T., & Sanzolone, R. F. (1989). Fractionation of soil selenium by sequential partial dissolution. Soil Science Society of America Journal, 53(2), 385–392. doi:10.2136/sssaj1989.03615995005300020012x
  • Charlet, L., Scheinost, A. C., Tournassat, C., Greneche, J. M., Gehin, A., Fernandez-Martinez, A., … Brendle, J. (2007). Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochimica et Cosmochimica Acta, 71(23), 5731–5749. doi:10.1016/j.gca.2007.08.024
  • Chen, Y., Liang, D. L., Song, W. W., Lei, L. M., & Yu, D. S. (2012). Effects of nitrogen application on selenium accumulation, translocation and distribution of winter wheat at different growth periods. Journal of Plant Nutrition and Fertilization, 22, 395–402. (in Chinese).
  • Chen, Y. P., Peng, Q., Liang, D. L., Song, W. W., Lei, L. M., & Yu, D. S. (2017). Effects of nitrogen application on selenium uptake. translocation and distribution in winter wheat. Environmental Science, 38, 825–831. (in Chinese).
  • Chen, Y.-W., Zhou, X.-L., Tong, J., Truong, Y., & Belzile, N. (2005). Photochemical behavior of inorganic and organic selenium compounds in various aqueous solutions. Analytica Chimica Acta, 545(2), 149–157. doi:10.1016/j.aca.2005.03.033
  • Cherian, S., Weyens, N., Lindberg, S., & Vangronsveld, J. (2012). Phytoremediation of trace element–contaminated environments and the potential of endophytic bacteria for improving this process. Critical Reviews in Environmental Science and Technology, 42(21), 2215–2260. doi:10.1080/10643389.2011.574106
  • Chilimba, A. D. C., Young, S. D., Black, C. R., Meacham, M. C., Lammel, J., & Broadley, M. R. (2012). Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Research, 125, 118–128. doi:10.1016/j.fcr.2011.08.014
  • Chilimba, A. D. C., Young, S. D., & Joy, E. J. M. (2014). Agronomic biofortification of maize, soybean and groundnut with selenium in intercropping and sole cropping systems. African Journal of Agricultural Research, 9, 3620–3626.
  • Christophersen, O. A., Lyons, G., Haug, A., & Steinnes, E. (2013). Selenium. In B. J. Alloway, (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (pp. 429–463). Dordrecht: Springer.
  • Collins, R. N., Tran, N. D., Bakkaus, E., Avoscan, L., & Gouget, B. (2006). Assessment of isotope exchange methodology to determine the sorption coefficient and isotopically exchangeable concentration of selenium in soils and sediments. Environmental Science & Technology, 40(24), 7778–7783. doi:10.1021/es061528s
  • Coppin, F., Chabroullet, C., Martin-Garin, A., Balesdent, J., & Gaudet, J. P. (2006). Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium. Biology and Fertility of Soils, 42(5), 379–386. doi:10.1007/s00374-006-0080-y
  • Cui, Z. W., Huang, J., Peng, Q., Yu, D. S., Wang, S. S., & Liang, D. L. (2017). Risk assessment for human health in a seleniferous area, Shuang'an, China. Environmental Science and Pollution Research International, 24(21), 17701–17710.
  • Curtin, D., Hanson, R., Lindley, T. N., & Butler, R. C. (2006). Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate, and timing of sodium selenate application. New Zealand Journal of Crop and Horticultural Science 34(4), 329–339. doi:10.1080/01140671.2006.9514423
  • Curtin, D., Hanson, R., & Van der Weerden, T. J. (2008). Effect of selenium fertiliser formulation and rate of application on selenium concentrations in irrigated and dryland wheat (Triticum aestivum). New Zealand Journal of Crop and Horticultural Science, 36(1), 1–7. doi:10.1080/01140670809510216
  • Dadnia, M. R., Lack, S., & Kayshams, B. (2010). Osmotic adjustment in wheat in relation to foliar application of selenium timing under water deficit stress. Research Crop, 11, 640–643.
  • Dai, Y. C., Nasir, M., Zhang, Y. L., Gao, J. K., Lv, Y. M., & Lv, J. L. (2018). Comparison of DGT with traditional extraction methods for assessing arsenic bioavailability to Brassica chinensis in different soils. Chemosphere, 191, 183–189. doi:10.1016/j.chemosphere.2017.10.035
  • De Temmerman, L., Waegeneers, N., Thiry, C., Du Laing, G., Tack, F., & Ruttens, A. (2014). Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Science of the Total Environment, 468, 77–82. doi:10.1016/j.scitotenv.2013.08.016
  • DeFries, R., Fanzo, J., Remans, R., Palm, C., Wood, S., & Anderman, T. L. (2015). Global nutrition. Metrics for land-scarce agriculture. Science (New York, N.Y.), 349(6245), 238–240.
  • Deng, X. F., Liu, K. Z., Li, M. F., Zhang, W., Zhao, X. H., Zhao, Z. Q., & Liu, X. W. (2017). Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crop Research, 211, 165–171. doi:10.1016/j.fcr.2017.06.008
  • Devillers, D., Buzier, R., Simon, S., Charriau, A., & Guibaud, G. (2016). Simultaneous measurement of Cr(III) and Cr(VI) in freshwaters with a single diffusive gradients in thin films device. Talanta, 154, 533–538. doi:10.1016/j.talanta.2016.04.009
  • Dhillon, K. S., & Bañuelos, G. S. (2017). Overview and prospects of selenium phytoremediation approaches. In E. A. H. Pilon-Smits, L. H. E. Winkel, Z. Q. Lin (Eds.), Selenium in plants (pp. 277–321). Switzerland: Springer International Publishing.
  • Dhillon, K. S., & Dhillon, S. K. (1999). Adsorption-desorption reactions of selenium in some soils of India. Geoderma, 93(1–2), 19–31. doi:10.1016/S0016-7061(99)00040-3
  • Dhillon, K. S., Dhillon, S. K., & Dogra, R. (2010). Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere, 78(5), 548–556. doi:10.1016/j.chemosphere.2009.11.015
  • Dhillon, K. S., Rani, N., & Dhillon, S. K. (2005). Evaluation of different extractants for the estimation of bioavailable selenium in seleniferous soils of Northwest India. Soil Research, 43(5), 639–645. doi:10.1071/SR04166
  • Dhillon, S. K., & Dhillon, K. S. (2000). Selenium adsorption in soils as influenced by different anions. Journal of Plant Nutrition and Soil Science, 163(6), 577–582. doi:10.1002/1522-2624(200012)163:6<577::AID-JPLN577>3.0.CO;2-H
  • Dhillon, S. K., & Dhillon, K. S. (2009). Phytoremediation of selenium-contaminated soils: the efficiency of different cropping systems. Soil Use and Management, 25(4), 441–453. doi:10.1111/j.1475-2743.2009.00217.x
  • Dhillon, S. K., Hundal, B. K., & Dhillon, K. S. (2007). Bioavailability of selenium to forage crops in a sandy loam soil amended with Se-rich plant materials. Chemosphere, 66(9), 1734–1743.
  • Di Tullo, P., Versini, A., Bueno, M., Le Hecho, I., Thiry, Y., Biron, P., … Pannier, F. (2015). Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.). Analytical and Bioanalytical Chemistry, 407(30), 9029–9042. doi:10.1007/s00216-015-9069-4
  • Dinh, Q. T., Cui, Z., Huang, J., Tran, T., Wang, D., Yang, W., … Liang, D. (2018). Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International, 112, 294–309. doi:10.1016/j.envint.2017.12.035
  • Dinh, Q. T., Li, Z., Tran, T. A. T., Wang, D., & Liang, D. (2017). Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere, 184, 618–635.
  • dos Reis, A. R., El-Ramady, H., Santos, E. F., Gratão, P. L., & Schomburg, L. (2017). Overview of selenium defciency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In E. A. H. Pilon-Smits, L. H. E. Winkel, Z. Q. Lin, (Eds.), Selenium in plants (pp. 209–230). Switzerland: Springer International Publishing.
  • Dousova, B., Buzek, F., Herzogova, L., Machovic, V., & Lhotka, M. (2015). Effect of organic matter on arsenic(V) and antimony(V) adsorption in soils. European Journal of Soil Science, 66(1), 74–82. doi:10.1111/ejss.12206
  • Drahonovsky, J., Szakova, J., Mestek, O., Tremlova, J., Kana, A., Najmanova, J., & Tlustos, P. (2016). Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environmental and Experimental Botany, 125, 12–19. doi:10.1016/j.envexpbot.2016.01.006
  • Duan, M. L., Fu, D. D., Wang, S. S., Liang, D. L., Xue, R. L., & Wu, X. P. (2011a). Effects of different selenite concentrations on plant growth, absorption and transportation of selenium in four different vegetables. Acta Science Circumstances, 31, 658–665. (in Chinese).
  • Duan, M. L., Hu, B., Liang, D. L., Zhao, W. L., Fu, D. D., & Bi, W. Y. (2011b). Absorption, bioaccumulation and translocation of selenium in four different vegetables by applying selenate. Journal of Agro-Environment Science, 30, 422–428. (in Chinese).
  • Duc, M., Lefevre, G., Fedoroff, M., Jeanjean, J., Rouchaud, J. C., Monteil-Rivera, F., … Milonjic, S. (2003). Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. Journal of Environmental Radioactivity, 70(1–2), 61–72. doi:10.1016/S0265-931X(03)00125-5
  • Ducsay, L., Lozek, O., Marcek, M., Varenyiova, M., Hozlar, P., & Losak, T. (2016). Possibility of selenium biofortification of winter wheat grain. Plant, Soil and Environment, 62(8), 379–383. doi:10.17221/324/2016-PSE
  • Ducsay, L., Lozek, O., Varga, L., & Losak, T. (2006). Effects of winter wheat supplementation with selenium. Chemické Listy, 100, 519–521.
  • Duncan, E. G., Maher, W. A., Jagtap, R., Krikowa, F., Roper, M. M., & O’Sullivan, C. A. (2017). Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers. Environmental Geochemistry and Health, 39(4), 955–966. doi:10.1007/s10653-016-9857-6
  • Dungan, R. S., & Frankenberger, W. T. (1999). Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediation Journal, 3(3), 171–188. doi:10.1080/10889869991219299
  • Ebrahimi, N., Hartikainen, H., Simojoki, A., Hajiboland, R., & Seppanen, M. (2015). Dynamics of dry matter and selenium accumulation in oilseed rape (Brassica napus L.) in response to organic and inorganic selenium treatments. Agricultural and Food Science, 24(2), 104–117. doi:10.23986/afsci.48346
  • Eich-Greatorex, S., Krogstad, T., & Sogn, T. A. (2010). Effect of phosphorus status of the soil on selenium availability. Journal of Plant Nutrition and Soil Science, 173(3), 337–344. doi:10.1002/jpln.200900004
  • Eich-Greatorex, S., Sogn, T. A., Ogaard, A. F., & Aasen, I. (2007). Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutrient Cycling in Agroecosystems, 79(3), 221–231. doi:10.1007/s10705-007-9109-3
  • Eiche, E., Bardelli, F., Nothstein, A. K., Charlet, L., Gottlicher, J., Steininger, R., … Sadana, U. S. (2015). Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Science of the Total Environment, 505, 952–961. doi:10.1016/j.scitotenv.2014.10.080
  • Ekanayake, L. J., Thavarajah, D., Vial, E., Schatz, B., McGee, R., & Thavarajah, P. (2015). Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crop Research, 177, 9–14. doi:10.1016/j.fcr.2015.03.002
  • El-Ramady, H., Abdalla, N., Alshaal, T., Domokos-Szabolcsy, E., Elhawat, N., Prokisch, J., … Shams, M. S. (2015). Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 13(1), 1–19. doi:10.1007/s10311-014-0480-4
  • El-Ramady, H. R., Abdalla, N., Alshaal, T., Elhenawy, A. S., Shams, M. S., Faizy, S. E. D. A., … Domokos-Szabolcsy, E. (2015). Giant reed for selenium phytoremediation under changing climate. Environmental Chemistry Letters, 13(4), 359–380. doi:10.1007/s10311-015-0523-5
  • El-Ramady, H. R., Domokos-Szabolcsy, É., Shalaby, T. A., Prokisch, J., & Fári, M. (2015c). Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In E. Lichtfouse, J. Schwarzbauer, D. Robert (Eds.), CO2 sequestration, biofuels and depollution (pp. 153–232). Cham: Springer International Publishing.
  • El Kassis, E., Cathala, N., Rouached, H., Fourcroy, P., Berthomieu, P., Terry, N., & Davidian, J. C. (2007). Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiology, 143(3), 1231–1241. doi:10.1104/pp.106.091462
  • El Mehdawi, A. F., Jiang, Y., Guignardi, Z. S., Esmat, A., Pilon, M., Pilon-Smits, E. A. H., & Schiavon, M. (2018). Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. New Phytologist, 217(1), 194–205. doi:10.1111/nph.14838
  • El Mehdawi, A. F., Lindblom, S. D., Cappa, J. J., Fakra, S. C., & Pilon-Smits, E. A. (2015). Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-ray microprobe analysis. International Journal of Phytoremediation, 17(8), 753–765. doi:10.1080/15226514.2014.987374
  • El Mehdawi, A. F., & Pilon-Smits, E. A. H. (2012). Ecological aspects of plant selenium hyperaccumulation. Plant Biology, 14(1), 1–10. doi:10.1111/j.1438-8677.2011.00535.x
  • Eswayah, A. S., Smith, T. J., & Gardiner, P. H. E. (2016). Microbial transformations of selenium species of relevance to bioremediation. Applied and Environmental Microbiology, 82(16), 4848–4859.
  • Fairweather-Tait, S. J., Collings, R., & Hurst, R. (2010). Selenium bioavailability: current knowledge and future research requirements. The American Journal of Clinical Nutrition, 91(5), 1484s–1491s. doi:10.3945/ajcn.2010.28674J
  • Fakour, H., Lin, T. F., & Lo, S. L. (2016). Equilibrium modeling of arsenic adsorption in a ternary arsenic-iron oxide-natural organic matter system. CLEAN - Soil, Air, Water, 44(10), 1287–1295. doi:10.1002/clen.201500962
  • Fan, H. F., Wen, H. J., Hu, R. Z., & Zhao, H. (2011). Selenium speciation in lower Cambrian Se-enriched strata in South China and its geological implications. Geochimica et Cosmochimica Acta, 75(23), 7725–7740. doi:10.1016/j.gca.2011.09.027
  • Fan, J., Wang, R., Hu, H. Q., Huo, G., Fu, Q. L., & Zhu, J. (2015). Transformation and bioavailability of selenate and selenite added to a Nicotiana tabacum L. planting soil. Communications in Soil Science and Plant Analysis, 46(11), 1362–1375. doi:10.1080/00103624.2015.1033544
  • Favorito, J. E., Eick, M. J., Grossl, P. R., & Davis, T. Z. (2017). Selenium geochemistry in reclaimed phosphate mine soils and its relationship with plant bioavailability. Plant and Soil, 418(1-2), 541–555. doi:10.1007/s11104-017-3299-5
  • Feng, P. Y., Li, Z., Zhe, Y. Y., Huang, J., & Liang, D. L. (2016). Selenate adsorption and desorption in 18 kinds of Chinese soil with their physicochemical properties. Environmental Science, 37, 3160–3167. (in Chinese).
  • Fernández-Martínez, A., Charlet, L., & Van, H., E. (2009). Selenium environmental cycling and bioavailability: a structural chemist point of view. Reviews in Environmental Science and Bio/Technology, 8(1), 81–110. doi:10.1007/s11157-009-9145-3
  • Ferrarese, M., Sourestani, M. M., Quttrini, E., Schiavi, M., & Ferrante, A. (2012). Biofortification of spinach plants applying selenium in the nutrient solution of floating system. Vegetable Crops Research Bulletin, 76, 127–136. ISSN 1506-9427.
  • Fordyce, F. M. (2013). Selenium deficiency and toxicity in the environment. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, P. Smedley (Eds.), Essentials of medical geology (pp. 375–416). New York: Springer.
  • Freeman, J. L., Zhang, L. H., Marcus, M. A., Fakra, S., & Pilon-Smits, E. A. H. (2006). Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiology, 142(1), 124–134. doi:10.1104/pp.106.081158
  • Fu, M. M., Huang, B., Jia, M. M., Hu, W. Y., Sun, W. X., Weindorf, D. C., & Chang, Q. (2015). Effect of intensive greenhouse vegetable cultivation on selenium availability in soil. Pedosphere, 25(3), 343–350. doi:10.1016/S1002-0160(15)30002-3
  • Fujita, M., Ike, M., Hashimoto, R., Nakagawa, T., Yamaguchi, K., & Soda, S. O. (2005). Characterizing kinetics of transport and transformation of selenium in water-sediment microcosm free from selenium contamination using a simple mathematical model. Chemosphere, 58(6), 705–714. doi:10.1016/j.chemosphere.2004.09.042
  • Galeas, M. L., Zhang, L. H., Freeman, J. L., Wegner, M., & Pilon-Smits, E. A. H. (2007). Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytologist, 173(3), 517–525. doi:10.1111/j.1469-8137.2006.01943.x
  • Gao, S., Tanji, K. K., Dahlgren, R. A., Ryu, J., Herbel, M. J., & Higashi, R. M. (2007). Chemical status of selenium in evaporation basins for disposal of agricultural drainage. Chemosphere, 69(4), 585–594. doi:10.1016/j.chemosphere.2007.03.016
  • Gao, X. P., Brown, K. R., Racz, G. J., & Grant, C. A. (2010). Concentration of cadmium in durum wheat as affected by time, source and placement of nitrogen fertilization under reduced and conventional-tillage management. Plant and Soil, 337(1–2), 341–354. doi:10.1007/s11104-010-0531-y
  • Garvin, D. F., Welch, R. M., & Finley, J. W. (2006). Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. Journal of the Science of Food and Agriculture, 86(13), 2213–2220. doi:10.1002/jsfa.2601
  • Ge, X., Li, J., Wan, G., Zhang, G., & Zhong, Z. (2000). Study on characteristics of selenium geochemical speciation in soil in Zhangjiakou Keshan disease area. Rock. Min. Anal, 19, 254–258.
  • Geering, H. R., Cary, E. E., Jones, L. H. P., & Allaway, W. H. (1968). Solubility and redox criteria for the possible forms of selenium in soils. Soil Science Society of America Journal, 32(1), 35–40. doi:10.2136/sssaj1968.03615995003200010009x
  • Geoffroy, N., & Demopoulos, G. P. (2011). The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide. Journal of Hazardous Materials, 185(1), 148–154.
  • Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P., & Sainju, U. M. (2017). Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. Journal of Integrative Agriculture, 16(1), 1–15. doi:10.1016/S2095-3119(16)61337-0
  • Gissel-Nielsen, G. (1975). Selenium concentration in Danish forage crops. Acta Agriculturae Scandinavica B, 25(3), 216–220. doi:10.1080/00015127509435041
  • Goh, K. H., & Lim, T. T. (2004). Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere, 55(6), 849–859. doi:10.1016/j.chemosphere.2003.11.041
  • Goldberg, S. (2011). Chemical equilibrium and reaction modeling of arsenic and selenium in soils. In H. M. Selim (Ed.), Dynamics and bioavailability of heavy metals in the rootzone (pp. 65–92). Boca Raton, FL: CRC Press.
  • Golob, A., Gadzo, D., Stibilj, V., Djikic, M., Gavric, T., Kreft, I., & Germ, M. (2016). Sulphur interferes with selenium accumulation in Tartary buckwheat plants. Plant Physiology and Biochemistry, 108, 32–36. doi:10.1016/j.plaphy.2016.07.001
  • Gonzalez-Morales, S., Perez-Labrada, F., Garcia-Enciso, E. L., Leija-Martinez, P., Medrano-Macias, J., Davila-Rangel, I. E., … Benavides-Mendoza, A. (2017). Selenium and sulfur to produce allium functional crops. Molecules, 22, 558. doi:10.3390/molecules22040558
  • Govasmark, E., Singh, B. R., MacLeod, J. A., & Grimmett, M. G. (2008). Selenium concentration in spring wheat and leaching water as influenced by application times of selenium and nitrogen. Journal of Plant Nutrition, 31(2), 193–203. doi:10.1080/01904160701853605
  • Gruebel, K. A., Davis, J. A., & Leckie, J. O. (1995). Kinetics of oxidation of selenite to selenate in the presence of oxygen, titania, and light. Environmental Science & Technology, 29(3), 586–594.
  • Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., … Zhang, F. S. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010. doi:10.1126/science.1182570
  • Guo, L., Man, N., Liang, D. L., Xie, J. Y., & Liu, J. J. (2013). Differences of selenium uptake pattern of pakchoi and the possible mechanism when amended with selenate and selenite. Environmental Science, 34, 3272–3279. (in Chinese).
  • Gupta, M., & Gupta, S. (2016). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7, 2074.
  • Gupta, S., & Gupta, M. (2016). Alleviation of selenium toxicity in Brassica juncea L.: salicylic acid-mediated modulation in toxicity indicators, stress modulators, and sulfur-related gene transcripts. Protoplasma, 253(6), 1515–1528. doi:10.1007/s00709-015-0908-0
  • Gupta, U. C., & Gupta, S. C. (2000). Selenium in soils and crops, its deficiencies in livestock and humans: Implications for management. Communications in Soil Science and Plant Analysis, 31(11–14), 1791–1807. doi:10.1080/00103620009370538
  • Gusiatin, Z. M., & Kulikowska, D. (2014). The usability of the I-R, RAC and MRI indices of heavy metal distribution to assess the environmental quality of sewage sludge composts. Waste Management, 34(7), 1227–1236. doi:10.1016/j.wasman.2014.04.005
  • Gustafsson, J. P., & Johnsson, L. (1994). The association between selenium and humic substances in forested ecosystems—laboratory evidence. Applied Organometallic Chemistry, 8(2), 141–147. doi:10.1002/aoc.590080209
  • Hagarova, I., Zemberyova, M., & Bajcan, D. (2005). Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chemical Papers, 59, 93–98.
  • Hageman, S. P. W., van der Weijden, R. D., Weijma, J., & Buisman, C. J. N. (2013). Microbiological selenate to selenite conversion for selenium removal. Water Research, 47(7), 2118–2128. doi:10.1016/j.watres.2013.01.012
  • Ham, Y. S., & Tamiya, S. (2006). Selenium behavior in open bulk precipitation, soil solution and groundwater in alluvial fan area in Tsukui, Central Japan. Water, Air, and Soil Pollution, 177(1–4), 45–57. doi:10.1007/s11270-005-9062-1
  • Hamner, K., & Kirchmann, H. (2015). Trace element concentrations in cereal grain of long-term field trials with organic fertilizer in Sweden. Nutrient Cycling in Agroecosystems, 103, 347–358. doi:10.1007/s10705-015-9749-7
  • Han, F. X., Banin, A., Kingery, W. L., Triplett, G. B., Zhou, L. X., Zheng, S. J., & Ding, W. X. (2003). New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8(1), 113–120. doi:10.1016/S1093-0191(02)00142-9
  • Hanousek, O., Mason, S., Santner, J., Chowdhury, M. M. A., Berger, T. W., & Prohaska, T. (2016). Novel diffusive gradients in thin films technique to assess labile sulfate in soil. Analytical and Bioanalytical Chemistry, 408(24), 6759–6767. doi:10.1007/s00216-016-9801-8
  • Harada, T., & Takahashi, Y. (2008). Origin of the difference in the distribution behavior of tellurium and selenium in a soil-water system. Geochimica et Cosmochimica Acta, 72(5), 1281–1294. doi:10.1016/j.gca.2007.12.008
  • Harmsen, J. (2007). Measuring bioavailability: From a scientific approach to standard methods. Journal of Environmental Quality, 36(5), 1420–1428.
  • Harris, J., Schneberg, K. A., & Pilon-Smits, E. A. H. (2014). Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta, 239(2), 479–491. doi:10.1007/s00425-013-1996-8
  • Hart, D. J., Fairweather-Tait, S. J., Broadley, M. R., Dickinson, S. J., Foot, I., Knott, P., … Hurst, R. (2011). Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chemistry, 126(4), 1771–1778. doi:10.1016/j.foodchem.2010.12.079
  • Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (Gms), 18(4), 309–318.
  • Haudin, C. S., Renault, P., Hallaire, V., Leclerc-Cessac, E., & Staunton, S. (2007). Effect of aeration on mobility of selenium in columns of aggregated soil as influenced by straw amendment and tomato plant growth. Geoderma, 141(1–2), 98–110. doi:10.1016/j.geoderma.2007.05.005
  • Hawrylak-Nowak, B., Matraszek, R., & Pogorzelec, M. (2015). The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum, 37, 41.
  • He, F. F., Chen, Q., Jiang, R. F., Chen, X. P., & Zhang, F. S. (2007). Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China. Nutrient Cycling in Agroecosystems, 77(1), 1–14. doi:10.1007/s10705-006-6275-7
  • He, Y., Xiang, Y., Zhou, Y., Yang, Y., Zhang, J., Huang, H., … Tang, L. (2018). Selenium contamination, consequences and remediation techniques in water and soils: A review. Environmental Research, 164, 288–301. doi:10.1016/j.envres.2018.02.037
  • Hlusek, J., Juzl, M., Cepl, J., & Losak, T. (2005). The effect of selenium supplementation on its concentration in potato tubers. Chemické Listy, 99, 515–517.
  • Hopper, J. L., & Parker, D. R. (1999). Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant and Soil, 210(2), 199–207.
  • Hu, B., Liang, D. L., Liu, J. J., Lei, L. M., & Yu, D. S. (2014). Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co-contaminated soil. Ecotoxicology and Environmental Safety, 110, 41–48. doi:10.1016/j.ecoenv.2014.08.007
  • Hu, B., Wang, D., Wang, S. S., Zhou, M., & Liang, D. L. (2011). Uptake and transport of exogenous Cu and Se in pak choi and their effects on growth. Acta Science Circumstance, 31, 2033–2041. (in Chinese).
  • Huang, Q. Q., Wang, Q., Luo, Z., Yu, Y., Jiang, R. F., & Li, H. F. (2015). Effects of root iron plaque on selenite and selenate dynamics in rhizosphere and uptake by rice (Oryza sativa). Plant and Soil, 388(1–2), 255–266. doi:10.1007/s11104-014-2329-9
  • Huang, Q. Q., Wang, Q., Wan, Y. N., Yu, Y., Jiang, R. F., & Li, H. F. (2017). Application of X-ray absorption near edge spectroscopy to the study of the effect of sulphur on selenium uptake and assimilation in wheat seedlings. Biologia Plantarum, 61(4), 726–732. doi:10.1007/s10535-016-0698-z
  • Jain, R., van Hullebusch, E. D., Lenz, M., & Farges, F. (2017). Understanding selenium biogeochemistry in engineered ecosystems: Transformation and analytical methods. In E. D. van Hullebusch (Ed.), Bioremediation of selenium contaminated wastewater (pp. 33–56). Cham: Springer International Publishing.
  • Jiang, Y., Zeng, Z. H., Bu, Y., Ren, C. Z., Li, J. Z., Han, J. J., … Hu, Y. G. (2016). Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant, Soil and Environment, 61(8), 371–377. doi:10.17221/284/2015-PSE
  • Johnson, D. S., Cinnioglu, C., Ross, R., Filby, A., Gemelos, G., Hill, M., … Murray, M. J. (2010). Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. MHR: Basic Science of Reproductive Medicine, 16(12), 944–949. doi:10.1093/molehr/gaq062
  • Johnsson, L. (1991). Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant and Soil, 133(1), 57–64. doi:10.1007/BF00011899
  • Joy, E. J. M., Ander, E. L., Young, S. D., Black, C. R., Watts, M. J., Chilimba, A. D. C., … Broadley, M. R. (2014). Dietary mineral supplies in Africa. Physiologia Plantarum, 151(3), 208–229. doi:10.1111/ppl.12144
  • Joy, E. J. M., Broadley, M. R., Young, S. D., Black, C. R., Chilimba, A. D. C., Ander, E. L., … Watts, M. J. (2015). Soil type influences crop mineral composition in Malawi. The Science of the Total Environment, 505, 587–595.
  • Jones, G. D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S. P., … Winkel, L. H. E. (2017). Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 114(11), 2848–2853. doi:10.1073/pnas.1611576114
  • Jump, R., & Sabey, B. (1989). Soil test extractants for predicting selenium in plants. In E. W. Jacobs. (Ed.), Selenium in agriculture and the environment (pp. 95–106). Madison, WI: Soil Sci Soc Am, Inc Neubauer.
  • Jung, B., Safan, A., Batchelor, B., & Abdel-Wahab, A. (2016). Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide. Chemosphere, 163, 351–358. doi:10.1016/j.chemosphere.2016.08.024
  • Kąklewski, K., Nowak, J., & Ligocki, M. (2008). Effects of selenium content in green parts of plants on the amount of ATP and ascorbate–glutathione cycle enzyme activity at various growth stages of wheat and oilseed rape. Journal of Plant Physiology, 165(10), 1011–1022. doi:10.1016/j.jplph.2007.04.010
  • Kamei-Ishikawa, N., Tagami, K., & Uchida, S. (2007). Sorption kinetics of selenium on humic acid. Journal of Radioanalytical and Nuclear Chemistry, 274(3), 555–561. doi:10.1007/s10967-006-6951-8
  • Kang, Y., Yamada, H., Kyuma, K., Hattori, T., & Kigasawa, S. (1991). Selenium in soil humic acid. Soil Science and Plant Nutrition, 37(2), 241–248. doi:10.1080/00380768.1991.10415034
  • Kapolna, E., Hillestrom, P. R., Laursen, K. H., Husted, S., & Larsen, E. H. (2009). Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chemistry, 115, 1357–1363. doi:10.1016/j.foodchem.2009.01.054
  • Kashem, M. A., Singh, B. R., & Kawai, S. (2007). Mobility and distribution of cadmium, nickel and zinc in contaminated soil profiles from Bangladesh. Nutrient Cycling in Agroecosystems, 77(2), 187–198. doi:10.1007/s10705-006-9056-4
  • Kassaye, Y. A., Skipperud, L., Meland, S., Dadebo, E., Einset, J., & Salbu, B. (2012). Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas. Journal of Environmental Monitoring, 14(10), 2698–2709. doi:10.1039/c2em30271c
  • Kausch, M. F., & Pallud, C. E. (2013). Modeling the impact of soil aggregate size on selenium immobilization. Biogeosciences, 10(3), 1323–1336. doi:10.5194/bg-10-1323-2013
  • Keskinen, R., Ekholm, P., Yli-Halla, M., & Hartikainen, H. (2009). Efficiency of different methods in extracting selenium from agricultural soils of Finland. Geoderma, 153(1–2), 87–93. doi:10.1016/j.geoderma.2009.07.014
  • Keskinen, R., Turakainen, M., & Hartikainen, H. (2010). Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant and Soil, 333(1-2), 301–313. doi:10.1007/s11104-010-0345-y
  • Khorasanipour, M., & Esmaeilzadeh, E. (2016). Environmental characterization of Sarcheshmeh Cu-smelting slag, Kerman, Iran: Application of geochemistry, mineralogy and single extraction methods. Journal of Geochemical Exploration, 166, 1–17. doi:10.1016/j.gexplo.2016.03.015
  • Kikkert, J., & Berkelaar, E. (2013). Plant uptake and translocation of inorganic and organic forms of selenium. Archives of Environmental Contamination and Toxicology, 65(3), 458–465.
  • Kirkby, E. A., & Mengel, K. (1967). Ionic balance in different tissues of the tomato plant in relation to nitrate, urea, or ammonium nutrition. Plant Physiology, 42(1), 6–14.
  • Kopsell, D. A., & Randle, W. M. (1999). Selenium accumulation in a rapid-cycling Brassica oleracea population responds to increasing sodium selenate concentrations. Journal of Plant Nutrition, 22(6), 927–937. doi:10.1080/01904169909365683
  • Kostopoulou, P., Barbayiannis, N., & Noitsakis, B. (2010). Water relations of yellow sweetclover under the synergy of drought and selenium addition. Plant and Soil, 330(1-2), 65–71. doi:10.1007/s11104-009-0176-x
  • Kremer, D., Ilgen, G., & Feldmann, J. (2005). GC-ICP-MS determination of dimethylselenide in human breath after ingestion of Se-77-enriched selenite: monitoring of in-vivo methylation of selenium. Analytical and Bioanalytical Chemistry, 383(3), 509–515. doi:10.1007/s00216-005-0001-1
  • Kulp, T. R., & Pratt, L. M. (2004). Speciation and weathering of selenium in upper cretaceous chalk and shale from south Dakota and Wyoming, USA. Geochimica et Cosmochimica Acta, 68(18), 3687–3701. doi:10.1016/j.gca.2004.03.008
  • Lanno, R., Wells, J., Conder, J., Bradham, K., & Basta, N. (2004). The bioavailability of chemicals in soil for earthworms. Ecotoxicology and Environmental Safety, 57(1), 39–47.
  • Lavado, R. S., Porcelli, C. A., & Alvarez, R. (2001). Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil and Tillage Research, 62(1-2), 55–60. doi:10.1016/S0167-1987(01)00216-1
  • Lavu, R. V. S., Du Laing, G., Van de Wiele, T., Pratti, V. L., Willekens, K., Vandecasteele, B., & Tack, F. (2012). Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in Leek (Allium ampeloprasum). Journal of Agricultural and Food Chemistry, 60(44), 10930–10935. doi:10.1021/jf302931z
  • Lee, S., Doolittle, J. J., & Woodard, H. J. (2011). Selenite adsorption and desorption in selected South Dakota soils as a function of pH and other oxyanions. Soil Science, 176(2), 73–79. doi:10.1097/SS.0b013e31820a0ff6
  • Lee, S., Woodard, H. J., & Doolittle, J. J. (2011). Effect of phosphate and sulfate fertilizers on selenium uptake by wheat (Triticum aestivum). Soil Science and Plant Nutrition, 57(5), 696–704.
  • Lee, S., Woodard, H. J., & Doolittle, J. J. (2011). Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Science and Plant Nutrition, 57(6), 823–832.
  • Lenz, M., Van Hullebusch, E. D., Farges, F., Nikitenko, S., Borca, C. N., Grolimund, D., & Lens, P. N. L. (2008). Selenium speciation assessed by X-Ray absorption spectroscopy of sequentially extracted anaerobic biofilms. Environmental Science & Technology, 42(20), 7587–7593. doi:10.1021/es800811q
  • Lessa, J. H. L., Araujo, A. M., Silva, G. N. T., Guilherme, L. R. G., & Lopes, G. (2016). Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome. Chemosphere, 164, 271–277. doi:10.1016/j.chemosphere.2016.08.106
  • Lewis-Russ, A. (1991). Measurement of surface charge of inorganic geologic materials: techniques and their consequences. In D. L. Sparks (Ed.), Advances in agronomy (pp. 199–243). Cambridge, MA: Academic Press.
  • Li, H.-F., Lombi, E., Stroud, J. L., McGrath, S. P., & Zhao, F.-J. (2010). Selenium speciation in soil and rice: influence of water management and Se fertilization. Journal of Agricultural and Food Chemistry, 58(22), 11837–11843.
  • Li, H. F., McGrath, S. P., & Zhao, F. J. (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. The New Phytologist, 178(1), 92–102.
  • Li, J., Peng, Q., Liang, D. L., Liang, S. J., Chen, J., Sun, H., … Lei, P. H. (2016). Effects of aging on the fraction distribution and bioavailability of selenium in three different soils. Chemosphere, 144, 2351–2359. doi:10.1016/j.chemosphere.2015.11.011
  • Li, S. M., Bañuelos, G. S., Min, J., & Shi, W. M. (2015). Effect of continuous application of inorganic nitrogen fertilizer on selenium concentration in vegetables grown in the Taihu Lake region of China. Plant and Soil, 393(1–2), 351–360. doi:10.1007/s11104-015-2496-3
  • Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J., & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, 69–79. doi:10.1016/j.geoderma.2017.02.019
  • Li, Z., Man, N., Wang, S. S., Liang, D. L., & Liu, J. J. (2015). Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties. Journal of Soils and Sediments, 15(5), 1150–1158. doi:10.1007/s11368-015-1085-7
  • Lin, Z. Q., Schemenauer, R. S., Cervinka, V., Zayed, A., Lee, A., & Terry, N. (2000). Selenium volatilization from a soil-plant system for the remediation of contaminated water and soil in the San Joaquin Valley. Journal of Environment Quality, 29(4), 1048–1056. doi:10.2134/jeq2000.00472425002900040003x
  • Lin, Z. Q., & Terry, N. (2003). Selenium removal by constructed wetlands: quantitative importance of biological volatilization in the treatment of selenium-laden agricultural drainage water. Environmental Science & Technology, 37(3), 606–615. doi:10.1021/es0260216
  • Liu, H. E., Shi, Z. W., Li, J. F., Zhao, P., Qin, S. Y., & Nie, Z. J. (2018). The impact of phosphorus supply on selenium uptake during hydroponics experiment of winter wheat (Triticum aestivum) in China. Frontiers in Plant Science, 9, 373.
  • Liu, Q., Wang, D. J., Jiang, X. J., & Cao, Z. H. (2004). Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environmental Geochemistry Health, 26(2), 325–330. doi:10.1023/B:EGAH.0000039597.75201.57
  • Liu, X. W., Zhao, Z. Q., Duan, B. H., Hu, C. X., Zhao, X. H., & Guo, Z. H. (2015). Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant and Soil, 386(1–2), 35–45. doi:10.1007/s11104-014-2229-z
  • Loganathan, P., & Hedley, M. J. (2006). Spatial and time-dependent patterns of selenium (Se) release from selected Se fertiliser granules. Soil Research, 44(2), 155–163. doi:10.1071/SR05139
  • Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), 847–907. doi:10.1080/10643389.2012.741311
  • Longchamp, M., Angeli, N., & Castrec-Rouelle, M. (2013). Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant and Soil, 362(1–2), 107–117. doi:10.1007/s11104-012-1259-7
  • Longchamp, M., Castrec-Rouelle, M., Biron, P., & Bariac, T. (2015). Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chemistry, 182, 128–135.
  • Lyons, G., Goebel, R., Tikai, P., Stanley, K.-J., & Taylor, M. (2015). Promoting nutritious leafy vegetables in the Pacific and Northern Australia. In J. D. H. Keatinge, R. Srinivasan, M. Mecozzi (Eds.). 29th International horticultural congress on horticulture - Sustaining lives, livelihoods and landscapes (pp. 253–259). Brisbane, Australia: Int SOC horticultural science.
  • Lyons, G., Ortiz-Monasterio, I., Stangoulis, J., & Graham, R. (2005). Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant and Soil, 269(1–2), 369–380. doi:10.1007/s11104-004-0909-9
  • Lyons, G. H., Gondwe, C., Banuelos, G. S., Zambrano, M. C., Haug, A., & Christophersen, O. A. (2014). Drumming up selenium and sulphur in Africa: improving nutrition with Moringa oleifera. In G. S. Bañuelos, Z. Q. Lin, X. B. Yin (Eds.). Selenium in the environment and human health (pp. 91–92). China: CRC Press.
  • Makela-Kurtto, R., & Sippola, J. (2002). Monitoring of finnish arable land: changes in soil quality between 1987 and 1998. Agricultural and Food Science, 11, 273–284. doi:10.23986/afsci.5730
  • Mao, J. D., & Xing, B. S. (1999). Fractionation and distribution of selenium in soils. Communications in Soil Science and Plant Analysis, 30(17–18), 2437–2447. doi:10.1080/00103629909370385
  • Martens, D. A., & Suarez, D. L. (1997). Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environmental Science Technology, 31(1), 133–139. doi:10.1021/es960214+
  • Martin, D. P., Seiter, J. M., Lafferty, B. J., & Bednar, A. J. (2017). Exploring the ability of cations to facilitate binding between inorganic oxyanions and humic acid. Chemosphere, 166, 192–196. doi:10.1016/j.chemosphere.2016.09.084
  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Arsenic and selenium chemistry as affected by sediment redox potential and pH. Journal of Environment Quality, 20(3), 522–527. doi:10.2134/jeq1991.00472425002000030004x
  • Menegario, A. A., Yabuki, L. N. M., Luko, K. S., Williams, P. N., & Blackburn, D. M. (2017). Use of diffusive gradient in thin films for in situ measurements: A review on the progress in chemical fractionation, speciation and bioavailability of metals in waters. Analytica Chimica Acta, 983, 54–66. doi:10.1016/j.aca.2017.06.041
  • Miretzky, P., Avendano, M. R., Munoz, C., & Carrillo-Chavez, A. (2011). Use of partition and redistribution indexes for heavy metal soil distribution after contamination with a multi-element solution. Journal of Soils and Sediments, 11(4), 619–627. doi:10.1007/s11368-011-0343-6
  • Mora, M. D. L. L., Pinilla, L., Rosas, A., & Cartes, P. (2008). Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant and Soil, 303(1–2), 139–149. doi:10.1007/s11104-007-9494-z
  • Moreno-Jimenez, E., Clemente, R., Mestrot, A., & Meharg, A. A. (2013). Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation. Environmental Pollution, 173, 238–244. doi:10.1016/j.envpol.2012.10.017
  • Moreno, R. G., Burdock, R., Álvarez, M. C. D., & Crawford, J. W. (2013). Managing the selenium content in soils in semiarid environments through the recycling of organic matter. Applied and Environmental Soil Science, 2013, 1–10. doi:10.1155/2013/283468
  • Morlon, H., Fortin, C., Adam, C., Garnier-Laplace, J. (2006). Selenite transport and its inhibition in the unicellular green alga Chlamydomonas reinhardtii. Environmental Toxicology and Chemistry, 25(5), 1408–1417. doi:10.1897/2512039.1
  • Muller, J., Abdelouas, A., Ribet, S., & Grambow, B. (2012). Sorption of selenite in a multi-component system using the “dialysis membrane: method. Applied Geochemistry, 27(12), 2524–2532. doi:10.1016/j.apgeochem.2012.07.023
  • Munier-Lamy, C., Deneux-Mustin, S., Mustin, C., Merlet, D., Berthelin, J., & Leyval, C. (2007). Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. Journal of Environmental Radioactivity, 97(2–3), 148–158. doi:10.1016/j.jenvrad.2007.04.001
  • Murphy, K. M., Reeves, P. G., & Jones, S. S. (2008). Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica, 163(3), 381–390. doi:10.1007/s10681-008-9681-x
  • Myneni, S. C. B., Tokunaga, T. K., & Brown, G. E. (1997). Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science, 278(5340), 1106–1109. doi:10.1126/science.278.5340.1106
  • Nakamaru, Y., Tagami, K., & Uchida, S. (2005). Distribution coefficient of selenium in Japanese agricultural soils. Chemosphere, 58(10), 1347–1354. doi:10.1016/j.chemosphere.2004.09.086
  • Nakamaru, Y. M., & Altansuvd, J. (2014). Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere, 111, 366–371.
  • Nakamaru, Y. M., & Sekine, K. (2008). Sorption behavior of selenium and antimony in soils as a function of phosphate ion concentration. Soil Science and Plant Nutrition, 54(3), 332–341. doi:10.1111/j.1747-0765.2008.00247.x
  • Nawaz, F., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Shabbir, R. N., & Hussain, R. A. (2017). Selenium supply methods and time of application influence spring wheat (Triticum aestivum L.) yield under water deficit conditions. The Journal of Agricultural Science, 155(4), 643–656. doi:10.1017/S0021859616000836
  • Neal, R. H. (1995). Selenium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 260–283). London: Blackie Academic & Professional.
  • Nelson, A. G., Quideau, S. A., Frick, B., Hucl, P. J., Thavarajah, D., Clapperton, M. J., & Spaner, D. M. (2011). The soil microbial community and grain micronutrient concentration of historical and modern hard red spring wheat cultivars grown organically and conventionally in the black soil zone of the Canadian prairies. Sustainability-Basel, 3(3), 500–517. doi:10.3390/su3030500
  • Neumann, P. M., De Souza, M. P., Pickering, I. J., & Terry, N. (2003). Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant, Cell and Environment, 26(6), 897–905. doi:10.1046/j.1365-3040.2003.01022.x
  • Ngo, L. K., Pinch, B. M., Bennett, W. W., Teasdale, P. R., & Jolley, D. F. (2016). Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions. Environmental Pollution, 216, 104–114. doi:10.1016/j.envpol.2016.05.027
  • Ogaard, A. F., Sogn, T. A., & Eich-Greatorex, S. (2006). Effect of cattle manure on selenate and selenite retention in soil. Nutrient Cycling in Agroecosystems, 76, 39–48. doi:10.1007/s10705-006-9039-5
  • Ohta, Y., & Suzuki, K. T. (2008). Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicology and Applied Pharmacology, 226(2), 169–177.
  • Olegario, J. T., Yee, N., Miller, M., Sczepaniak, J., & Manning, B. (2010). Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. Journal of Nanoparticle Research, 12(6), 2057–2068. doi:10.1007/s11051-009-9764-1
  • Oram, L. L., Strawn, D. G., & Möller, G. (2011). Chemical speciation and bioavailability of selenium in the rhizosphere of symphyotrichum eatonii from reclaimed mine soils. Environmental Science & Technology, 45(3), 870–875.
  • Paciolla, C., De Leonardis, S., & Dipierro, S. (2011). Effects of selenite and selenate on the antioxidant systems in Senecio scandens L. Plant Biosystems, 145(1), 253–259. doi:10.1080/11263504.2010.509942
  • Panther, J. G., Stillwell, K. P., Powell, K. J., & Downard, A. J. (2008). Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters. Analytica Chimica Acta, 622(1–2), 133–142. doi:10.1016/j.aca.2008.06.004
  • Parfitt, R. L. (1979). Anion adsorption by soils and soil materials. In: N. C. Brady (Ed.) Advances in Agronomy (pp. 1–50). ‎Cambridge, MA: Academic Press.
  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2–3), 549–574. doi:10.1016/j.jhazmat.2010.09.082
  • Peak, D. (2006). Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. Journal of Colloid and Interface Science, 303(2), 337–345. doi:10.1016/j.jcis.2006.08.014
  • Pedrero, Z., & Madrid, Y. (2009). Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Analytica Chimica Acta, 634(2), 135–152.
  • Pelcová, P., Dočekalová, H., & Kleckerová, A. (2015). Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography – atomic fluorescence spectrometry after microwave extraction. Analytica Chimica Acta, 866, 21–26. doi:10.1016/j.aca.2015.01.043
  • Peng, Q., Guo, L., Ali, F., Li, J., Qin, S. Y., Feng, P. Y., & Liang, D. L. (2016). Influence of Pak choi plant cultivation on Se distribution, speciation and bioavailability in soil. Plant and Soil, 403(1-2), 331–342. doi:10.1007/s11104-016-2810-8
  • Peng, Q., Li, Z., Liang, D. L., Wang, M. K., & Guo, L. (2017a). Dynamic differences of uptake and translocation of exogenous selenium by different crops and its mechanism. Environmental Science, 38, 1667–1674. (in Chinese).
  • Peng, Q., Wang, M. K., Cui, Z. W., Huang, J., Chen, C. E., Guo, L., & Liang, D. L. (2017b). Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). Environmental Pollution (Barking, Essex: 1987), 225, 637–643.
  • Pezzarossa, B., Remorini, D., Piccotino, D., Malagoli, M., & Massai, R. (2009). Effects of selenate addition on selenium accumulation and plant growth of two Prunus rootstock genotypes. Journal of Plant Nutrition and Soil Science, 172(2), 261–269. doi:10.1002/jpln.200800014
  • Pilon-Smits, E. A. H., Quinn, C. F., Tapken, W., Malagoli, M., & Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12(3), 267–274.
  • Pinochet, H., De Gregori, I., Lobos, M. G., & Fuentes, E. (1999). Selenium and copper in vegetables and fruits grown on long-term impacted soils from Valparaíso region, Chile. Bulletin of Environmental Contamination and Toxicology, 63(3), 327–334.
  • Premarathna, H. L., McLaughlin, M. J., Kirby, J. K., Hettiarachchi, G. M., Beak, D., Stacey, S., & Chittleborough, D. J. (2010). Potential availability of fertilizer selenium in field capacity and submerged soils. Soil Science Society of America Journal, 74(5), 1589–1596. doi:10.2136/sssaj2009.0416
  • Pu, Z. E., Yu, M., He, Q. Y., Chen, G. Y., Wang, J. R., Liu, Y. X., … Zheng, Y. L. (2014). Quantitative trait Loci associated with micronutrient concentrations in two recombinant inbred wheat lines. Journal of Integrative Agriculture, 13(11), 2322–2329. doi:10.1016/S2095-3119(13)60640-1
  • Qin, H. B., Zhu, J. M., Lin, Z. Q., Xu, W. P., Tan, D. C., Zheng, L. R., & Takahashi, Y. (2017). Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. Environmental Pollution, 225, 361–369. doi:10.1016/j.envpol.2017.02.062
  • Qin, H. B., Zhu, J. M., & Su, H. (2012). Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere, 86(6), 626–633. doi:10.1016/j.chemosphere.2011.10.055
  • Qu, J. G., Xu, B. X., & Gong, S. C. (1998). Study on speciation distribution and availability of selenium in different soils of Shanghai. Acta Pedology Sinica, 35, 277–283.
  • Quinn, C. F., Prins, C. N., Gross, A. M., Hantzis, L., Reynolds, R. J. B., Freeman, J. L., … Pilon-Smits, E. A. H. (2011). Selenium accumulation in flowers and its effects on pollination. The New Phytologist, 192(3), 727–737.
  • Rayman, M. P. (2012). Selenium and human health. Lancet (London, England), 379(9822), 1256–1268.
  • Refait, P., Simon, L., & Genin, J. M. R. (2000). Reduction of SeO42- anions and anoxic formation of iron(II)-iron(III) hydroxy selenate green rust. Environmental Science & Technology, 34(5), 819–825. doi:10.1021/es990376g
  • Reis, H. P. G., Barcelos, JPdQ., Junior, E. F., Santos, E. F., Silva, V. M., Moraes, M. F., … Reis, ARd. (2018). Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. Journal of Cereal Science, 79, 508–515. doi:10.1016/j.jcs.2018.01.004
  • Rios, J. J., Blasco, B., Cervilla, L. M., Rosales, M. A., Sanchez-Rodriguez, E., Romero, L., & Ruiz, J. M. (2009). Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology, 154, 107–116. doi:10.1111/j.1744-7348.2008.00276.x
  • Rodrigo, S., Santamaria, O., Lopez-Bellido, F. J., & Poblaciones, M. J. (2013). Agronomic selenium biofortification of two-rowed barley under Mediterranean conditions. Plant, Soil and Environment, 59(3), 115–120. doi:10.17221/691/2012-PSE
  • Rodriguez, L. H., Morales, D. A., Rodriguez, E. R., & Romero, C. D. (2011). Minerals and trace elements in a collection of wheat landraces from the Canary islands. Journal of Food Composition and Analysis, 24, 1081–1090. doi:10.1016/j.jfca.2011.04.016
  • Rodriguez, M. J. M., Rivero, V. C., & Ballesta, R. J. (2005). Selenium distribution in topsoils and plants of a semi-arid Mediterranean environment. Environmental Geochemistry and Health, 27, 513–519.
  • Roman, M., Jitaru, P., & Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics: Integrated Biometal Science, 6(1), 25–54.
  • Ryden, J. C., Syers, J. K., & Tillman, R. W. (1987). Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric oxide gel. Journal of Soil Science, 38(2), 211–217. doi:10.1111/j.1365-2389.1987.tb02138.x
  • Sakizadeh, M., Mehrabi Sharafabadi, F., Shayegan, E., & Ghorbani, H. (2016). Concentrations and soil-to-plant transfer factor of selenium in soil and plant species from an arid area. IOP Conference Series: Earth and Environmental Science, 1–8.
  • Salhani, N., Boulyga, S. F., & Stengel, E. (2003). Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland. Chemosphere, 50, 967–973.
  • Sarathchandra, S. U., & Watkinson, J. H. (1981). Oxidation of elemental selenium to selenite by Bacillus megaterium. Science (New York, N.Y.), 211(4482), 600–601.
  • Schiavon, M., & Pilon-Smits, E. A. H. (2017a). Selenium biofortification and phytoremediation phytotechnologies: A review. Journal of Environment Quality, 46(1), 10–19. doi:10.2134/jeq2016.09.0342
  • Schiavon, M., & Pilon-Smits, E. A. H. (2017b). The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytologist, 213(4), 1582–1596. doi:10.1111/nph.14378
  • Schnitzler, F., Lavorenti, A., Berns, A. E., Drewes, N., Vereecken, H., & Burauel, P. (2007). The influence of maize residues on the mobility and binding of benazolin: Investigating physically extracted soil fractions. Environmental Pollution, 147(1), 4–13. doi:10.1016/j.envpol.2006.09.020
  • Scott, M. J., & Morgan, J. J. (1996). Reactions at oxide surfaces.2. Oxidation of Se(IV) by synthetic birnessite. Environmental Science & Technology, 30(6), 1990–1996. doi:10.1021/es950741d
  • Seby, F., Potin-Gautier, M., Giffaut, E., Borge, G., & Donard, O. F. X. (2001). A critical review of thermodynamic data for selenium species at 25 degrees C. Chemical Geology, 171, 173–194. doi:10.1016/S0009-2541(00)00246-1
  • Seby, F., Potin-Gautier, M., Giffaut, E., & Donard, O. F. X. (1998). Assessing the speciation and the biogeochemical processes affecting the mobility of selenium from a geological repository of radioactive wastes to the biosphere. Analusis, 26, 193–198. doi:10.1051/analusis:1998134
  • Senila, M., Levei, E. A., & Senila, L. R. (2012). Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics. Chemistry Central Journal, 6, 119.
  • Shaheen, S. M., Ali, R. A., Abowaly, M. E., Rabie, A. A., El Abbasy, N. E., & Rinklebe, J. (2018). Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques. Journal of Geochemical Exploration, 191, 28–42. doi:10.1016/j.gexplo.2018.05.003
  • Shaheen, S. M., Frohne, T., White, J. R., DeLaune, R. D., & Rinklebe, J. (2017). Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. Journal of Environmental Management, 186, 131–140. doi:10.1016/j.jenvman.2016.05.032
  • Sharma, M. P., Bali, S. V., & Gupta, D. K. (2001). Soil fertility and productivity of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system in an Inceptisol as influenced by integrated nutrient management. Indian Journal of Agricultural Science, 71, 82–86.
  • Sharma, P., Ofner, J., & Kappler, A. (2010). Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environmental Science & Technology, 44(12), 4479–4485.
  • Sharma, S., Bansal, A., Dogra, R., Dhillon, S. K., & Dhillon, K. S. (2011). Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in northwestern India. Journal of Plant Nutrition and Soil Science, 174(2), 269–275. doi:10.1002/jpln.200900265
  • Sharma, S., Singh, R., & Nielson, G. G. (1983). Selenium in soil, plant, and animal systems. Critical Reviews in Environmental Science and Technology, 13, 23–50. doi:10.1080/10643388309381701
  • Sharma, V. K., McDonald, T. J., Sohn, M., Anquandah, G. A. K., Pettine, M., & Zboril, R. (2015). Biogeochemistry of selenium. A review. Environmental Chemistry Letters, 13(1), 49–58. doi:10.1007/s10311-014-0487-x
  • Shrestha, B., Lipe, S., Johnson, K. A., Zhang, T. Q., Retzlaff, W., & Lin, Z.-Q. (2006). Soil hydraulic manipulation and organic amendment for the enhancement of selenium volatilization in a soil–pickleweed system. Plant and Soil, 288(1–2), 189–196. doi:10.1007/s11104-006-9107-2
  • Silver, W. L., Lugo, A. E., & Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry, 44(3), 301–328. doi:10.1007/BF00996995
  • Sindelarova, K., Szakova, J., Tremlova, J., Mestek, O., Praus, L., Kana, A., … Tlustos, P. (2015). The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation. Food Additives and Contaminants A, 32, 2027–2038.
  • Singh, S., Lin, Z. Q., & Zhang, T. Q. (2014). Effects of hog manure application on selenium accumulation in agricultural soil and grains. In G. S. Bañuelos, Z. Q. Lin, X. B. Yin (Eds.). Selenium in the environment and human health (pp. 144–146). China: CRC Press.
  • Slekovec, M., & Goessler, W. (2005). Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chemical Speciation and Bioavailability, 17(2), 63–73. doi:10.3184/095422905782774919
  • Smrkolj, P., Stibilj, V., Kreft, I., & Germ, M. (2006). Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food Chemistry, 96(4), 675–681. doi:10.1016/j.foodchem.2005.05.002
  • Söderlund, M., Virkanen, J., Holgersson, S., & Lehto, J. (2016). Sorption and speciation of selenium in boreal forest soil. Journal of Environmental Radioactivity, 164, 220–231.
  • Sogn, T. A., Eich-Greatorex, S., Royset, O., Ogaard, A. F., & Almas, A. R. (2008). Use of diffusive gradients in thin films to predict potentially bioavailable selenium in soil. Communications in Soil Science and Plant Analysis, 39(3–4), 587–602. doi:10.1080/00103620701828379
  • Sonmez, O., Pierzynski, G., Kaya, C., & Aydemir, S. (2016). The evaluation of diffusive gradients in thin films (DGT) and CaCl2 extraction on phosphorus-zinc interaction in Sudan grass. Pakistan Journal of Botany, 48, 393–397.
  • Sors, T. G., Ellis, D. R., & Salt, D. E. (2005). Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 86(3), 373–389. doi:10.1007/s11120-005-5222-9
  • Stasinakis, A. S., & Thomaidis, N. S. (2010). Fate and biotransformation of metal and metalloid species in biological wastewater treatment processes. Critical Reviews in Environmental Science and Technology, 40(4), 307–364. doi:10.1080/10643380802339026
  • Stavridou, E., Thorup-Kristensen, K., & Young, S. D. (2011). Assessment of selenium mineralization and availability from catch crops. Soil Use Management, 27, 305–311.
  • Stolz, J. F., Ellis, D. J., Blum, J. S., Ahmann, D., Lovley, D. R., & Oremland, R. S. (1999). Sulfurospirillum barnesii sp nov and Sulfurospirillum arsenophilum sp nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 49(3), 1177–1180. doi:10.1099/00207713-49-3-1177
  • Stroud, J. L., Broadley, M. R., Foot, I., Fairweather-Tait, S. J., Hart, D. J., Hurst, R., … Zhao, F. J. (2010). Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil, 332(1–2), 19–30. doi:10.1007/s11104-009-0229-1
  • Stroud, J. L., Li, H. F., Lopez-Bellido, F. J., Broadley, M. R., Foot, I., Fairweather-Tait, S. J., … Zhao, F. J. (2010). Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil, 332(1-2), 31–40. doi:10.1007/s11104-009-0230-8
  • Suarez, D. L., Grieve, C. M., & Poss, J. A. (2003). Irrigation method affects selenium accumulation in forage Brassica species. Journal of Plant Nutrition, 26(1), 191–201. doi:10.1081/PLN-120016504
  • Sundman, A., Karlsson, T., Sjöberg, S., & Persson, P. (2014). Complexation and precipitation reactions in the ternary As(V)–Fe(III)–OM (organic matter) system. Geochimica et Cosmochimica Acta, 145, 297–314. doi:10.1016/j.gca.2014.09.036
  • Supriatin, S., Terrones, C. A., Bussink, W., & Weng, L. P. (2015a). Drying effects on selenium and copper in 0.01 M calcium chloride soil extractions. Geoderma, 255, 104–114. doi:10.1016/j.geoderma.2015.04.021
  • Supriatin, S., Weng, L. P., & Comans, R. N. J. (2015b). Selenium speciation and extractability in Dutch agricultural soils. The Science of the Total Environment, 532, 368–382.
  • Supriatin, S., Weng, L. P., & Comans, R. N. J. (2016). Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soils. Plant and Soil, 408(1-2), 73–94. doi:10.1007/s11104-016-2900-7
  • Suzuki, K. T., Ohta, Y., & Suzuki, N. (2006). Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds. Toxicology and Applied Pharmacology, 217(1), 51–62. doi:10.1016/j.taap.2006.07.005
  • Tam, S. C., Chow, A., & Hadley, D. (1995). Effects of organic-component on the immobilization of selenium on iron oxyhydroxide. Science of the Total Environment, 164(1), 1–7. doi:10.1016/0048-9697(95)04423-X
  • Tan, J. A., Zhu, W. Y., Wang, W. Y., Li, R. B., Hou, S. F., Wang, D. C., & Yang, L. S. (2002). Selenium in soil and endemic diseases in China. The Science of the Total Environment, 284(1-3), 227–235.
  • Tao, Z., Chu, T., Du, J., Dai, X. X., & Gu, Y. (2000). Effect of fulvic acids on sorption of U(VI), Zn, Yb, I and Se(IV) onto oxides of aluminum, iron and silicon. Applied Geochemistry, 15, 133–139.
  • Terry, N., Zayed, A. M., de Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 401–432.
  • Thiry, C., Ruttens, A., De Temmerman, L., Schneider, Y. J., & Pussemier, L. (2012). Current knowledge in species-related bioavailability of selenium in food. Food Chemistry, 130(4), 767–784. doi:10.1016/j.foodchem.2011.07.102
  • Tian, Y., Wang, X. R., Luo, J., Yu, H. X., & Zhang, H. (2008). Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice. Environmental Science & Technology, 42(20), 7649–7654.
  • Tolu, J., Di Tullo, P., Le Hecho, I., Thiry, Y., Pannier, F., Potin-Gautier, M., & Bueno, M. (2014). A new methodology involving stable isotope tracer to compare simultaneously short- and long-term selenium mobility in soils. Analytical and Bioanalytical Chemistry, 406(4), 1221–1231. doi:10.1007/s00216-013-7323-1
  • Tolu, J., Le Hecho, I., Bueno, M., Thiry, Y., & Potin-Gautier, M. (2011). Selenium speciation analysis at trace level in soils. Analytica Chimica Acta, 684(1–2), 126–133. doi:10.1016/j.aca.2010.10.044
  • Tolu, J., Thiry, Y., Bueno, M., Jolivet, C., Potin-Gautier, M., & Le, H., I. (2014b). Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Science of the Total Environment, 479, 93–101. doi:10.1016/j.scitotenv.2014.01.079
  • Torma, A. E., & Habashi, F. (1972). Oxidation of copper (II) selenide by Thiobacillus ferrooxidans. Canadian Journal of Microbiology, 18(11), 1780–1781.
  • Torres, J., Pintos, V., Dominguez, S., Kremer, C., & Kremer, E. (2010). Selenite and selenate speciation in natural waters: interaction with divalent metal ions. Journal of Solution Chemistry, 39(1), 1–10. doi:10.1007/s10953-009-9491-3
  • Tran, T. A. T., Dinh, Q. T., Cui, Z. W., Huang, J., Wang, D., Wei, T. J., … Ning, P. (2018). Comparing the influence of selenite (Se4+) and selenate (Se6+) on the inhibition of the mercury (Hg) phytotoxicity to pak choi. Ecotoxicology and Environmental Safety, 147, 897–904.
  • Tran, T. A. T., Zhou, F., Yang, W. X., Wang, M. K., Dinh, Q. T., Wang, D., & Liang, D. L. (2018). Detoxification of mercury in soil by selenite and related mechanisms. Ecotoxicology and Environmental Safety, 159, 77–84.
  • Tsuneyoshi, T., Yoshida, J., & Sasaoka, T. (2006). Hydroponic cultivation offers a practical means of producing selenium enriched garlic. Journal of Nutrition, 136, 870–872.
  • Uchida, S., Tagami, K., & Hirai, I. (2007). Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides (1) upland field crops collected in Japan. Journal of Nuclear Science and Technology, 44(4), 628–640. doi:10.1080/18811248.2007.9711851
  • Uchida, S., Tagami, K., & Ishikawa, N. (2009). Concentration, soil-to-plant transfer factor and soil-soil solution distribution coefficient of selenium in the surface environment. WM2009 Conference, Phoenix, AZ.
  • Van Leeuwen, C. J. (1995). Terrestrial toxicity. In C. J. Van Leeuwen, J. L. M. Hermens (Eds.), Risk assessment of chemicals: An introduction (pp. 211–216). Dordrecht, The Netherlands: Kluwer Academic.
  • Van Mantgem, P. J., Wu, L., & Bañuelos, G. S. (1996). Bioextraction of selenium by forage and selected field legume species in selenium-laden soils under minimal field management conditions. Ecotoxicology and Environmental Safety, 34(3), 228–238. doi:10.1006/eesa.1996.0068
  • Vandenhove, H., Van Hees, M., Olyslaegers, G., & Vidal, M. (2009). Proposal for new best estimates for the soil solid-liquid distribution coefficient and soil-to-plant transfer of nickel. Journal of Environmental Radioactivity, 100(4), 342–347. doi:10.1016/j.jenvrad.2008.12.002
  • Versini, A., Di Tullo, P., Aubry, E., Bueno, M., Thiry, Y., Pannier, F., & Castrec-Rouelle, M. (2016). Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass. Plant Physiology and Biochemistry, 108, 372–380. doi:10.1016/j.plaphy.2016.07.029
  • Violante, A. (2013). Elucidating mechanisms of competitive sorption at the mineral/water interface. In D. L. Sparks (Ed.), Advances in agronomy (pp. 111–176). Cambridge, MA: Academic Press.
  • Vriens, B., Behra, R., Voegelin, A., Zupanic, A., & Winkel, L. H. E. (2016). Selenium uptake and methylation by the microalga chlamydomonas reinhardtii. Environmental Science & Technology, 50(2), 711–720. doi:10.1021/acs.est.5b04169
  • Wahl, C., Benson, S., & Santolo, G. (1994). Temporal and spatial monitoring of soil selenium at Kesterson reservoir, California. Water Air Soil Pollution, 74, 345–361.
  • Wang, C., Ji, J. F., & Zhu, F. H. (2017). Characterizing Se transfer in the soil-crop systems under field condition. Plant and Soil, 415(1-2), 535–548. doi:10.1007/s11104-017-3185-1
  • Wang, D., Dinh, Q. T., Thu, T. T. A., Zhou, F., Yang, W. X., Wang, M. K., … Liang, D. L. (2018). Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil. Chemosphere, 199, 417–426. doi:10.1016/j.chemosphere.2018.02.007
  • Wang, D., Grieve, C. M., & Suarez, D. L. (2005). Composition of irrigation water salinity affects growth characteristics and uptake of selenium and salt ions by soybean. Journal of Plant Nutrition, 28(6), 1073–1088. doi:10.1081/PLN-200058909
  • Wang, D., Zhou, F., Yang, W. X., Peng, Q., Man, N., & Liang, D. L. (2017). Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere, 182, 284–292. doi:10.1016/j.chemosphere.2017.05.014
  • Wang, J., Li, H., Li, Y., Yu, J., Yang, L., Feng, F., & Chen, Z. (2013). Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin–Beck disease area—a case study in Songpan county, Sichuan province, China. Biological Trace Element Research, 156(1-3), 367–375. doi:10.1007/s12011-013-9822-5
  • Wang, J., Li, H. R., Yang, L. S., Li, Y. H., Wei, B. G., Yu, J. P., & Feng, F. J. (2017). Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area. Environmental Geochemistry and Health, 39(1), 221–229.
  • Wang, J. W., Wang, Z. H., Mao, H., Zhao, H. B., & Huang, D. L. (2013). Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crop Research, 150, 83–90.
  • Wang, Q., Yu, Y., Li, J., Wan, Y., Huang, Q., Guo, Y., & Li, H. (2017). Effects of different forms of selenium fertilizers on Se accumulation, distribution, and residual effect in winter wheat–summer maize rotation system. Journal of Agricultural and Food Chemistry, 65(6), 1116–1123. doi:10.1021/acs.jafc.6b05149
  • Wang, S., Xiongping, W. U., Liang, D., & Xue, R. (2010). Transformation and bioavailability for Pak choi (Brassica chinensis) of different forms of selenium added to calcareous soil. Acta Science Circumstances, 30, 2499–2505. (in Chinese).
  • Wang, S. S., Liang, D. L., Wang, D., Wei, W., Fu, D. D., & Lin, Z. Q. (2012). Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Science of the Total Environment, 427, 159–164. doi:10.1016/j.scitotenv.2012.03.091
  • Wang, S. S., Liang, D. L., Wei, W., & Wang, D. (2011). Relationship between soil physico-chemical properties and selenium species based on path analysis. Acta Pedology Sinica, 48, 823–830. (in Chinese).
  • Wang, Y. N., Zeng, X. B., Lu, Y. H., Su, S. M., Bai, L. Y., Li, L. F., & Wu, C. X. (2015). Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China. Environmental Pollution (Barking, Essex: 1987), 207, 79–87.
  • Western, A. W., Grayson, R. B., & Bloschl, G. (2002). Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences, 30(1), 149–180. doi:10.1146/annurev.earth.30.091201.140434
  • Whelan, B. R., & Barrow, N. J. (1994). Slow-release selenium fertilizers to correct selenium deficiency in grazing sheep in Western-Australia. Fertilizer Research, 38(3), 183–188. doi:10.1007/BF00749690
  • White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., … Broadley, M. R. (2004). Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany, 55(404), 1927–1937. doi:10.1093/jxb/erh192
  • White, P. J., Bowen, H. C., Marshall, B., & Broadley, M. R. (2007). Extraordinarily high leaf selenium to sulfur ratios define 'Se-accumulator' plants. Annals of Botany, 100(1), 111–118.
  • White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84. doi:10.1111/j.1469-8137.2008.02738.x
  • Wilber, C. G. (1980). Toxicology of selenium: a review. Clinical Toxicology, 17(2), 171–230.
  • Wilhelm, S. H. (2009). Sulfur in soils. Journal of Plant Nutrition and Soil Science, 172, 326–335.
  • Winkel, L. H. E. (2016). The global biogeochemical cycle of selenium: Sources, fluxes and the influence of climate. In G. S. Bañuelos, Z. Q. Lin, M. F. De Moraes, L. R. Guilherme, A. R. Dos Reis (Eds.). Global advances in selenium research from theory to application (pp. 3–4). Brazil: CRC Press.
  • Winkel, L. H. E., Johnson, C. A., Lenz, M., Grundl, T., Leupin, O. X., Amini, M., & Charlet, L. (2012). Environmental selenium research: from microscopic processes to global understanding. Environmental Science & Technology, 46(2), 571–579. doi:10.1021/es203434d
  • Winkel, L. H. E., Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E., & Bañuelos, G. S. (2015). Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients, 7(6), 4199–4239. doi:10.3390/nu7064199
  • Witt, C., Cassman, K. G., Olk, D. C., Biker, U., Liboon, S. P., Samson, M. I., & Ottow, J. C. G. (2000). Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 225(1/2), 263–278.
  • Wu, L., Emberg, A., & Biggar, J. A. (1994). Effects of elevated selenium concentration on selenium accumulation and nitrogen-fixation symbiotic activity of Melilotus-Indica L. Ecotoxicology and Environmental Safety, 27(1), 50–63. doi:10.1006/eesa.1994.1006
  • Wu, L., Enberg, A., & Tanji, K. K. (1993). Natural establishment and selenium accumulation of Herbaceous plant-species in soils with elevated concentrations of selenium and salinity under irrigation and tillage practices. Ecotoxicology and Environmental Safety, 25(2), 127–140. doi:10.1006/eesa.1993.1012
  • Xie, R. Z., Dong, S. T., Hu, C. H., & Wang, K. J. (2003). Influence of nitrogen and sulfur interaction on grain quality of maize. Science of the Agricultural Sinica, 36, 263–268. (in Chinese).
  • Xu, W., Tang, W. H., Kuang, C. L., & Luo, G. Q. (2010a). Analysis on content of Se in soil of Hainan province and its influencing factors. Journal of Anhui Agricultural Science, 38, 3026–3027. (in Chinese).
  • Xu, W. F., Chen, Q. X., & Shi, W. M. (2010b). Effects of nitrate supply site on selenite uptake by rice roots. Journal of Agricultural and Food Chemistry, 58(20), 11075–11080.
  • Xu, Y. F., Li, Y. H., Li, H. R., Wang, L., Liao, X. Y., Wang, J., & Kong, C. (2018). Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Science of the Total Environment, 633, 240–248. doi:10.1016/j.scitotenv.2018.03.190
  • Yang, F. M., Chen, L. C., Hu, Q. H., & Pan, G. X. (2003). Effect of the application of selenium on selenium content of soybean and its products. Biological Trace Element Research, 93(1–3), 249–256.
  • Yang, Z. F., Yu, T., Hou, Q. Y., Yang, Y., Fu, Y. R., & Zhao, X. L. (2012). Geochemical characteristics of soil selenium in farmland of Hainan island. Geoscience, 26, 837–849. (in Chinese).
  • Yu, Y., Luo, L., Yang, K., & Zhang, S. Z. (2011). Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologia, 54(5–6), 267–272. doi:10.1016/j.pedobi.2011.04.002
  • Zhang, C. M., Lai, F., Gao, A. X., & Zhou, X. B. (2017a). Absorption, translocation and redistribution of selenium supplied at different growth stages of rice. International Journal of Agricultural and Biology, 19, 1601–1607.
  • Zhang, C. S., Ding, S. M., Xu, D., Tang, Y., & Wong, M. H. (2014). Bioavailability assessment of phosphorus and metals in soils and sediments: a review of diffusive gradients in thin films (DGT). Environmental Monitoring and Assessment, 186(11), 7367–7378. doi:10.1007/s10661-014-3933-0
  • Zhang, D., Dong, T. Y., Ye, J., & Hou, Z. N. (2017b). Selenium accumulation in wheat (Triticum aestivum L) as affected by coapplication of either selenite or selenate with phosphorus. Soil Science and Plant Nutrition, 63(1), 37–44. doi:10.1080/00380768.2017.1280377
  • Zhang, H. (2014). Biogeochemical cycles of selenium in soil-rice system. In H. Zhang (Ed.), Impacts of selenium on the biogeochemical cycles of mercury in terrestrial ecosystems in mercury mining areas (pp. 117–134). Berlin; Heidelberg: Springer-Verlag.
  • Zhang, H., & Davison, W. (1995). Performance-characteristics of diffusion gradients in thin-films for the in-situ measurement of trace-metals in aqueous-solution. Analytical Chemistry, 67(19), 3391–3400. doi:10.1021/ac00115a005
  • Zhang, H., Davison, W., Mortimer, R. J. G., Krom, M. D., Hayes, P. J., & Davies, I. M. (2002). Localised remobilization of metals in a marine sediment. The Science of the Total Environment, 296(1–3), 175–187.
  • Zhang, H., Feng, X. B., Jiang, C. X., Li, Q. H., Liu, Y., Gu, C. H., … Larssen, T. (2014). Understanding the paradox of selenium contamination in mercury mining areas: High soil content and low accumulation in rice. Environmental Pollution, 188, 27–36. doi:10.1016/j.envpol.2014.01.012
  • Zhang, L. H., Abdel-Ghany, S. E., Freeman, J. L., Ackley, A. R., Schiavon, M., & Pilon-Smits, E. A. H. (2006). Investigation of selenium tolerance mechanisms in Arabidopsis thaliana. Physiologia Plantarum, 128(2), 212–223. doi:10.1111/j.1399-3054.2006.00739.x
  • Zhang, L. H., Hu, B., Li, W., Che, R. H., Deng, K., Li, H., … Chu, C. C. (2014). OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. The New Phytologist, 201(4), 1183–1191.
  • Zhang, M., Tang, S. H., Huang, X., Zhang, F. B., Pang, Y. W., Huang, Q. Y., & Yi, Q. (2014). Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany, 107, 39–45. doi:10.1016/j.envexpbot.2014.05.005
  • Zhang, X., & Wang, H. F. (2009). Effects of spraying selenium fertilizer at different growth stages on selenium content in millet seeds. Anhui Agricultural Science Bulletin, 15, 85–86. (in Chinese).
  • Zhang, Y. Q., & Frankenberger, W. T. (2003). Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Science of the Total Environment, 305(1–3), 207–216. doi:10.1016/S0048-9697(02)00479-5
  • Zhao, C. Y., Ren, J. G., Xue, C. Z., & Lin, E. D. (2005). Study on the relationship between soil selenium and plant selenium uptake. Plant and Soil, 277(1-2), 197–206. doi:10.1007/s11104-005-7011-9
  • Zhao, F. J., Lopez-Bellido, F. J., Gray, C. W., Whalley, W. R., Clark, L. J., & McGrath, S. P. (2007). Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. The Science of the Total Environment, 372(2-3), 433–439.
  • Zhao, F. J., Su, Y. H., Dunham, S. J., Rakszegi, M., Bedo, Z., McGrath, S. P., & Shewry, P. R. (2009). Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of the Cereal Science, 49(2), 290–295. doi:10.1016/j.jcs.2008.11.007
  • Zhou, X. B., Zhang, C. M., & Gao, A. X. (2018). Selenium speciation and distribution in the rhizosphere and selenium uptake of two rice (Oryza sativa) genotypes. International Journal of Agricultural and Biological Engineering, 20, 136–142.
  • Zhu, J., Wang, N., Li, S., Li, L., Su, H., & Liu, C. (2008). Distribution and transport of selenium in Yutangba, China: Impact of human activities. The Science of the Total Environment, 392(2–3), 252–261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.