5,147
Views
271
CrossRef citations to date
0
Altmetric
Original Articles

A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1027-1078 | Published online: 21 Jan 2019

References

  • Abdel-Fattah, T. M., Mahmoud, M. E., Ahmed, S. B., Huff, M. D., Lee, J. W., & Kumar, S. (2015). Biochar from woody biomass for removing metal contaminants and carbon sequestration. Journal of Industrial and Engineering Chemistry, 22, 103–109. doi: 10.1016/j.jiec.2014.06.030
  • Adki, V. S., Jadhav, J. P., & Bapat, V. A. (2013). Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environmental Science and Pollution Research, 20, 1173–1180. doi: 10.1007/s11356-012-1125-4
  • Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Economics and Management, 133, 309–314. doi: 10.1016/j.jenvman.2013.12.007
  • Ahemad, M. (2015). Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. Journal of Genetic Engineering and Biotechnology, 13(1), 51–58. doi: 10.1016/j.jgeb.2015.02.001
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. doi: 10.1016/j.chemosphere.2013.10.071
  • Ahmed, F., Hossain, M., Abdullah, A. T., Akbor, M., & Ahsan, M. (2016). Public health risk assessment of chromium intake from vegetable grown in the wastewater irrigated site in Bangladesh. Pollution, 2, 425–432. doi: 10.7508/pj.2016.04.005
  • Alam, M. Z., & Ahmad, S. (2011). Chromium removal through biosorption and bioaccumulation by bacteria from tannery effluents contaminated soil. CLEAN - Soil, Air, Water, 39, 226–237. doi: 10.1002/clen.201000259
  • Altun, T., Parlayıcı, Ş., & Pehlivan, E. (2016). Hexavalent chromium removal using agricultural waste “rye husk”. Desalination and Water Treatment, 57, 17748–17756. doi: 10.1080/19443994.2015.1085914
  • Alvarez-Ayuso, E., Garcia-Sanchez, A., & Querol, X. (2007). Adsorption of Cr (VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. Journal of Hazardous Materials, 142, 191–198. doi: 10.1016/j.jhazmat.2006.08.004
  • And, I. J. B., & Hug, S. J. (1988). Influence of organic ligands on chromium(VI) reduction by iron(II). Environmental Science & Technology, 32, 778–780. doi: 10.1021/es970932b
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., … Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation: A review. Earth-Science Reviews, 171, 621–645. doi: 10.1016/j.earscirev.2017.06.005
  • Antoniadis, V., Polyzois, T., Golia, E. E., & Petropoulos, S. A. (2017). Hexavalent chromium availability and phytoremediation potential of Cichorium spinosum as affect by manure, zeolite and soil ageing. Chemosphere, 171, 729–734. doi: 10.1016/j.chemosphere.2016.11.146
  • Antoniadis, V., Zanni, A. A., Levizou, E., Shaheen, S. M., Dimirkou, A., Bolan, N., & Rinklebe, J. (2018). Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite. Chemosphere, 195, 291–300. doi: 10.1016/j.chemosphere.2017.12.069
  • Aranda-García, E., Morales-Barrera, L., Pineda-Camacho, G., & Cristiani-Urbina, E. (2014). Effect of pH, ionic strength, and background electrolytes on Cr (VI) and total chromium removal by acorn shell of Quercus crassipes Humb. & Bonpl. Environmental Monitoring and Assessment, 186, 6207–6221. doi: 10.1007/s10661-014-3849-8
  • Ashraf, A., Bibi, I., Niazi, N. K., Ok, Y. S., Murtaza, G., Shahid, M., … Mahmood, T. (2017). Chromium (VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. International Journal of Phytoremediation, 19, 605–613. doi: 10.1080/15226514.2016.1256372
  • Augustynowicz, J., Grosicki, M., Hanus-Fajerska, E., Lekka, M., Waloszek, A., & Kołoczek, H. (2010). Chromium (VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere, 79, 1077–1083. doi: 10.1016/j.chemosphere.2010.03.019
  • Bai, Y. H., Yang, T. T., Liang, J. S., & Qu, J. H. (2016). The role of biogenic Fe-Mn oxides formed in situ, for arsenic oxidation and adsorption in aquatic ecosystems. Water Research, 98, 119–127. doi: 10.1016/j.watres.2016.03.068
  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.
  • Banks, M. K., Schwab, A. P., & Henderson, C. (2006). Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62, 255–264. doi: 10.1016/j.chemosphere.2005.05.020
  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377. doi: 10.1016/j.arabjc.2010.07.019
  • Bareen, F., & Khilji, S. (2008). Bioaccumulation of metals from tannery sludge by Typha angustifolia L. African Journal of Biotechnology, 7, 3314–3320. doi: 10.5897/AJB08.220
  • Barrera-Díaz, C. E., Lugo-Lugo, V., & Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. Journal of Hazardous Materials, 223, 1–12. doi: 10.1016/j.jhazmat.2012.04.054
  • Beaumont, J. J., Sedman, R. M., Reynolds, S. D., Sherman, C. D., Li, L. H., Howd, R. A., … Alexeeff, G. V. (2008). Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water. Epidemiology, 19(1), 12–23. doi: 10.1097/EDE.0b013e31815cea4c
  • Beller, H. R., Han, R. Y., Karaoz, U., Lim, H., & Brodie, E. L. (2013). Genomic and physiological characterization of the chromate-reducing, aquifer-derived firmicute Pelosinus sp. strain HCF1. Applied and Environmental Microbiology, 79(1), 63–73. doi: 10.1128/AEM.02496-12
  • Benazir, J. F., Suganthi, R., Rajvel, D., Pooja, M. P., & Mathithumilan, B. (2010). Bioremediation of chromium in tannery effluent by microbial consortia. African Journal of Biotechnology, 9, 3140–3143. doi: 10.5897/AJB10.207
  • Bharagava, R. N., & Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety, 147, 102–109. doi: 10.1016/j.ecoenv.2017.08.040
  • Bolan, N., Kunhikrishnan, A., & Gibbs, J. (2013). Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant and Soil, 367(1–2), 615–625. doi: 10.1007/s11104-012-1506-y
  • Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability. Advances in Agronomy, 78, 215–272. doi: 10.1016/S0065-2113(02)78006-1
  • Bolan, N. S., Adriano, D. C., Natesan, R., & Koo, B. J. (2003). Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. Journal of Environment Quality, 32(1), 120–128. doi: 10.2134/jeq2003.1200
  • Bolan, N. S., Choppala, G., Kunhikrishnan, A., Park, J., & Naidu, R. (2013). Microbial transformation of trace elements in soils in relation to bioavailability and remediation. Reviews of Environmental Contamination and Toxicology, 225, 1–56. doi: 10.1007/978-1-4614-6470-9_1
  • Bonanno, G., & Giudice, R. L. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645. doi: 10.1016/j.ecolind.2009.11.002
  • Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C., & Vernon-Carter, E. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, 101, 5862–5867. doi: 10.1016/j.biortech.2010.03.027
  • Cameselle, C., Chirakkara, R. A., & Reddy, K. R. (2013). Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 93, 626–636. doi: 10.1016/j.chemosphere.2013.06.029
  • Caravelli, A. H., Giannuzzi, L., & Zaritzky, N. E. (2008). Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. Journal of Hazardous Materials, 156(1–3), 214–222. doi: 10.1016/j.jhazmat.2007.12.014
  • CCME (2015). Canadian soil quality guidelines for the protection of environmental and human health. Winnipeg, Canada: Canada Council of Ministers of the Environment.
  • Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25, 335–347. doi: 10.1016/S0168-6445(01)00057-2
  • Chai, L., Huang, S., Yang, Z., Peng, B., Huang, Y., & Chen, Y. (2009). Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Journal of Hazardous Materials, 167(1–3), 516–522. doi: 10.1016/j.jhazmat.2009.01.030
  • Chandra, R., & Yadav, S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using phragmites cummunis, typha angustifolia and cyperus esculentus. International Journal of Phytoremediation, 13, 580–591. doi: 10.1080/15226514.2010.495258
  • Chang, Y. Y., Lim, J. W., & Yang, J. K. (2012). Removal of As(V) and Cr(VI) in aqueous solution by sand media simultaneously coated with Fe and Mn oxides. Journal of Industrial and Engineering Chemistry, 18(1), 188–192. doi: 10.1016/j.jiec.2011.11.002
  • Chen, T., Chang, Q. R., Liu, J., Clevers, J. G. P. W., & Kooistra, L. (2016). Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Science of the Total Environment, 565, 155–164. doi: 10.1016/j.scitotenv.2016.04.163
  • Chen, Y. L., Hong, X. Q., He, H., Luo, H. W., Qian, T. T., Li, R. Z., … Yu, H. Q. (2014). Biosorption of Cr (VI) by Typha angustifolia: Mechanism and responses to heavy metal stress. Bioresource Technology, 160, 89–92. doi: 10.1016/j.biortech.2014.01.022
  • Cheng, H. G., Zhou, T., Li, Q., Lu, L., & Lin, C. Y. (2014). Anthropogenic chromium emissions in China from 1990 to 2009. PLoS One, 9, e87753. doi: 10.1371/journal.pone.0087753
  • Cheung, K. H., & Gu, J. D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation, 59(1), 8–15. doi: 10.1016/j.ibiod.2006.05.002
  • Christiano, D., Dirk, M., Ales, S., Georg, B., & Erika, K. (2009). Metal-inducedoxidative stress impacting plant growth in contaminated soil isalleviated by microbial siderophores. Soil Biol. Biochem., 41,154–162. doi: 10.1016/j.soilbio.2008.10.010
  • Choo, T. P., Lee, C. K., Low, K. S., & Hishamuddin, O. (2006). Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere, 62, 961–967. doi: 10.1016/j.chemosphere.2005.05.052
  • Choppala, G., Bolan, N., & Park, J. H. (2013). Chromium contamination and its risk management in complex environmental settings. Advances in Agronomy, 120, 129–172. doi: 10.1016/B978-0-12-407686-0.00002-6
  • Choppala, G., Bolan, N., Kunhikrishnan, A., & Bush, R. (2016). Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere, 144, 374–381. doi: 10.1016/j.chemosphere.2015.08.043
  • Choppala, G., Kunhikrishnan, A., Seshadri, B., Park, J. H., Bush, R., & Bolan, N. (2018). Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. Journal of Geochemical Exploration, 184, 255–260. doi: 10.1016/j.gexplo.2016.07.012
  • Choppala, G. K., Bolan, N. S., Megharaj, M., Chen, Z., & Naidu, R. (2012). The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Journal of Environment Quality, 41, 1175–1184. doi: 10.2134/jeq2011.0145
  • Chrysochoou, M., Johnston, C. P., & Dahal, G. (2012). A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. Journal of Hazardous Materials, 201, 33–42. doi: 10.1016/j.jhazmat.2011.11.003
  • Chyan, J. M., Lin, C. J., Lin, Y. C., & Chou, Y. A. (2016). Improving removal performance of pollutants by artificial aeration and flow rectification in free water surface constructed wetland. International Biodeterioration & Biodegradation, 113, 146–154. doi: 10.1016/j.ibiod.2016.04.034
  • Davies, F. T., Jr. Puryear, J. D., Newton, R. J., Egilla, J. N., & Saraiva, G. J. A. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, 25, 2389–2407. doi: 10.1081/PLN-120014702
  • Deng, H. Y., & Chen, G. C. (2012). Progress in research on microbial remediation technologies of chromium-contaminated soil. Earth and Environment, 40, 466–472. (In Chinese) doi: 10.14050/j.cnki.1672-9250.2012.03.018
  • Deng, L., Zhang, Y., Qin, J., Wang, X. T., & Zhu, X. B. (2009). Biosorption of Cr (VI) from aqueous solutions by nonliving green algae Cladophora albida. Minerals Engineering, 22, 372–377. doi: 10.1016/j.mineng.2008.10.006
  • Deng, W. G., Zwieten, L. V., Lin, Z. M., Liu, X. Y., Sarmah, A. K., & Wang, H. L. (2017). Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol. Journal of Soils and Sediments, 17, 632–640. doi: 10.1007/s11368-015-1347-4
  • Deveci, H., & Kar, Y. (2013). Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. Journal of Industrial and Engineering Chemistry, 19(1), 190–196. doi: 10.1016/j.jiec.2012.08.001
  • Dey, S., & Paul, A. K. (2016). Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. Chemosphere, 156, 69–75. doi: 10.1016/j.chemosphere.2016.04.101
  • Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. Journal of Hazardous Materials, 250-251, 272–291. doi: 10.1016/j.jhazmat.2013.01.048
  • Di, N. F., Lancia, A., Molino, A., & Musmarra, D. (2007). Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. Journal of Hazardous Materials, 145, 381–390. doi: 10.1016/j.jhazmat.2006.11.028
  • Ding, C., Li, X., Zhang, T., Ma, Y., & Wang, X. (2014). Phytotoxicity and accumulation of chromium in carrot plants and the derivation of soil thresholds for Chinese soils. Ecotoxicology and Environmental Safety, 108, 179–186. doi: 10.1016/j.ecoenv.2014.07.006
  • Diwan, H., Khan, I., Ahmad, A., & Iqbal, M. (2010). Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61(1), 97–107. doi: 10.1007/s10725-010-9454-0
  • Dong, D., Feng, Q. B., McGrouther, K., Yang, M., Wang, H. L., & Wu, W. X. (2015). Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of Soils and Sediments, 15(1), 153–162. doi: 10.1007/s11368-014-0984-3
  • Dong, G. W., Wang, Y. P., Gong, L. B., Wang, M. G., Wang, H. T., He, N., … Li, Q. B. (2013). Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus, strain XMCr-6. Biochemical Engineering Journal, 70, 166–172. doi: 10.1016/j.bej.2012.11.002
  • Dong, H. L., & Lu, A. H. (2012). Mineral-microbe interactions and implications for remediation. Elements, 8, 95–100. doi: 10.2113/gselements.8.2.95
  • Dong, X., Ma, L. Q., & Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190(1–3), 909–915. doi: 10.1016/j.jhazmat.2011.04.008
  • Duarte, B., Silva, V., & Caçador, I. (2012). Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicology and Environmental Safety, 83, 1–7. doi: 10.1016/j.ecoenv.2012.04.026
  • Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., & Chandraraj, K. (2006). Reduction of Cr (VI) by a Bacillus sp. Biotechnology Letters, 28, 247–252. doi: 10.1007/s10529-005-5526-z
  • Elangovan, R., Philip, L., & Chandraraj, K. (2010). Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Applied Biochemistry and Biotechnology, 160(1), 81–97. doi: 10.1007/s12010-008-8515-6
  • Fernández, P. M., Viñarta, S. C., Bernal, A. R., Cruz, E. L., & Figueroa, L. I. C. (2018). Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere, 208, 139–148. doi: 10.1016/j.chemosphere.2018.05.166
  • Finocchio, E., Lodi, A., Solisio, C., & Converti, A. (2010). Chromium (VI) removal by methylated biomass of Spirulina platensis: The effect of methylation process. Chemical Engineering Journal, 156, 264–269. doi: 10.1016/j.cej.2009.10.015
  • Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. doi: 10.1016/j.biortech.2013.12.102
  • Foucault, Y., Lévèque, T., Xiong, T., Schreck, E., Austruy, A., Shahid, M., & Dumat, C. (2013). Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere, 93, 1430–1435. doi: 10.1016/j.chemosphere.2013.07.040
  • Gabr, R. M., Gad-Elrab, S. M. F., Abskharon, R. N. N., Hassan, S. H. A., & Shoreit, A. A. M. (2009). Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon. World Journal of Microbiology and Biotechnology, 25, 1695–1703. doi: 10.1007/s11274-009-0063-x
  • Gao, H., Liu, Y., Zeng, G., Xu, W., Li, T., & Xia, W. (2008). Characterization of Cr (VI) removal from aqueous solutions by a surplus agricultural waste—Rice straw. Journal of Hazardous Materials, 150, 446–452. doi: 10.1016/j.jhazmat.2007.04.126
  • Gardea-Torresdey, J. L., Peralta-Videa, J. R., Montes, M., De, G. L. R., & Corral-Diaz, B. (2004). Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: Impact on plant growth and uptake of nutritional elements. Bioresource Technology, 92, 229–235. doi: 10.1016/j.biortech.2003.10.002
  • Garg, U. K., Kaur, M. P., Garg, V. K., & Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials, 140(1–2), 60–68. doi: 10.1016/j.jhazmat.2006.06.056
  • Ge, Z. G., Feng, C. M., Wang, X. P., & Zhang, J. B. (2016). Seasonal applicability of three vegetation constructed floating treatment wetlands for nutrient removal and harvesting strategy in urban stormwater retention ponds. International Biodeterioration & Biodegradation, 112, 80–87. doi: 10.1016/j.ibiod.2016.05.007
  • Ghafoori, M., Majid, N. M., Islam, M. M., & Luhat, S. (2011). Bioaccumulation of heavy metals by Dyera costulata cultivated in sewage sludge contaminated soil. African Journal of Biotechnology, 10, 10674–10682. doi: 10.5897/AJB11.180
  • Gonzalez, M. H., Araújo, G. C. L., Pelizaro, C. B., Menezes, E. A., Lemos, S. G., de Sousa, G. B., & Nogueira, A. R. A. (2008). Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater. Journal of Hazardous Materials, 159, 252–256. doi: 10.1016/j.jhazmat.2008.02.014
  • Guo, L. L., Xu, C., Li, S. P., Yang, L. W., & Li, S. (2014). Biochemical reducing stabilization of soil contaminated by chromium(VI). Environmental Engineering, 32, 152–156. (In Chinese). doi: 10.13205/j.hjgc.201410035
  • Han, Y. T., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. W. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336–341. doi: 10.1016/j.chemosphere.2015.11.050
  • He, J., & Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78. doi: 10.1016/j.biortech.2014.01.068
  • He, J. Z., Meng, Y. T., Zheng, Y. M., & Zhang, L. W. (2010). Cr(III) oxidation coupled with Mn(II) bacterial oxidation in the environment. Journal of Soils and Sediments, 10, 767–773. doi: 10.1007/s11368-009-0139-0
  • He, L., Gielen, G., Bolan, N. S., Zhang, X. K., Qin, H., Huang, H. G., & Wang, H. L. (2015). Contamination and remediation of phthalic acid esters in agricultural soils in China: A review. Agronomy for Sustainable Development, 35, 519–534. doi: 10.1007/s13593-014-0270-1
  • He, L. Z., Fan, S. L., Müller, K., Wang, H. L., Che, L., Xu, S., … Bolan, N. S. (2018). Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Science of the Total Environment, 625, 987–993. doi: 10.1016/j.scitotenv.2018.01.002
  • He, Y., Dong, L. L., Zhou, S. M., Jia, Y., Gu, R. J., Bai, Q. H., … Xiao, H. (2018). Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2. Ecotoxicology and Environmental Safety, 157, 417–423. doi: 10.1016/j.ecoenv.2018.03.079
  • Herath, H., Rajapaksha, A. U., Vithanage, M., & Seneviratne, G. (2014). Developed fungal-bacterial biofilms as a novel tool for bioremoval of hexavelant chromium from wastewater. Journal of Chemical Ecology, 30, 418–427. doi: 10.1080/02757540.2013.861828
  • Hontzeas, N., Zoidakis, J., Glick, B. R., & Abu-Omar, M. M. (2004). Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: A key enzyme in bacterial plant growth promotion. Biochimica et Biophysica Acta - Proteins and Proteomics, 1703(1), 11–19. doi: 10.1016/j.bbapap.2004.09.015
  • Hori, M., Shozugawa, K., & Matsuo, M. (2015). Hexavalent chromium pollution caused by dumped chromium slag at the urban park in Tokyo. Journal of Material Cycles and Waste Management, 17(1), 201–205. doi: 10.1007/s10163-014-0243-0
  • Hsu, L. C., Liu, Y. T., & Tzou, Y. M. (2015). Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. Journal of Hazardous Materials, 296, 230–238. doi: 10.1016/j.jhazmat.2015.03.044
  • Huang, P., Ge, C. J., Feng, D., Yu, H. M., Luo, J. W., Li, J. T., … Wang, H. L. (2018a). Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Science of the Total Environment, 616, 1384–1391. doi: 10.1016/j.scitotenv.2017.10.177
  • Huang, S., Bao, J., Shan, M., Qin, H., Wang, H., Yu, X., … Xu, Q. (2018). Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere, 211, 120–127. doi: 10.1016/j.chemosphere.2018.07.133
  • Huang, X., Liu, Y., Liu, S., Tan, X., Ding, Y., Zeng, G., … Zheng, B. (2016). Effective removal of Cr (VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances, 6(1), 94–104. doi: 10.1039/C5RA22886G
  • Imandi, S. B., Chinthala, R., Saka, S., Vechalapu, R. R., & Nalla, K. K. (2014). Optimization of chromium biosorption in aqueous solution by marine yeast biomass of Yarrowia lipolytica using Doehlert experimental design. African Journal of Biotechnology, 13, 1413–1422. doi: 10.5897/AJB12.2840
  • Jain, M., Garg, V. K., & Kadirvelu, K. (2013). Chromium removal from aqueous system and industrial wastewater by agricultural wastes. Bioremediation Journal, 17(1), 30–39. doi: 10.1080/10889868.2012.731450
  • Jaison, S., & Muthukumar, T. (2017). Chromium accumulation in medicinal plants growing naturally on tannery contaminated and non-contaminated soils. Biological Trace Element Research, 175(1), 223–235. doi: 10.1007/s12011-016-0740-1
  • Janoš, P., Hůla, V., Bradnová, P., Pilařová, V., & Šedlbauer, J. (2009). Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents. Chemosphere, 75, 732–738. doi: 10.1016/j.chemosphere.2009.01.037
  • Javaid, A., Bajwa, R., Shafique, U., & Anwar, J. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass & Bioenergy, 35, 1675–1682. doi: 10.1016/j.biombioe.2010.12.035
  • Jayakumar, R., Rajasimman, M., & Karthikeyan, C. (2014). Sorption of hexavalent chromium from aqueous solution using marine green algae Halimeda gracilis: Optimization, equilibrium, kinetic, thermodynamic and desorption studies. Journal of Environmental Chemical Engineering, 2, 1261–1274. doi: 10.1016/j.jece.2014.05.007
  • Jiang, L. H., Liu, S. B., Liu, Y. G., Zeng, G. M., Guo, Y. M., Yin, Y. C., … Huang, X. X. (2017). Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria nivea (L.) Gaud.) modified with β-cyclodextrin/poly(L-glutamic acid). Environmental Science and Pollution Research, 24, 1–10. doi: 10.1007/s11356-017-9833-4
  • Jin, W., Du, H., Zheng, S. L., & Zhang, Y. (2016). Electrochemical processes for the environmental remediation of toxic Cr (VI): A review. Electrochimica Acta, 191, 1044–1055. doi: 10.1016/j.electacta.2016.01.130
  • Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: A comprehensive review. Chemosphere, 207, 255–266. doi: 10.1016/j.chemosphere.2018.05.050
  • Joutey, N. T., Bahafid, W., Sayel, H., Nassef, S., & Ghachtouli, N. E. (2016). Leucobacter chromiireducens CRB2, a new strain with high Cr (VI) reduction potential isolated from tannery-contaminated soil (Fez, Morocco). Annals of Microbiology, 66, 425–436. doi: 10.1007/s13213-015-1125-y
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton, FL: CRC Press.
  • Kafilzadeh, F., & Saberifard, S. (2016). Isolation and identification of chromium (VI)-resistant bacteria from Soltan Abad river sediments (Shiraz-Iran). Jundishapur Journal of Health Sciences, 8, e33576. doi: 10.17795/jjhs-33576
  • Kamran, M. A., Bibi, S., Xu, R. K., Hussain, S., Mehmood, K., & Chaudhary, H. J. (2017). Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth. Journal of Geochemical Exploration, 182, 269–274. doi: 10.1016/j.gexplo.2016.09.005
  • Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International Journal of Environmental Science and Technology, 9(1), 183–193. doi: 10.1007/s13762-011-0013-7
  • Keng, P. S., Lee, S. L., Ha, S. T., Hung, Y. T., & Ong, S. T. (2014). Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environmental Chemistry Letters, 12(1), 15–25. doi: 10.1007/s10311-013-0427-1
  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. doi: 10.1016/j.gexplo.2016.11.021
  • Khan, M. U., Sessitsch, A., Harris, M., Fatima, K., Imran, A., Arslan, M., … Afzal, M. (2015). Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science, 5, 755. doi: 10.3389/fpls.2014.00755
  • Khaskheli, M. I., Memon, S. Q., Chandio, Z. A., Jatoi, W. B., Mahar, M. T., & Khokhar, F. M. (2016). Okra leaves—Agricultural waste for the removal of Cr (III) and Cr (VI) from contaminated water. American Journal of Analytical Chemistry, 7, 395–409. doi: 10.4236/ajac.2016.74037
  • Kim, C., Zhou, Q. H., Deng, B. L., Thornton, E. C., & Xu, H. F. (2001). Chromium (VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environmental Science & Technology, 35, 2219–2225. doi: 10.1021/es0017007
  • Krishna, K. R., & Philip, L. (2005). Bioremediation of Cr (VI) in contaminated soils. Journal of Hazardous Materials, 121(1–3), 109–117. doi: 10.1016/j.jhazmat.2005.01.018
  • Ksheminska, H., Fedorovych, D., Babyak, L., Yanovych, D., Kaszycki, P., & Koloczek, H. (2005). Chromium (III) and (VI) tolerance and bioaccumulation in yeast: A survey of cellular chromium content in selected strains of representative genera. Process Biochemistry, 40, 1565–1572. doi: 10.1016/j.procbio.2004.05.012
  • Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae—A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. doi: 10.1016/j.ecoenv.2014.12.019
  • Kurniawan, T. A., Chan, G. Y. S., Lo, W., & Babel, S. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 366, 409–426. doi: 10.1016/j.scitotenv.2005.10.001
  • Landrot, G., Tappero, R., Webb, S. M., & Sparks, D. L. (2012). Arsenic and chromium speciation in an urban contaminated soil. Chemosphere, 88, 1196–1201. doi: 10.1016/j.chemosphere.2012.03.069
  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. doi: 10.1016/j.chemosphere.2017.03.072
  • Li, Y. F., Hu, S. D., Chen, J. H., Müller, K., Li, Y. C., Fu, W. J., … Wang, H. L. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. Journal of Soils and Sediments, 18, 1–18. doi: 10.1007/s11368-017-1906-y
  • Liao, S. J., & Wang, G. J. (2013). Application of manganese oxidizing bacteria and biogenic manganese oxide in remediation of environmental pollution: A review. Journal of Huazhong Agricultural University, 32, 9–14. (In Chinese). doi: 10.13300/j.cnki.hnlkxb.2013.05.002
  • Lilli, M. A., Moraetis, D., Nikolaidis, N. P., Karatzas, G. P., & Kalogerakis, N. (2015). Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin. Journal of Hazardous Materials, 281, 12–19. doi: 10.1016/j.jhazmat.2014.07.037
  • Liu, H., Wang, H., & Wang, G. (2012). Intrasporangium chromatireducens sp. nov., a chromate-reducing actinobacterium isolated from manganese mining soil, and emended description of the genus Intrasporangium. Journal of Hazardous Materials, 62, 403–408. doi: 10.1099/ijs.0.030528-0
  • Liu, J., Duan, C. Q., Zhang, X. H., Zhu, Y. N., & Hu, C. (2011). Characteristics of chromium(III) uptake in hyperaccumulator Leersia hexandra, Swartz. Environmental and Experimental Botany, 74, 122–126. doi: 10.1016/j.envexpbot.2011.05.008
  • Lofrano, G., Meriç, S., Zengin, G. E., & Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of the Total Environment, 461-462, 265–281. doi: 10.1016/j.scitotenv.2013.05.004
  • Lokeshwari, N., & Joshi, K. (2009). Biosorption of heavy metal (chromium) using biomass. Global Journal of Environmental Research, 3, 29–35.
  • Loukidou, M. X., Zouboulis, A. I., Karapantsios, T. D., & Matis, K. A. (2004). Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 242(1–3), 93–104. doi: 10.1016/j.colsurfa.2004.03.030
  • Lukina, A. O., Boutin, C., Rowland, O., & Carpenter, D. J. (2016). Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere, 162, 355–364. doi: 10.1016/j.chemosphere.2016.07.055
  • Luo, J. W., Li, X., Ge, C. J., Müller, K., Yu, H. M., Huang, P., … Wang, H. L. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Bioresource Technology, 263, 385–392. doi: 10.1016/j.biortech.2018.05.022
  • Lytle, C. M., Lytle, F. W., Yang, N., Qian, J. H., Hansen, D., Zayed, A., & Terry, N. (1998). Reduction of Cr (VI) to Cr (III) by wetland plants: Potential for in situ heavy metal detoxification. Environmental Science & Technology, 32, 3087–3093. doi: 10.1021/es980089x
  • Lyu, H. H., Zhao, H., Tang, J. C., Gong, Y. Y., Huang, Y., Wu, Q. H., & Gao, B. (2018). Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere, 194, 360–369. doi: 10.1016/j.chemosphere.2017.11.182
  • Ma, H. W., Hung, M. L., & Chen, P. C. (2007). A systemic health risk assessment for the chromium cycle in Taiwan. Environment International, 33, 206–218. doi: 10.1016/j.envint.2006.09.011
  • Ma, Y., & Hooda, P. S. (2010). Chromium, nickel and cobalt. In Hooda, P. S. (Ed.), Trace elements in soils (1st ed., pp.461–480). Chichester, UK: John Wiley & Sons Ltd.
  • Ma, Y., Liu, W. J., Zhang, N., Li, Y. S., Jiang, H., & Sheng, G. P. (2014). Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 69, 403–408. doi: 10.1016/j.biortech.2014.07.014
  • Machuca, A., Pereira, G., Aguiar, A., & Milagres, A. M. F. (2007). Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Letters in Applied Microbiology, 44(1), 7–12. doi: 10.1177/1080569908317067
  • Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., … Zhang, Z. Q. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111–121. doi: 10.1016/j.ecoenv.2015.12.023
  • Mahmoud, R. H., & Hamza, A. H. M. (2017). Phytoremediation application: Plants as biosorbent for metal removal in soil and water [M]/phytoremediation. In Remediation of pharmaceutical and personal care products (PPCPs) in constructed wetlands: Applicability and new perspectives (pp.405–422). New York, NY: Springer International Publishing.
  • Malaviya, P., & Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 42, 607–633. doi: 10.3109/1040841X.2014.974501
  • Malhotra, M., & Srivastava, S. (2009). Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense, SM and its ability to modulate plant growth. European Journal of Soil Biology, 45(1), 73–80. doi: 10.1016/j.ejsobi.2008.05.006
  • Mandal, S., Sarkar, B., Bolan, N., Ok, Y. S., & Naidu, R. (2017). Enhancement of chromate reduction in soils by surface modified biochar. Journal of Environmental Economics and Management, 186, 277–284. doi: 10.1016/j.jenvman.2016.05.034
  • Mandina, S., & Mugadza, T. (2014). Chromium, an essential nutrient and pollutant: A review. Midlands State University Journal of Science, Agriculture and Technology, 5, 46–64.
  • Maqbool, Z., Asghar, H. N., Shahzad, T., Hussain, S., Riaz, M., Ali, S., … Maqsood, M. (2015). Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Ecotoxicology and Environmental Safety, 114, 343–349. doi: 10.1016/j.ecoenv.2014.07.007
  • Maremeni, L. C., Modise, S. J., Mtunzi, F. M., Klink, M. J., & Pakade, V. E. (2018). Adsorptive removal of hexavalent chromium by diphenylcarbazide-grafted Macadamia nutshell powder. Bioinorganic Chemistry and Applications, 2018, 1–14. doi: 10.1155/2018/6171906
  • Marques, M. J., Salvador, A., Morales-Rubio, A., & De La Guardia, M. (2000). Chromium speciation in liquid matrices: A survey of the literature. Fresenius’ Journal of Analytical Chemistry, 367, 601–613. doi: 10.1007/s002160000422
  • McGrath, S. P., & Smith, S. (1990). Chromium and nickel. In Alloway, B. J. (Ed.), Heavy metals in soils (pp.125–150). Glasgow: Balckie.
  • Meena, A. K., Kadirvelu, K., Mishra, G. K., Rajagopal, C., & Nagar, P. N. (2008). Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). Journal of Hazardous Materials, 150, 604–611. doi: 10.1016/j.jhazmat.2007.05.030
  • Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154(1), 29–43. doi: 10.1046/j.1469-8137.2002.00363.x
  • Meier, S., Borie, F., Bolan, N., & Cornejo, P. (2012). Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology, 42, 741–775. doi: 10.1080/10643389.2010.528518
  • Mellem, J. J., Baijnath, H., & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7, 591–596. doi: 10.5897/AJAR11.1486
  • Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the art for the biosorption process—A review. Applied Biochemistry and Biotechnology, 170, 1389–1416. doi: 10.1007/s12010-013-0269-0
  • Ministry of Ecology and Environment of the People’s Republic of China. (2015). Retrieved from http://www.zhb.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201605/P020160526564730573906
  • Miretzky, P., & Cirelli, A. F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 180(1–3), 1–19. doi: 10.1016/j.jhazmat.2010.04.060
  • Mohan, D., & Pittman, C. U. (2006). Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762–811. doi: 10.1016/j.jhazmat.2006.06.060
  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188(1–3), 319–333. doi: 10.1016/j.jhazmat.2011.01.127
  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology, 160, 191–202. doi: 10.1016/j.biortech.2014.01.120
  • Mohan, D., Singh, K. P., & Singh, V. K. (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial & Engineering Chemistry Research, 44, 1027–1042. doi: 10.1021/ie0400898
  • Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198. doi: 10.1016/j.envpol.2004.06.009
  • Mulligan, C. N., Yong, R. N., Gibbs, B. F., James, S., & Bennett, H. P. J. (1999). Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environmental Science & Technology, 33, 3812–3820. doi: 10.1021/es9813055
  • Najeeb, U., Xu, L., Ali, S., Jilani, G., Gong, H. J., Shen, W. Q., & Zhou, W. J. (2009). Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. Journal of Hazardous Materials, 170, 1156–1163. doi: 10.1016/j.jhazmat.2009.05.084
  • Narayani, M., & Shetty, K. V. (2013). Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Critical Reviews in Environmental Science and Technology, 43, 955–1009. doi: 10.1080/10643389.2011.627022
  • Nguema, P. F., & Luo, Z. J. (2012). Aerobic chromium (VI) reduction by chromium-resistant bacteria isolated from activated sludge. Annals of Microbiology, 62(1), 41–47. doi: 10.1007/s13213-011-0224-7
  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Shaheen, S. M., Rinklebe, J., … Lüttge, A. (2018). Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment, 621, 1642–1651. doi: 10.1016/j.scitotenv.2017.10.063
  • Nie C., Yang X., Niazi N. K., Xu X., Wen Y., Rinklebe J., Ok Y. S., Xu S., & Wang H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study, Chemosphere. 200, 274–282.
  • Niu, R. C., Wei, S. H., Zhou, Q. X., Zhan, J., Ma, L. H., Li, Y. M., … Wang, X. J. (2010). Process of plant-microbe remediation of contaminated soil with heavy metal. World Sci-Tech R & D, 32, 6636–6636. (In Chinese). doi: 10.3969/j.issn.1006-6055.2010.05.028
  • Nriagu, J. O., & Nieboer, E. (1988). Production and uses of chromium. In Chromium in the natural and human environments (pp.81–104). New York, NY: Wiley.
  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139. doi: 10.1038/333134a0
  • Oliveira, L. M. D., Gress, J., De, J., Rathinasabapathi, B., Marchi, G., Chen, Y. S., & Ma, L. Q. (2016). Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere, 147, 36–43. doi: 10.1016/j.chemosphere.2015.12.088
  • Oliveira, L. M. D., Ma, L. Q., Santos, J. A., Guilherme, L. R., & Lessl, J. T. (2014). Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, 184, 187–192. doi: 10.1016/j.envpol.2013.08.025
  • Pal, A., Dutta, S., & Paul, A. K. (2005). Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Current Microbiology, 51, 327–330. doi: 10.1007/s00284-005-0048-4
  • Park, D., Lim, S. R., Yun, Y. S., & Park, J. M. (2007). Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere, 70, 298–305. doi: 10.1016/j.chemosphere.2007.06.007
  • Park, D., Yun, Y. S., & Park, J. M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere, 60, 1356–1364. doi: 10.1016/j.chemosphere.2005.02.020
  • Park, D., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86–102. doi: 10.1007/s12257-009-0199-4
  • Pehlivan, E., & Altun, T. (2008). Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazardous Materials, 155(1–2), 378–384. doi: 10.1016/j.jhazmat.2007.11.071
  • Peng, L., Liu, Y., Gao, S. H., Dai, X., & Ni, B. J. (2015). Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling. Chemosphere, 139, 334–339. doi: 10.1016/j.chemosphere.2015.06.090
  • Polti, M. A., Atjián, M. C., Amoroso, M. J., & Abate, C. M. (2011). Soil chromium bioremediation: Synergic activity of actinobacteria and plants. International Biodeterioration & Biodegradation, 65, 1175–1181. doi: 10.1016/j.ibiod.2011.09.008
  • Pradhan, D., Sukla, L. B., Sawyer, M., & Rahman, P. K. S. M. (2017). Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry, 55, 1–20. doi: 10.1016/j.jiec.2017.06.040
  • Qi, F. J., Kuppusamy, S., Naidu, R., Bolan, N. S., Ok, Y. S., Lamb, D., … Wang, H. L. (2017). Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 47, 795–876. doi: 10.1080/10643389.2017.1328918
  • Qian, C. X., Wang, M. M., & Xu, Y. B. (2013). Current situation of soil contamination by heavy metals and research progress in bio-remediation technique. Journal of Southeast University, 43, 669–674. (In Chinese). doi: 10.3969/j.issn.1001-0505.2013.03.041
  • Qian, J., Wei, L., Liu, R. L., Jiang, F., Hao, X. D., & Chen, G. H. (2016). An exploratory study on the pathways of Cr (VI) reduction in sulfate-reducing up-flow anaerobic sludge bed (UASB) reactor. Scientific Reports, 6, 23694. doi: 10.1038/srep23694
  • Qin, P., Wang, H. L., Yang, X., He, L. Z., Müller, K., Shaheen, S. M., … Xu, X. Y. (2018). Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere, 198, 450–459. doi: 10.1016/j.chemosphere.2018.01.162
  • Qu, M., Chen, J., Huang, Q., Chen, J., Xu, Y., Luo, J., … Zheng, Y. (2018). Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. International Biodeterioration & Biodegradation, 128, 41–47. doi: 10.1016/j.ibiod.2016.08.022
  • Quantin, C., Ettler, V., Garnier, J., & Šebek, O. (2008). Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geoscience, 340, 872–882. doi: 10.1016/j.crte.2008.07.013
  • Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30, 1562–1574. doi: 10.1016/j.biotechadv.2012.04.011
  • Rakhunde, R., Deshpande, L., & Juneja, H. D. (2012). Chemical speciation of chromium in water: A review. Critical Reviews in Environmental Science and Technology, 42, 776–810. doi: 10.1080/10643389.2010.534029
  • Ranieri, E., Fratino, U., Petruzzelli, D., & Borges, A. C. (2013). A Comparison between Phragmites australis, and Helianthus annuus, in chromium phytoextraction. Water, Air, & Soil Pollution, 224, 1–9. doi: 10.1007/s11270-013-1465-9
  • Reale, L., Ferranti, F., Mantilacci, S., Corboli, M., Aversa, S., Landucci, F., … Venanzoni, R. (2016). Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere, 145, 98–105. doi: 10.1016/j.chemosphere.2015.11.047
  • Redondo-Gómez, S., Mateos-Naranjo, E., Vecino-Bueno, I., & Feldman, S. R. (2011). Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. Journal of Hazardous Materials, 185, 862–869. doi: 10.1016/j.jhazmat.2010.09.101
  • Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulating plants. In Raskin, I., & Ensley, B. D. (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp.93–229). New York, NY: John Wiley and Sons.
  • Rinklebe, J., Shaheen, S. M., Schröter, F., & Rennert, T. (2016). Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Chemosphere, 150, 390–397. doi: 10.1016/j.chemosphere.2016.02.021
  • Romanenko, V. I., & Koren'kov, V. N. (1977). Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions. Mikrobiologiia, 46, 414–417.
  • Rosales, E., Pazos, M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination, 284, 150–156. doi: 10.1016/j.desal.2011.08.049
  • Ross, S. M. (1994). Sources and forms of potentially toxic metals in soil-plant systems. Toxic Metals in Soil-Plant Systems,3–25.
  • Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64, 1782–1806. doi: 10.1080/00958972.2011.583646
  • Sabir, M., Waraich, E. A., Hakeem, K. R., Öztürk, M., Ahmad, H. R., & Shahid, M. (2015). Phytoremediation: Mechanisms and adaptations. Soil Remediation and Plants: Prospects and Challenges,85–105. doi: 10.1016/B978-0-12-799937-1.00004-8
  • Saha, B., & Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 254, 2959–2972. doi: 10.1016/j.ccr.2010.06.005
  • Saha, R., & Saha, B. (2014). Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (Mangifera indica). Desalination and Water Treatment, 52, 1928–1936. doi: 10.1080/19443994.2013.804458
  • Saha, R., Saha, I., Nandi, R., Ghosh, A., Basu, A., Ghosh, S. K., & Saha, B. (2013). Application of chattim tree (devil tree, Alstonia scholaris) saw dust as a biosorbent for removal of hexavalent chromium from contaminated water. The Canadian Journal of Chemical Engineering, 91, 814–821. doi: 10.1002/cjce.21703
  • Sampanpanish, P., Pongsapich, W., Khaodhiar, S., & Khan, E. (2006). Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water, Air, & Soil Pollution: Focus, 6(1–2), 191–206. doi: 10.1007/s11267-005-9006-1
  • Sanghi, R., Sankararamakrishnan, N., & Dave, B. C. (2009). Fungal bioremediation of chromates: Conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. Journal of Hazardous Materials, 169(1–3), 1074–1080. doi: 10.1016/j.jhazmat.2009.04.056
  • Santos, C., & Rodriguez, E. (2012). Review on some emerging endpoints of chromium (VI) and lead phytotoxicity. In Botany. London, UK: InTech Open Access Publisher.
  • Schindler, D. W., Bayley, S. E., Curtis, P. J., Parker, B. R., Stainton, M. P., & Kelly, C. A. (1992). Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. In Dissolved organic matter in lacustrine ecosystems (pp.1–21). Dordrecht, Netherlands: Springer.
  • Shahandeh, H., & Hossner, L. R. (2000). Plant screening for chromium phytoremediation. International Journal of Phytoremediation, 2(1), 31–51. doi: 10.1080/15226510008500029
  • Shaheen, S. M., Shams, M. S., Khalifa, M. R., El-Dali, M. A., & Rinklebe, J. (2017). Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety, 142, 375–387. doi: 10.1016/j.ecoenv.2017.04.026
  • Shaheen, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, D. C. W., … Rinklebe, J. (2018). Wood-based biochar for the removal of potentially toxic elements (PTEs) in water and wastewater: A critical review. International Materials Reviews. doi: 10.1080/09506608.2018.1473096
  • Shaheen, S. M., & Rinklebe, J. (2015). Phytoextraction of potentially toxic elements from a contaminated floodplain soil using Indian mustard, rapeseed, and sunflower. Environmental Geochemistry and Health, 37, 953–967. doi: 10.1007/s10653-015-9718-8
  • Shaheen, S. M., Rinklebe, J., Rupp, H., & Meissner, R. (2014). Lysimeter trials to assess the impact of different flood-dry-cycles on the dynamics of pore water concentrations of As, Cr, Mo and V in a contaminated floodplain soil. Geoderma, 228-229, 5–13. doi: 10.1016/j.geoderma.2013.12.030
  • Shahid, M., Austruy, A., Echevarria, G., Arshad, M., Sanaullah, M., Aslam, M., … Dumat, C. (2014). EDTA-enhanced phytoremediation of heavy metals: A review. Soil and Sediment Contamination: An International Journal, 23, 389–416. doi: 10.1080/15320383.2014.831029
  • Shahid, M., Pinelli, E., & Dumat, C. (2012). Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219, 1–12. doi: 10.1016/j.jhazmat.2012.01.060
  • Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014b). Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232, 1–44. doi: 10.1007/978-3-319-06746-9_1
  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., … Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533. doi: 10.1016/j.chemosphere.2017.03.074
  • Shanker, A. K., Cervantes, C., Lozatavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753. doi: 10.1016/j.envint.2005.02.003
  • Shanker, A. K., Djanaguiraman, M., Sudhagar, R., Chandrashekar, C. N., & Pathmanabhan, G. (2004). Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO 4) roots. Plant Science, 166, 1035–1043. doi: 10.1016/j.plantsci.2003.12.015
  • Shekhawat, K., Chatterjee, S., & Joshi, B. (2015). Chromium toxicity and its health hazards. International Journal of Advanced Research, 3, 167–172.
  • Silver, S. (1991). Bacterial Heavy metal resistance systems and possibility of bioremediation. In Biotechnology: Bridging research and applications (pp.265–287). Dordrecht, Netherlands: Springer.
  • Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11, 229–254. doi: 10.1007/s10311-013-0407-5
  • Singh, N. K., & Singh, R. P. (2016). Potential of plants and microbes for the removal of metals: Eco-friendly approach for remediation of soil and water. In Plant metal interaction (pp.469–482). New York, NY: Elsevier Inc. doi: 10.1016/B978-0-12-803158-2.00019-9
  • Singh, S. N., & Tripathi, R. D. (2007). Environmental bioremediation technologies (pp.57–76). Berlin, Germany: Springer.
  • Sivakumar, D. (2016). Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species. Global Journal of Environmental Science and Management, 2, 105–124. doi: 10.7508/GJESM.2016.02.002
  • Sneddon, C. (2012). Chromium and its negative effects on the environment. Case Study. Department of Earth Sciences, Montana State University.
  • Soni, S. K., Singh, R., Awasthi, A., & Kalra, A. (2014). A Cr (VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr (VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environmental Science and Pollution Research, 21, 1971–1979. doi: 10.1007/s11356-013-2098-7
  • Stambulska, U. Y., Bayliak, M. M., & Lushchak, V. I. (2018). Chromium (VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. BioMed Research International, 2018, 1–13. doi: 10.1155/2018/8031213
  • Sterritt, R. M., Brown, M. J., & Lester, J. N. (1981). Metal removal by adsorption and precipitation in the activated sludge process. Environmental Pollution, 24, 313–323. doi: 10.1016/0143-1471(81)90068-4
  • Su, H. J., Fang, Z. Q., Tsang, P. E., Fang, J. Z., & Zhao, D. Y. (2016). Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution, 214, 94–100. doi: 10.1016/j.envpol.2016.03.072
  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresource Technology, 99, 6017–6027. doi: 10.1016/j.biortech.2007.11.064
  • Tang, Y. Z., Webb, S. M., Estes, E. R., & Hansel, C. M. (2014). Chromium(III) oxidation by biogenic manganese oxides with varying structural ripening. Environmental Science: Processes & Impacts, 16, 2127–2136. doi: 10.1039/C4EM00077C
  • Tekerlekopoulou, A. G., Tsiflikiotou, M., Akritidou, L., Viennas, A., Tsiamis, G., Pavlou, S., … Vayenas, D. V. (2013). Modelling of biological Cr (VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Research, 47, 623–636. doi: 10.1016/j.watres.2012.10.034
  • Thacker, U., Parikh, R., Shouche, Y., & Madamwar, D. (2007). Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr (VI) contaminated sites. Bioresource Technology, 98, 1541–1547. doi: 10.1016/j.biortech.2006.06.011
  • Thatoi, H., Das, S., Mishra, J., Rath, B. P., & Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management, 146, 383–399. doi: 10.1016/j.jenvman.2014.07.014
  • Thilakarathne, P. R., & Rathnayake, I. V. N. (2016). Comparison of hexavelant chromium tolerance and removal capacity of two Bacillus species isolated from tannery effluent. International Symposium on Water Quality and Human Health: Challenges Ahead.
  • Ullah, I., Nadeem, R., Iqbal, M., & Manzoor, Q. (2013). Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecological Engineering, 60, 99–107. doi: 10.1016/j.ecoleng.2013.07.028
  • Upadhyay, N., Vishwakarma, K., Singh, J., Mishra, M., Kumar, V., Rani, R., … Sharma, S. (2017). Tolerance and reduction of chromium(VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Frontiers in Plant Science, 8, 778. doi: 10.3389/fpls.2017.00778
  • Urbańska, M. (2013). Biosorption with use of algae biomass as method to remove of Cr(VI) and Cr(III) ions from industrial wastewater: A literature review. Scientific Review Engineering and Environmental Sciences, 22, 323–335.
  • USGS. (2016). United States Geological Survey.
  • Uysal, M., & Ar, I. (2007). Removal of Cr (VI) from industrial wastewaters by adsorption: Part I: Determination of optimum conditions. Journal of Hazardous Materials, 149, 482–491. doi: 10.1016/j.jhazmat.2007.04.019
  • Uysal, Y. (2013). Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow. Journal of Hazardous Materials, 263, 486–492. doi: 10.1016/j.jhazmat.2013.10.006
  • Vale, M. D. S., Nascimento, R. F. D., Leitão, R. C., & Santaella, S. T. (2016). Cr and Zn biosorption by Aspergillus niger. Environmental Earth Sciences, 75, 462. doi: 10.1007/s12665-016-5343-9
  • Velez, P. A., Talano, M. A., Paisio, C. E., Agostini, E., & González, P. S. (2017). Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation. Environmental Technology, 38, 2164–2172. doi: 10.1080/09593330.2016.1247198
  • Vendruscolo, F., da Rocha Ferreira, G. L., & Antoniosi Filho, N. R. (2017). Biosorption of hexavalent chromium by microorganisms. International Biodeterioration & Biodegradation, 119, 87–95. doi: 10.1016/j.ibiod.2016.10.008
  • Vimercati, L., Gatti, M. F., Gagliardi, T., Cuccaro, F., Maria, L. D., Caputi, A., … Baldassarre, A. (2017). Environmental exposure to arsenic and chromium in an industrial area. Environ. Environmental Science and Pollution Research, 24, 11528–11535. doi: 10.1007/s11356-017-8827-6
  • Vogel, C., Radtke, M., Reinholz, U., Schäfers, F., & Adam, C. (2015). Chemical state of chromium, sulfur, and iron in sewage sludge ash based phosphorus fertilizers. Acs Sustainable Chemistry & Engineering, 3, 2376–2380. doi: 10.1021/acssuschemeng.5b00678
  • Wang, C. H., Gu, L. F., Ge, S. M., Liu, X. Y., Zhang, X. Y., & Chen, X. (2018). Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environmental Technology, doi: 10.1080/09593330.2018.1441328
  • Wang, Y. Y., Peng, B., Yang, Z. H., Chai, L. Y., Liao, Q., Zhang, Z., & Li, C. (2015). Bacterial community dynamics during bioremediation of Cr(VI)-contaminated soil. Applied Soil Ecology, 85, 50–55. doi: 10.1016/j.apsoil.2014.09.002
  • Wang, Y. Y., Yang, Z. H., Peng, B., Chai, L. Y., Wu, B. L., & Wu, R. P. (2013). Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB. Environmental Science and Pollution Research, 20, 5593–5602. doi: 10.1007/s11356-013-1526-z
  • Wani, P. A., Khan, M. S., & Zaidi, A. (2007). Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnology Letters, 30(1), 159–163. doi: 10.1007/s10529-007-9515-2
  • Whitaker, A. H., Peña, J., Amor, M., & Duckworth, O. W. (2018). Cr(VI) uptake and reduction by biogenic iron (oxyhydr) oxides. Environmental Science: Processes & Impacts, 20, 1056–1068. doi: 10.1039/C8EM00149A
  • Wild, H. (1974). Indigenous plants and chromium in Rhodesia. Kirkia, 9, 233–241.
  • Wu, H. M., Fan, J. L., Zhang, J., Ngo, H. H., Guo, W. S., Hu, Z., & Lv, J. L. (2016). Optimization of organics and nitrogen removal in intermittently aerated vertical flow constructed wetlands: Effects of aeration time and aeration rate. International Biodeterioration & Biodegradation, 113, 139–145. doi: 10.1016/j.ibiod.2016.04.031
  • Wu, S. C., Cheung, K. C., Luo, Y. M., & Wong, M. H. (2006). Effects of inoculation of plant growth promotin rhizobacteria on mental uptake by Brassica juncea. Environmental Pollution, 140(1), 124–135. doi: 10.1016/j.envpol.2005.06.023
  • Wu, S. L., Chen, B. D., Sun, Y. Q., Ren, B. H., Zhang, X., & Wang, Y. S. (2014). Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils. Environmental Toxicology and Chemistry, 33, 2105–2113. doi: 10.1002/etc.2661
  • Wu, W. D., Li, J. H., Lan, T., Müller, K., Niazi, N. K., Chen, X., … Wang, H. L. (2017). Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 576, 766–774. doi: 10.1016/j.scitotenv.2016.10.163
  • Wu, W. X., Yang, M., Feng, Q. B., McGrouther, K., Wang, H. L., Lu, H. H., & Chen, Y. X. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass & Bioenergy, 47, 268–276. doi: 10.1016/j.biombioe.2012.09.034
  • Xiao, W. D., Ye, X. Z., Yang, X. E., Zhu, Z. Q., Sun, C. X., Zhang, Q., & Xu, P. (2017). Isolation and characterization of chromium (VI)-reducing Bacillus sp. FY1 and Arthrobacter sp. WZ2 and their bioremediation potential. Bioremediation Journal, 21, 100–108. doi: 10.1080/10889868.2017.1282939
  • Xie, T., Reddy, K. R., Wang, C. W., Yargicoglu, E., & Spokas, K. (2015). Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology, 45, 939–969. doi: 10.1080/10643389.2014.924180
  • Xu, X. Y., Huang, H., Zhang, Y., Xu, Z. B., & Cao, X. D. (2018). Biochar as both electron donor and electron shuttle for the reduction transformation of Cr (VI) during its sorption. Environmental Pollution, (In Press). doi: 10.1016/j.envpol.2018.10.068
  • Xue, F. J., Yan, Y. J., Xia, M., Muhammad, F., Yu, L., Xu, F., … Jiao, B. Q. (2017). Electro-kinetic remediation of chromium-contaminated soil by a three-dimensional electrode coupled with a permeable reactive barrier. RSC Advances, 7, 54797–54805. doi: 10.1039/C7RA10913J
  • Xue, G. S., Hu, L. J., Tian, Y., & Lu, X. Y. (2012). Research progress on microbial remediation of controlling heavy metal pollution. Chinese Agricultural Science Bulletin, 28, 266–271. (In Chinese)
  • Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable & Sustainable Energy Reviews, 46, 218–235. doi: 10.1016/j.rser.2015.02.051
  • Yang, X., Liu, J. J., McGrouther, K., Huang, H. G., Lu, K. P., Guo, X., … Wang, H. L. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23, 974–984. doi: 10.1007/s11356-015-4233-0
  • Yang, X., Lu, K. P., McGrouther, K., Che, L., Hu, G. T., Wang, Q. Y., … Wang, H. L. (2017). Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. Journal of Soils and Sediments, 17, 751–762. doi: 10.1007/s11368-015-1326-9
  • Yang, X., Wang, H. L., Strong, P. J., Xu, S., Liu, S. J., Lu, K. P., … Chen, X. (2017). Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies, 10, 469. doi: 10.3390/en10040469
  • Yuan, Y., Bolan, N., Prévoteau, A., Vithanage, M., Biswas, J. K., Ok, Y. S., & Wang, H. L. (2017). Applications of biochar in redox-mediated reactions. Bioresource Technology, 246, 271–281. doi: 10.1016/j.biortech.2017.06.154
  • Zafarani, H. R., Bahrololoom, M. E., Noubactep, C., & Tashkhourian, J. (2015). Green walnut shell as a new material for removal of Cr (VI) ions from aqueous solutions. Desalination and Water Treatment, 55, 431–439. doi: 10.1080/19443994.2014.917986
  • Zaidi, S., Usmani, S., Singh, B. R., & Musarrat, J. (2006). Significance of Bacillus subtilis SJ-101 as a bilinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 64, 991–997. doi: 10.1016/j.chemosphere.2005.12.057
  • Zama, E. F., Reid, B. J., Arp, H. P. H., Sun, G.-X., Yuan, H. Y., & Zhu, Y. G. (2018). Advances in research on the use of biochar in soil for remediation: A review. Journal of Soils and Sediments, 18, 2433–2450. doi: 10.1007/s11368-018-2000-9
  • Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249(1), 139–156. [Mismatch] doi: 10.1023/A:1022504826342
  • Zeng, J., Gou, M., Tang, Y.-Q., Li, G.-Y., Sun, Z.-Y., & Kida, K. (2016). Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresource Technology, 218, 859–866. doi: 10.1016/j.biortech.2016.07.051
  • Zhang, J. K., Wang, Z. H., & Ye, Y. (2016). Heavy metal resistances and chromium removal of a novel Cr(VI)-reducing Pseudomonad strain isolated from circulating cooling water of iron and steel plant. Applied Biochemistry and Biotechnology, 180, 1328–1344. doi: 10.1007/s12010-016-2170-0
  • Zhang, X. H., Liu, J., Huang, H.-T., Chen, J., Zhu, Y.-N., & Wang, D. Q. (2007). Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere, 67, 1138–1143. doi: 10.1016/j.chemosphere.2006.11.014
  • Zhang, X. K., Wang, H. L., He, L. Z., Lu, K. P., Sarmah, A., Li, J. W., … Huang, H. G. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483. doi: 10.1007/s11356-013-1659-0
  • Zhao, R., Wang, B., Cai, Q. T., Li, X. X., Liu, M., Hu, D., … Fan, C. (2016). Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomedical and Environmental Sciences,29, 127–136. doi: 10.3967/bes2016.014
  • Zhitkovich, A. (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24, 1617–1625. doi: 10.1021/tx200251t
  • Zhou, L., Liu, Y. G., Liu, S. B., Yin, Y. C., Zeng, G. M., Tan, X. F., … Huang, X. X. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359. doi: 10.1016/j.biortech.2016.06.102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.